Skip to main content

Neural Networks Approaches for Combinatorial Optimization Problems

  • Chapter
Handbook of Combinatorial Optimization

Abstract

Most of the engineering design problems and applications can be formulated as a nonlinear programming problem in which the objective function is nonlinear and has many local optima in its feasible region. It is desirable to find a local optimum that corresponds to the global optimum. The problem of finding the global optimum is known as the global optimization problem. Most such global optimization problems are difficult to solve. The main difficulties in finding the global optimum are that there are no operationally useful optimality conditions for identifying whether a point is indeed a global optimum, except in cases of special structured problems [33] and so it is computationally intensive to obtain the global optimum. Therefore, it is desirable and sometimes necessary to find a near global optimum in a reasonable time rather than obtaining the global optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abe, J. Kawakami, and K. Hirasawa, Solving inequality constrained combinatorial optimization problems by the Hopfield neural networks, Neural Networks Vol. 5 (1992) pp. 663–670.

    Article  Google Scholar 

  2. D.H. Ackley, G.E.. Hinton, and T.J. Sejnowski, A learning algorithm for Boltzman machines, Cognitive Science Vol. 9 (1985) pp. 147–169.

    Article  Google Scholar 

  3. N. Ansari, E.S.H. Hou, and Y. Yu, A new method to optimize the satellite broadcasting schedules using the mean field annealing of a Hopfield neural network, IEEE Transactions on Neural Networks Vol. 6 No. 2 (1995) pp. 470–482.

    Article  Google Scholar 

  4. M. Bengtsson and P. Roivainen, Using the Potts glass for solving the clustering problem, International Journal of Neural Systems Vol. 6 No. 2 (1995) pp. 119–132.

    Article  Google Scholar 

  5. G. Bilbro, R. Mann, T.K. Miller, W.E. Snyder, D.E. Van Den Bout, and M. White, Optimization by mean field annealing, in D.S. Touretzky (ed.) Proceedings of the Annual Conferences on Advances in Neural Information Processing Systems, Volume 1, (Morgan Kaufmann Publishers, 1988 ) pp. 91–98.

    Google Scholar 

  6. A. Bovier and P. Picco, Mathematical Aspects of Spin Glasses and Neural Networks, (Birkhäuser, 1998 ).

    Google Scholar 

  7. N.E.G. Buchler, E.R.P. Zuiderweg, H. Wang, and R.A. Goldstein, Protein heteronuclear NMR assignments using mean-field simulated annealing, Journal of Magnetic Resonance Vol. 125 (1997) pp. 34–42.

    Article  Google Scholar 

  8. B. Cabon, G. Verfaillie, D. Martinez, and P. Bourret, Using mean field methods for boosting backtrack search in constraint satisfaction problems, in W. Wahlster (ed.) 12th European Conference on Artificial Intelligence, ( John Wiley and Sons, Ltd., 1996 ).

    Google Scholar 

  9. D. Chowdhury, Spin Glasses and Other Frustrated Systems, (Princeton University Press, 1986 ).

    Google Scholar 

  10. D. Chowdhury, Spin Glasses and Other Frustrated Systems, (Princeton University Press, 1986 ).

    Google Scholar 

  11. A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, (John Wiley and Sons, 1993 ).

    Google Scholar 

  12. R. Courant and D. Hilbert, Methods of Mathematical Physics, (Inter-science Publishers Inc., 1953 ).

    Google Scholar 

  13. K.A. Dowsland, Simulated annealing, in C.R. Reeves (ed.) Modern Heuristic Techniques for Combinatorial Problems, (John Wiley and Sons, 1993 ) pp. 20–69.

    Google Scholar 

  14. R. Durbin, R. Szeliski, and A.L. Yuille, An analysis of the elastic net approach to the travelling salesman problem, Neural Computation Vold (1989) pp. 348–358.

    Google Scholar 

  15. I.M. Elfadel, Convex potential and their conjugates in analog mean-field optimization, Neural Computation Vol. 7 (1995) pp. 1079–1104.

    Article  Google Scholar 

  16. S. Elmohamed, P. Coddington, and G. Fox, A comparison of annealing techniques for academic course scheduling, Northeast Parallel Architectures Center (NPAC) technical report SCCS-777, January 25, 1997.

    Google Scholar 

  17. L. Fang and T. Li, Design of competition-based neural networks for combinatorial optimization, International Journal of Neural Systems Vold No. 3 (1990) pp. 221–235.

    Google Scholar 

  18. L. Fang, W.H. Wilson, and T. Li, Mean field annealing neural net for quadratic assignment, in International Neural Network Conference, July 9–13, Paris, France,(Kluwer Academic Publishers, 1990) pp. 282286.

    Google Scholar 

  19. L. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and Applications, (Prentice-Hall, 1994 ).

    Google Scholar 

  20. L. Faybusovich, Interior point methods and entropy, IEEE Conference on Decision and Control, (1991) pp. 2094–2095.

    Google Scholar 

  21. K.H. Fischer and J.A. Hertz, Spin Glasses, (Cambridge University Press, 1991 ).

    Google Scholar 

  22. C.A. Floudas and P.M. Pardalos, Recent Advances in Global Optimization, (Princeton University Press, 1994 ).

    Google Scholar 

  23. D. Geiger and F. Girosi, Coupled Markov random fields and mean field theory, in D.S. Touretzky (ed.) Proceedings of the Annual Conferences on Advances in Neural Information Processing Systems, Volume 2, (Morgan Kaufmann Publishers, 1989 ) pp. 660–667.

    Google Scholar 

  24. L. Gislen, C. Peterson, and B. Soderberg, Teachers and classes with neural networks, International Journal of Neural Systems Vol.1 No. 1 (1989) pp. 167–183.

    Article  Google Scholar 

  25. L. Gislen, C. Peterson, and B. Soderberg, Complex scheduling with Potts neural networks, Neural Computation Vol. 4 (1992) pp. 805–831.

    Article  Google Scholar 

  26. R.J. Glauber, Time-dependent statistics of the Ising model, Journal of Mathematical Physics Vol. 4 No. 2 (1963) pp. 294–307.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Haykin, Neural Networks: A Comprehensive Foundation, (Macmillan College Publishing Company, 1994 ).

    Google Scholar 

  28. L. Herault and J.-J. Niez, Neural networks and combinatorial optimization: a study of NP-complete graph problems, in E. Gelenbe (ed.) Neural Networks: Advances and Applications, ( Elsevier Science Publishers B. V., 1991 ) pp. 165–213.

    Google Scholar 

  29. T. Hofmann and J.M. Buhmann, Pairwise data clustering by deterministic annealing, IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 19 No. 1 (1997) pp. 1–14.

    Article  Google Scholar 

  30. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, in Proceedings of the National Academy of Sciences of the U.S.A., Biophysics, (1982) pp. 2554–2558.

    Google Scholar 

  31. J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, in Proceedings of the National Academy of Sciences of the U.S.A., Biophysics, (1984) pp. 3088–3092.

    Google Scholar 

  32. J.J. Hopfield and D.W. Tank, “Neural” computation of decisions in optimization problems, Biological Cybernetics Vol.52 (1985) pp. 141–152.

    Google Scholar 

  33. R. Horst, P.M. Pardalos, and N.V. Thoai, Introduction to Global Optimization, (Kluwer Academic Publishers, 1995 ).

    Google Scholar 

  34. H. Igarashi, A solution to combinatorial optimization problems using a two-layer random field model: Mean-field approximation, in World Congress on Neural Networks, July 11–15, Portland, Oregon, Volume 1, ( Lawrance Erlbaum Associates Inc. Publishers, 1993 ) pp. 283–286.

    Google Scholar 

  35. H. Igarashi, A solution for combinatorial optimization problems using a two-layer random field model: Mean-field approximation, Systems and Computers in Japan Vol. 25 No. 8 (1994) pp. 61–71.

    Article  Google Scholar 

  36. S. Ishii and M.-A. Sato, Chaotic Potts spin model for combinatorial optimization problems, Neural Networks Vol.10 No. 5 (1997) pp. 941963.

    Google Scholar 

  37. I. Kanter and H. Sompolinsky, Graph optimisation problems and the Potts glass, Journal of Physics A: Math. Gen. Vol. 20 (1987) pp. L673 - L679.

    Article  MathSciNet  Google Scholar 

  38. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated annealing, Science Vol. 220 No. 4598 (1983) pp. 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  39. J.J. Kosowsky and A.L. Yuille, The invisible hand algorithm: Solving the assignment problem with statistical physics, Neural Networks Vol. 7 No. 3 (1994) pp. 477–490.

    Article  MATH  Google Scholar 

  40. N. Kurita and K.-I. Funahashi, On the Hopfield neural networks and mean field theory, Neural Networks Vol. 9 No. 9 (1996) pp. 1531–1540.

    Article  MATH  Google Scholar 

  41. T. Kurokawa and S. Kozuka, Use of neural networks for the optimum frequency assignment problem, Electronics and Communications in Japan, Part 1 Vol. 77 No. 11 (1994) pp. 106–116.

    Google Scholar 

  42. M. Lagerholm, C. Peterson, and B. Soderberg, Airline crew scheduling with Potts neurons, Neural Computation Vol. 9 (1997) pp. 1589–1599.

    Article  Google Scholar 

  43. K.-C. Lee and Y. Takefuji, Maximum clique problems: Part 1, in Y. Takefuji and J. Wang (eds.) Neural Computing for Optimization and Combinatorics, (World Scientific, 1996 ) pp. 31–61.

    Chapter  Google Scholar 

  44. K.-C. Lee and Y. Takefuji, Maximum clique problems: Part 2, in Y. Takefuji and J. Wang (eds.) Neural Computing for Optimization and Combinatorics, (World Scientific, 1996 ) pp. 63–77.

    Google Scholar 

  45. B.C. Levy and M.B. Adams, Global optimization with stochastic neural networks, in Neural Networks for Optimization and Signal Processing, Proceedings of the First International Conference on Neural Networks, San Diego,(1987) pp. 681–690.

    Google Scholar 

  46. W.A. Little, The existence of persistent states in the brain, Mathematical Biosciences Vol. 19 (1974) pp. 101–120.

    Article  MATH  Google Scholar 

  47. C.-K. Looi, Neural network methods in combinatorial optimization, Computers in Operations Research Vol.19 No. 3 /4 (1992) pp. 191–208.

    Google Scholar 

  48. S. Matsuda, Set-theoretic comparison of mapping of combinatorial optimization problems to Hopfield neural networks, Systems and Computers in Japan Vol. 27 No. 6 (1996) pp. 45–59.

    Article  Google Scholar 

  49. W.S. McCullough and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics Vol. 5 (1943) pp. 115–133.

    Article  Google Scholar 

  50. I.I. Melamed, Neural networks and combinatorial optimization, Automation and Remote Control Vol. 55 No. 11 (1994) pp. 1553–1584.

    MathSciNet  MATH  Google Scholar 

  51. M. Mezard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Beyond, (World Scientific, 1987 ).

    Google Scholar 

  52. B. Muller and J. Reinhardt, Neural Networks: An Introduction, (Springer-Verlag, 1990 ).

    Google Scholar 

  53. M. Ohlsson, C. Peterson, and B. Soderberg, Neural networks for optimization problems with inequality constraints: The knapsack problem, Neural Computation Vol. 5 (1993) pp. 331–339.

    Article  Google Scholar 

  54. M. Ohlsson and H. Pi, A study of the mean field approach to knapsack problems, Neural Networks Vol. 10 No. 2 (1997) pp. 263–271.

    Article  Google Scholar 

  55. C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, (Prentice-Hall, 1982 ).

    Google Scholar 

  56. C. Peterson, Parallel distributed approaches to combinatorial optimization: Benchmark studies on traveling salesman problem, Neural Computation Vol. 2 (1990) pp. 261–269.

    Article  Google Scholar 

  57. C. Peterson, Mean field theory neural networks for feature recognition, content addressable memory and optimization, Connection Science Vol. 3 No. 1 (1991) pp. 3–33.

    Article  Google Scholar 

  58. C. Peterson, Solving optimization problems with mean field methods, Physica A Vol. 200 (1993) pp. 570–580.

    Article  Google Scholar 

  59. C. Peterson and J.R. Anderson, A mean field theory learning algorithm for neural networks, Complex Systems Vol.1 (1987) pp. 995–1019.

    Google Scholar 

  60. C. Peterson and J.R. Anderson, Neural networks and NP-complete optimization problems; a performance study on the graph bisection problem, Complex Systems Vol. 2 (1988) pp. 59–89.

    MathSciNet  MATH  Google Scholar 

  61. C. Peterson and B. Soderberg, A new method for mapping optimization problems onto neural networks, International Journal of Neural systems Vol. 1 No. 1 (1989) pp. 3–22.

    Article  Google Scholar 

  62. C. Peterson and B. Soderberg, Artificial neural networks, in C.R. Reeves (ed.) Modern Heuristic Techniques for Combinatorial Problems, (John Wiley and Sons, 1993 ) pp. 197–242.

    Google Scholar 

  63. C. Peterson and B. Soderberg, Artificial neural networks, in E. Aarts and J.K. Lenstra (eds.) Local Search in Combinatorial Optimization, (John Wiley and Sons, 1997 ) pp. 177–213.

    Google Scholar 

  64. F. Qian and H. Hirata, A parallel computation based on mean field theory for combinatorial optimization and Boltzman machines, Systems and Computers in Japan Vol. 25 No. 12 (1994) pp. 86–97.

    Google Scholar 

  65. J. Ramanujam and P. Sadayappan, Mapping combinatorial optimization problems onto neural networks, Information Sciences Vol. 82 (1995) pp. 239–255.

    Article  MathSciNet  Google Scholar 

  66. C.R. Reeves, Modern Heuristic Techniques for Combinatorial Problems, (John Wiley and Sons, 1993 ).

    Google Scholar 

  67. L.E. Reichl, A Modern Course in Statistical Physics, (University of Texas Press, 1980 ).

    Google Scholar 

  68. D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning representations by back-propagating errors, Nature (London) Vol. 323 (1986) pp. 533–536.

    Article  Google Scholar 

  69. M.-A. Sato and S. Ishii, Bifurcations in mean field theory, Physical Review E Vol. 53 No. 5 (1996) pp. 5153–5168.

    Article  Google Scholar 

  70. G.M. Shim, D. Kim, and M.Y. Choi, Potts-glass model of layered feed-forward neural networks, Physical Review A Vol. 45 No. 2 (1992) pp. 1238–1248.

    Article  MathSciNet  Google Scholar 

  71. P. Stolorz, Merging constrained optimisation with deterministic annealing to “solve” combinatorially hard problems, in J.E. Moody, S.J. Hanson, and R.P. Lippmann (eds.) Advances in Neural Information Processing Systems, ( Chapman and Hall, 1991 ) pp. 1025–1032.

    Google Scholar 

  72. Y. Uesaka, Mathematical basis of neural networks for combinatorial optirnization problems, Optoelectronics–Devices and Technologies Vol. 8 No. 1 (1993) pp. 1–9.

    Google Scholar 

  73. K. Urahama, Mathematical programming formulation for neural combinatorial optimization algorithms, Electronics and Communications in Japan Vol. 78 No. 9 (1995) pp. 67–75.

    Article  Google Scholar 

  74. K. Urahama and S.-I. Ueno, A gradient system solution to Potts mean field equations and its electronic implementation, International Journal of Neural Systems Vol. 4 No. 1 (1993) pp. 27–34.

    Article  Google Scholar 

  75. K. Urahama and T. Yamada, Constrained Potts mean field systems and their electronic implementation, International Journal of Neural Systems Vol. 5 No. 3 (1994) pp. 229–239.

    Article  Google Scholar 

  76. D.E. Van Den Bout and T.K. Miller, Graph partitioning using annealed networks, IEEE Transactions on Neural Networks Vol.]. No. 2 (1990) pp. 192–203.

    Article  Google Scholar 

  77. P.J.M. Van Laarhoven, Theoretical and Computational Aspects of Simulated Annealing, (Stichting Mathematisch Centrum, 1988 ).

    Google Scholar 

  78. J. Wang, Deterministic neural networks for combinatorial optimization, in O.M. Omidvar (ed.) Progress in Neural Networks, (Ablex, 1994 ) pp. 319–340.

    Google Scholar 

  79. F.Y. Wu, The Potts model, Reviews of Modern Physics Vol. 54 No. 1 (1982) pp. 235–268.

    Article  MathSciNet  Google Scholar 

  80. L. Xu and A.L. Yuille, Robust principal component analysis by self-organizing rules based on statistical physics approach, IEEE Transactions on Neural Networks Vol. 6 No. 1 (1995) pp. 131–143.

    Article  Google Scholar 

  81. A.L. Yuille, Generalized Deformable models, statistical physics, and matching problems, Neural Computation Vol. 2 (1990) pp. 1–24.

    Article  Google Scholar 

  82. A.L. Yuille and J.J. Kosowsky, Statistical physics algorithms that converge, in R.J. Mammone (ed.) Artificial Neural Networksfor Speech and Vision,(Chapman and Hall, 1993 ) pp. 19–36.

    Google Scholar 

  83. A.L. Yuille and J.J. Kosowsky, Statistical physics algorithms that converge, Neural Computation Vol. 6 (1994) pp. 341–356.

    Article  Google Scholar 

  84. A.L. Yuille, P. Stolorz, and J. Utans, Statistical physics, mixtures of distributions, and the EM algorithm, Neural Computation Vol. 6 (1994) pp. 334–340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trafalis, T.B., Kasap, S. (1999). Neural Networks Approaches for Combinatorial Optimization Problems. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3023-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3023-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4813-7

  • Online ISBN: 978-1-4757-3023-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics