Advertisement

Linear Assignment Problems and Extensions

  • Rainer E. Burkard
  • Eranda Çela

Abstract

Assignment problems deal with the question how to assign n items (e.g. jobs) to n machines (or workers) in the best possible way. They consist of two components: the assignment as underlying combinatorial structure and an objective function modeling the ”best way”.

Keywords

Bipartite Graph Assignment Problem Dual Solution Cost Coefficient Discrete Apply Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Achatz, P. Kleinschmidt, and K. Paparrizos, A dual forest algorithm for the assignment problem, in Applied Geometry and Discrete Mathematics, P. Gritzmann and B. Sturmfels, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science 4, AMS, Providence, RI, 1991, pp. 1–11.Google Scholar
  2. [2]
    R. K. Ahuja, T. L. Magnanti, J. B. Orlin, and M. R. Reddy, Applications of network optimization, in Network Models–Handbooks of Operations Research and Management Science 7), M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, eds., Elsevier, Amsterdam, 1995, pp. 1–83.Google Scholar
  3. [3]
    R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms for the shortest path problem, Journal of the ACM 37, 1990, 213–223.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R. K. Ahuja and J. B. Orlin, The scaling network simplex algorithm, Operations Research 40, Suppl. No. 1, 1992, S5 - S13.MathSciNetGoogle Scholar
  5. [5]
    M. Akgül, A sequential dual simplex algorithm for the linear assignment problem, Operations Research Letters 7, 1988, 155–158.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    M. Akgül, The linear assignment problem, in Combinatorial Optimization, M. Akgül and S. Tufecki, eds., Springer Verlag, Berlin, 1992, pp. 85–122.CrossRefGoogle Scholar
  7. [7]
    M. Akgül, A genuinely polynomial primal simplex algorithm for the assignment problem, Discrete Applied Mathematics 45, 1993, 93–115.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    M. Akgül and O. Ekin, A dual feasible forest algorithm for the assignment problem, RAIRO Operations Research 25, 1991, 403–411.MATHGoogle Scholar
  9. [9]
    H. Alt, N. Blum, K. Mehlhorn, and M. Paul, Computing maximum cardinality matching in time O(n1.5/m/ log e), Information Process. Letters 37, 1991, 237–240.MathSciNetMATHGoogle Scholar
  10. [10]
    R. D. Armstrong and J. Zhiying, Solving linear bottleneck assignment problems via strong spanning trees, Operations Research Letters 12, 1992, 179–180.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    D. Avis and L. Devroye, An analysis of a decomposition heuristic for the assignment problem, Operations Research Letters 3, 1985, 279–283.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    D. Avis and C. W. Lai, The probabilistic analysis of a heuristic for the assignment problem, SIAM Journal on Computing 17, 1988, 732–741.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    E. Balas and P. R. Landweer, Traffic assignment in communications satellites, Operations Research Letters 2, 1983, 141–147.MATHCrossRefGoogle Scholar
  14. [14]
    E. Balas, D. Miller, J. Pekny, and P. Toth, A parallel shortest path algorithm for the assignment problem, Journal of the ACM 38, 1991, 985–1004.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    E. Balas and L. Qi, Linear-time separation algorithms for the three-index assignment polytope, Discrete Applied Mathematics 43, 1993, 1–12.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    E. Balas and M. J. Saltzman, Facets of the three-index assignment polytope, Discrete Applied Mathematics 23, 1989, 201–229.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    E. Balas and M. J. Saltzman, An algorithm for the three-index assignment problem, Operations Research 39, 1991, 150–161.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    M. L. Balinski, Signature methods for the assignment problem, Operations Research 33, 1985, 527–537.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    M. L. Balinski, A competitive (dual) simplex method for the assignment problem, Mathematical Programming 34, 1986, 125–141.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    M. L. Balinski and R. E. Gomory, A primal method for the assignment and transportation problems, Management Science 10, 1964, 578–593.CrossRefGoogle Scholar
  21. [21]
    M. L. Balinski and J. Gonzalez, Maximum matchings in bipartite graphs via strong spanning trees, Networks 21, 1991, 165–179.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    M. L. Balinski and A. Russakoff, On the assignment polytope, SIAM Review 16, 1974, 516–525.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    S. E. Bammel and J. Rothstein, The number of 9 x 9 Latin squares, Discrete Mathematics 11, 1975, 93–95.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    H.-J. Bandelt, Y. Crama, and F. C. R. Spieksma, Approximation algorithms for multi-dimensional assignment problems with decomposable costs, Discrete Applied Mathematics 49, 1994, 25–50.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    V. A. Bardadym, Modifications of general lexicographic bottleneck optimization problems, Proceedings of the 5-th Twente Workshop on Graphs and Combinatorial Optimization, U. Faigle and C. Hoede, eds., 1997, University of Twente, Enschede, The Netherlands, 27–30.Google Scholar
  26. [26]
    R. S. Barr, F. Glover, and D. Klingman, The alternating basis algorithm for assignment problems, Mathematical Programming 13, 1977, 1–13.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    R. S. Barr and B. L. Hickman, A new parallel network simplex algorithm and implementation for large time-critical problems, Technical Report, Department of Computer Science and Engineering, Southern Methodist University, Dallas, TX, 1990.Google Scholar
  28. [28]
    D. P. Bertsekas, A new algorithm for the assignment problem, Mathematical Programming 21, 1981, 152–171.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    D. P. Bertsekas, The auction algorithm: A distributed relaxation method for the assignment problem, Annals of Operations Research 14, 1988, 105–123.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    D. P. Bertsekas, Linear Network Optimization: Algorithms and codes, MIT Press, Cambridge, MA, 1991.MATHGoogle Scholar
  31. [31]
    D. P. Bertsekas and D. A. Castanon, Parallel synchronous and asynchronous implementations of the auction algorithm, Parallel Computing 17, 1991, 707–732.MATHCrossRefGoogle Scholar
  32. [32]
    D. P. Bertsekas and D. A. Castanon, Parallel asynchronous Hungarian methods for the assignment problem, ORSA Journal on Computing 5, 1993, 661–674.CrossRefGoogle Scholar
  33. [33]
    D. P. Bertsekas and D. A. Castanon, Parallel primal-dual methods to the minimum cost network flow problem, Computational Optimization and Applications 2, 1993, 319–338.Google Scholar
  34. [34]
    D. P. Bertsekas, D. A. Castanon, J. Eckstein, and S. Zenios, Parallel computing in network optimization, in Network Models–Handbooks in Operations Research and Management Science, Vol. 7, M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, eds., Elsevier, Amsterdam, The Netherlands, 1995, pp. 330–399.Google Scholar
  35. [35]
    D. P. Bertsekas and J. Eckstein, Dual coordinate step methods for linear network flow problems, Mathematical Programming 42, 1988, 203–243.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    G. Birkhoff, Tres observaciones sobre el algebra lineal, Rev. univ. nac. Tucuman (A) 5, 1946, 147–151.MATHGoogle Scholar
  37. [37]
    W. L. Brogan, Algorithm for ranked assignments with applications to multiobject tracking, Journal of Guidance 12, 1989, 357–364.CrossRefGoogle Scholar
  38. [38]
    R. E. Burkard, Time-slot assignment for TDMA-systems, Computing 35, 1985, 99–112.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    R. E. Burkard and U. Derigs, Assignment and Matching Problems: Solution Methods with FORTRAN Programs, Springer, Berlin, 1980.MATHCrossRefGoogle Scholar
  40. [40]
    R. E. Burkard and K. Fröhlich, Some remarks on 3-dimensional assignment problems, Methods of Operations Research 36, 1980, 31–36.MATHGoogle Scholar
  41. [41]
    R. E. Burkard, W. Hahn, and U. Zimmermann, An algebraic approach to assignment problems, Mathematical Programming 12, 1977, 318327.Google Scholar
  42. [42]
    R. E. Burkard, B. Klinz, and R. Rudolf, Perspectives of Monge properties in optimization, Discrete Applied Mathematics 70, 1996, 95–161.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    R. E. Burkard and F. Rendl, Lexicographic bottleneck problems, Operations Research Letters 10, 1991, 303–308.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    R. E. Burkard and R. Rudolf, Computational investigations on 3dimensional axial assignment problems, Belgian J. of Operations Research 32, 1993, 85–98.Google Scholar
  45. [45]
    R. E. Burkard, R. Rudolf, and G. J. Woeginger, Three dimensional axial assignment problems with decomposable cost coefficients, Discrete Applied Mathematics 65, 1996, 123–169.MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    R. E. Burkard and U. Zimmermann, Weakly admissible transformations for solving algebraic assignment and transportation problems, Mathematical Programming Study 12, 1980, 1–18.MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    R. E. Burkard and U. Zimmermann, Combinatorial optimization in linearly ordered semimodules: a survey, in Modern Applied Mathematics, B. Korte ed., North Holland, Amsterdam, 1982, pp. 392–436.Google Scholar
  48. [48]
    P. Camerini, L. Fratta, and F. Maffioli, On improving relaxation methods by modified gradient techniques, Mathematical Programming Study 3, 1975, 26–34.MathSciNetCrossRefGoogle Scholar
  49. [49]
    P. Carraresi and G. Gallo, Network models for vehicle and crew scheduling, European Journal of Operational Research 16, 1984, 139–151.MathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    P. Carraresi and G. Gallo, A multi-level bottleneck assignment approach to the bus drivers’ rostering problem, European Journal of Operational Research 16, 1984, 163–173.MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    G. Carpaneto, S. Martello, and P. Toth, Algorithms and codes for the assignment problem, Annals of Operations Research 13, 1988, 193–223.MathSciNetCrossRefGoogle Scholar
  52. [52]
    P. Carraresi and C. Sodini, An efficient algorithm for the bipartite matching problem, European Journal of Operational Research 23, 1986, 86–93.MathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    D. A. Castaíïon, B. Smith, and A. Wilson, Performance of parallel assignment algorithms on different multiprocessor architectures, Technical Report TP-1245, ALPHATECH, Inc., Burlington, Mass.Google Scholar
  54. [54]
    G. Carpaneto and P. Toth, Solution of the assignment problem, ACM Transactions on Mathematical Software 6, 1980, 104–11.CrossRefGoogle Scholar
  55. [55]
    G. Carpaneto and P. Toth, Algorithm for the solution of the bottleneck assignment problem, Computing 27, 1981, 179–187.MATHCrossRefGoogle Scholar
  56. [56]
    G. Carpaneto and P. Toth, Primal-dual algorithms for the assignment problem, Discrete Applied Mathematics 18, 1987, 137–153.MathSciNetMATHCrossRefGoogle Scholar
  57. [57]
    K. Cechlârovâ, The uniquely solvable bipartite matching problem, Operations Research Letters 10, 1991, 221–224.MathSciNetMATHCrossRefGoogle Scholar
  58. [58]
    B. V. Cherkassky and A. V. Goldberg, On implementing push-relabel methods for the maximum flow problem, Algorithmica 19, 1997, 390410.Google Scholar
  59. [59]
    B. V. Cherkassky, A. V. Goldberg, and T. Radzik, Shortest paths algorithms: theory and experimental evaluation, Mathematical Programming 73, 1996, 129–174.MathSciNetMATHGoogle Scholar
  60. [60]
    D. Coppersmith and S. Vinograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computing 9, 1990, 251–280.MATHCrossRefGoogle Scholar
  61. [61]
    Y. Crama and F. C. R. Spieksma, Approximation algorithms for three-dimensional assignment problems with triangle inequalities, European Journal of Operational Research 60, 1992, 273–279.MATHCrossRefGoogle Scholar
  62. [62]
    W. H. Cunningham, A network simplex method, Mathematical Programming 11, 1976, 105–116.MathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    W. H. Cunningham, Theoretical properties of the network simplex method, Mathematics of Operations Research 4, 1979, 196–208.MathSciNetMATHCrossRefGoogle Scholar
  64. [64]
    W. H. Cunningham and A. B. Marsh, A primal algorithm for optimum matching, Mathematical Programming Study 8, 1978, 50–72.MathSciNetCrossRefGoogle Scholar
  65. [65]
    G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.MATHGoogle Scholar
  66. [66]
    V. G. Deineko and V. L. Filonenko, On the reconstruction of specially structured matrices, Aktualnyje Problemy EVM i Programmirovanije, Dnjepropetrovsk, DGU, 1979, (in Russian).Google Scholar
  67. [67]
    U. Derigs, Alternate strategies for solving bottleneck assignment problems–analysis and computational results, Computing 33, 1984, 95–106.MathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    The shortest augmenting path for solving assignment problems–motivation and computational experience, in Algorithms and Software for Optimization- Part I, Annals of Operations Research 4, C. L. Monma cd., Baltzer, Basel, 1985, 57–102.Google Scholar
  69. [69]
    U. Derigs, O. Goecke, and R. Schrader, Monge sequences and a simple assignment algorithm, Discrete Applied Mathematics 15, 1986, 24 1248.Google Scholar
  70. [70]
    U. Derigs and U. Zimmermann, An augmenting path method for solving linear bottleneck assignment problems, Computing 19, 1978, 285–295.MathSciNetMATHCrossRefGoogle Scholar
  71. [71]
    E. W. Dijkstra, A note on two problems in connection with graphs, Numerische Mathematik 1, 1959, 269–271.MathSciNetMATHCrossRefGoogle Scholar
  72. [72]
    W. E. Donath, Algorithms and average-value bounds for assignment problems, IBM Journal on Research Development 13, 1969, 380–386.MATHCrossRefGoogle Scholar
  73. [73]
    J. Edmonds and D. R. Fulkerson, Bottleneck extrema, Journal of Combinatorial Theory 8, 1970, 299–306.MathSciNetMATHCrossRefGoogle Scholar
  74. [74]
    P. Erdös and A. Rényi, On random matrices, Pub. Math. Inst. Hung. Acad. of Sciences 8A, 1963, 455–461.Google Scholar
  75. [75]
    R. Euler, Odd cycles and a class of facets of the axial 3-index assignment polytope, Applicationes mathematicae (Zastowania Matematyki) 19, 1987, 375–386.MATHGoogle Scholar
  76. [76]
    R. Euler, R. E. Burkard, and R. Grommes, On Latin squares and the facial structure of related polytopes, Discrete Mathematics 62, 1986, 155–181.MathSciNetMATHCrossRefGoogle Scholar
  77. [77]
    R. Euler and H. Le Verge, Time-tables, polyhedra and the greedy algorithm, Discrete Applied Mathematics 65, 1996, 207–221.MathSciNetMATHCrossRefGoogle Scholar
  78. [78]
    T. A. Ewashko and R. C. Dudding, Application of Kuhn’s Hungarian assignment algorithm to posting servicemen, Operations Research 19, 1971, 991.CrossRefGoogle Scholar
  79. [79]
    D. Fortin and R. Rudolf, Weak algebraic Monge arrays, to appear in Discrete Mathematics, 1998.Google Scholar
  80. [80]
    M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, Journal of the ACM 34, 1987, 596–615.MathSciNetCrossRefGoogle Scholar
  81. [81]
    J. B. G. Frenk, M. van Houweninge, and A. H. G. Rinnooy Kan, Order statistics and the linear assignment problem, Computing 39, 1987, 165174.Google Scholar
  82. [82]
    A. M. Frieze, Complexity of a 3-dimensional assignment problem, European Journal of Operational Research 13, 1983, 161–164.MathSciNetMATHCrossRefGoogle Scholar
  83. [83]
    A. M. Frieze and L. Yadegar, An algorithm for solving 3-dimensional assignment problems with application to scheduling in a teaching practice, Journal of the Operational Research Society 32, 1981, 989–995.MATHGoogle Scholar
  84. [84]
    R. Fulkerson, I. Glicksberg, and O. Gross, A production line assignment problem, Technical Report RM-1102, The Rand Corporation, Sta. Monica, CA, 1953.Google Scholar
  85. [85]
    L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics 8, 1956, 399–404.MathSciNetMATHCrossRefGoogle Scholar
  86. [86]
    H. N. Gabow and R. E. Tarjan, A linear time algorithm for a special case of set union, Journal of Computer and System Sciences 30, 1985, 209–221.MathSciNetMATHCrossRefGoogle Scholar
  87. [87]
    H. N. Gabow and R. E. Tarjan, Algorithms for two bottleneck optimization problems, Journal of Algorithms 9, 1988, 411–417.MathSciNetMATHCrossRefGoogle Scholar
  88. [88]
    R. Garfinkel, An improved algorithm for the bottleneck assignment problem, Operations Research 19, 1971, 1747–1751.MATHCrossRefGoogle Scholar
  89. [89]
    F. Glover, Maximum matching in a convex bipartite graph, Naval Research Logistics Quarterly 14, 1967, 313–316.MATHCrossRefGoogle Scholar
  90. [90]
    F. Glover, R. Glover, and D. Klingman, Threshold assignment algorithm, Mathematical Programming Study 26, 1986, 12–37.MathSciNetMATHCrossRefGoogle Scholar
  91. [91]
    F. Glover, D. Karney, and D. Klingman, Implementation and computational study on start procedures and basis change criteria for a primal network code, Networks 4, 1974, 191–212.MATHCrossRefGoogle Scholar
  92. [92]
    F. Glover and D. Klingman, Improved labeling of L.P. bases in networks, Research report CS 218, Center for Cybernetic Studies, University of Texas, Austin, TX, 1974.Google Scholar
  93. [93]
    M. X. Goemans and M. Kodilian, A lower bound on the expected value of an optimal assignment, Mathematics of Operations Research 18, 1993, 267–274.MathSciNetMATHCrossRefGoogle Scholar
  94. [94]
    A. V. Goldberg and R. Kennedy, An efficient cost scaling algorithm for the assignment problem, Mathematical Programming 75, 1995, 153177.Google Scholar
  95. [95]
    A. V. Goldberg, S. A. Plotkin, and P. Vaidya, Sublinear-time parallel algorithms for matching and related problems, Journal of Algorithms 14, 1993, 180–213.MathSciNetMATHCrossRefGoogle Scholar
  96. [96]
    A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by successive approximation, Mathematics of Operations Research 15, 1990, 430–466.MathSciNetMATHCrossRefGoogle Scholar
  97. [97]
    D. Goldfarb, Efficient dual simplex methods for the assignment problem, Mathematical Programming 33, 1985, 187–203.MathSciNetMATHCrossRefGoogle Scholar
  98. [98]
    O. Gross, The bottleneck assignment problem, Technical Report P1630, The Rand Corporation, Sta. Monica, CA, 1959.Google Scholar
  99. [99]
    Ph. Hall, On representatives of subsets, Journal of the London Mathematical Society 10, 1935, 26–30.CrossRefGoogle Scholar
  100. [100]
    P. Hansen and L. Kaufman, A primal-dual algorithm for the three-dimensional assignment problem, Cahiers du CERO 15, 1973, 327–336.MathSciNetMATHGoogle Scholar
  101. [101]
    G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, London and New York, 1952.MATHGoogle Scholar
  102. [102]
    A. J. Hoffman, On simple linear programming problems, in Convexity, Proceedings of Symposia in Pure Mathematics 7, V. Klee ed., AMS, Providence, RI, 1963, 317–327.Google Scholar
  103. [103]
    J. E. Hoperoft and R. M. Karp, An n 2 algorithm for maximum matchings in bipartite graphs, SIAM Journal on Computing 2, 1973, 225–231.MathSciNetCrossRefGoogle Scholar
  104. [104]
    M. S. Hung, A polynomial simplex method for the assignment problem, Operations Research 31, 1983, 595–600.MathSciNetMATHCrossRefGoogle Scholar
  105. [105]
    M. S. Hung and W. D. Rom, Solving the assignment problem by relaxation, Operations Research 28, 1980, 969–982.MathSciNetMATHCrossRefGoogle Scholar
  106. [106]
    D. S. Johnson and C. C. McGeoch, eds., Network Flows and Matching - First DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 12, AMS, Providence, RI, 1993.Google Scholar
  107. [107]
    R. Jonker and A. Volgenant, Improving the Hungarian assignment algorithm, Operations Research Letters 5, 1986, 171–175.MathSciNetMATHCrossRefGoogle Scholar
  108. [108]
    R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment problems, Computing 38, 1987, 325–340.MathSciNetMATHCrossRefGoogle Scholar
  109. [109]
    R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, 85–103.CrossRefGoogle Scholar
  110. [110]
    R. M. Karp, An algorithm to solve the m x n assignment problem in expected time O(mn log n), Networks 10, 1980, 143–152.MathSciNetMATHCrossRefGoogle Scholar
  111. [111]
    R. M. Karp, An upper bound on the expected cost of an optimal assignment, in Discrete Algorithms and Complexity, Academic Press, Boston, 1987, 1–4.Google Scholar
  112. [112]
    R. M. Karp, A. H. G. Rinnooy Kan, and R. V. Vohra, Average case analysis of a heuristic for the assignment problem, Mathematics of Operations Research 19, 1994, 513–522.MathSciNetMATHCrossRefGoogle Scholar
  113. [113]
    J. Kennington and Z. Wang, Solving dense assignment problems on a shared memory multiprocessor, Report 88-OR-16, Department of Operations Research and Applied Science, Souther Methodist University, Dallas, TX, 1998.Google Scholar
  114. [114]
    P. Kleinschmidt, C. W. Lee, and H. Schannath, Transportation problem which can be solved by the use of Hirsch paths for the dual problems, Mathematical Programming 37, 1987, 153–168.MathSciNetMATHCrossRefGoogle Scholar
  115. [115]
    B. Klinz, R. Rudolf and G. J. Woeginger, On the recognition of permuted bottleneck Monge matrices, Discrete Applied Mathematics 60, 1995, 223–248.MathSciNetMATHCrossRefGoogle Scholar
  116. [116]
    D. König, Graphok és matrixok, Mat. Fiz. Lapok 38, 1931, 116–119.MATHGoogle Scholar
  117. [117]
    J. M. Kurzberg, On approximation methods for the assignment problem, Journal of the ACM 9, 1962, 419–439.CrossRefGoogle Scholar
  118. [118]
    H. W. Kuhn, The Hungarian method for the assignment and transportation problems, Naval Research Logistics Quarterly 2, 1955, 83–97.MathSciNetCrossRefGoogle Scholar
  119. [119]
    E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston, New York, 1976.Google Scholar
  120. [120]
    A. J. Lazarus, Certain expected values in the random assignment problem, Operations Research Letters 14, 1993, 207–214.MathSciNetMATHCrossRefGoogle Scholar
  121. [121]
    Y. Lee and J. B. Orlin, On very large scale assignment problems, in Large Scale Optimization: State of the Art, W. W. Hager, D. W. Hearn, and P. M. Pardalos, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 206–244.CrossRefGoogle Scholar
  122. [122]
    R. E. Macho’, An application of the assignment problem, Operations Research 18, 1970, 745–746.Google Scholar
  123. [123]
    D. Magos, Tabu search for the planar three-index assignment problem, Journal of Global Optimization 8, 1996, 35–48.MathSciNetMATHCrossRefGoogle Scholar
  124. [124]
    D. Magos and P. Miliotis, An algorithm for the planar three-index assignment problem, European Journal of Operational Research 77, 1994, 141–153.MATHCrossRefGoogle Scholar
  125. [125]
    S. Martello, W. R. Pulleyblank, P. Toth, and D. de Werra, Balanced optimization problems, Operations Research Letters 3, 1984, 275–278.MathSciNetMATHCrossRefGoogle Scholar
  126. [126]
    S. Martello and P. Toth, Linear assignment problems, in Surveys in Combinatorial Optimization, Annals of Discrete Mathematics 31, S. Martello, G. Laporte, M. Minoux, and C. Ribeiro, eds., North-Holland, Amsterdam, 1987, pp. 259–282.CrossRefGoogle Scholar
  127. [127]
    M. Mézard and G. Parisi, On the solution of the random link matching problems, Journal de Physique 48, 1987, 1451–1459.CrossRefGoogle Scholar
  128. [128]
    D. Miller, J. Pekny, and G. L. Thompson, Solution of large dense transportation problems using a parallel primal algorithm, Operations Research Letters 9, 1990, 319–324.MATHCrossRefGoogle Scholar
  129. [129]
    K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, Matching is as easy as matrix inversion, Combinatorica 7, 1087, 105–113.MathSciNetCrossRefGoogle Scholar
  130. [130]
    R. Murphey, P. M. Pardalos, and L. S. Pitsoulis, A GRASP for the Multitarget Multisensor Tracking Problem, in Network Design: Connectivity and Facilities Location, P. M. Pardalos and D.-Z. Du, eds., DIMACS Series on Discrete Mathematics and Theoretical Computer Science 40, AMS, Providence, RI, 1998, pp. 277–302.Google Scholar
  131. [131]
    R. Murphey, P. M. Pardalos, and L. S. Pitsoulis, A Parallel GRASP for the Data Association Multidimensional Assignment Problem, in Parallel Processing of Discrete Problems, The IMA Volumes in Mathematics and its Applications 106, Springer Verlag, 1998, pp. 159–180.Google Scholar
  132. [132]
    B. Neng, Zur Erstellung von optimalen Triebfahrzeugplänen, Zeitschrift für Operations Research 25, 1981, B159 - B185.Google Scholar
  133. [133]
    B. Olin, Asymptotic Properties of Random Assignment Problems, Ph.D. Thesis, Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm, 1992.Google Scholar
  134. [134]
    J. B. Orlin, On the simplex algorithm for networks and generalized networks, Mathematical Programming Studies 24, 1985, 166–178.MathSciNetMATHCrossRefGoogle Scholar
  135. [135]
    J. B. Orlin and R. K. Ahuja, New scaling algorithms for the assignment and minimum cycle mean problems, Mathematical Programming 54, 1992, 41–56.MathSciNetMATHCrossRefGoogle Scholar
  136. [136]
    E. S. Page, A note on assignment problems, Computer Journal 6, 1963, 241–243.MATHCrossRefGoogle Scholar
  137. [137]
    K. Paparrizos, A non-dual signature method for the assignment problem and a generalization of the dual simplex method for the transportation problem, RAIRO Operations Research 22, 1988, 269–289.MathSciNetMATHGoogle Scholar
  138. [138]
    K. Paparrizos, A relaxation column signature method for assignment problems, European Journal of Operational Research 50, 1991, 21 1219.Google Scholar
  139. [139]
    K. Paparrizos, An infeasible (exterior point) simplex algorithm for assignment problems, Mathematical Programming 51, 1991, 45–54.MathSciNetMATHCrossRefGoogle Scholar
  140. [140]
    P. M. Pardalos and K. G. Ramakrishnan, On the expected value of random assignment problems: Experimental results and open questions, Computational Optimization and Applications 2, 1993, 261–271.MathSciNetMATHCrossRefGoogle Scholar
  141. [141]
    J. Peters, The network simplex method on a multiprocessor, Networks 20, 1990, 845–859.MATHCrossRefGoogle Scholar
  142. [142]
    U. Pferschy, The random linear bottleneck assignment problem, RAIRO Operations Research 30, 1996, 127–142.MathSciNetMATHGoogle Scholar
  143. [143]
    U. Pferschy, Solution methods and computational investigations for the linear bottleneck assignment problem, Computing 59, 1997, 237258.Google Scholar
  144. [144]
    C. Phillips and S. Zenios, Experiences with large scale network optimization on the connection machine, in The Impact of Recent Computing Advances on Operations Research, Operations Research Series 9, Elsevier, 1989, pp. 169–180.Google Scholar
  145. [145]
    W. P. Pierskalla, The tri-substitution method for the three- multidimensional assignment problem, Canadian ORS Journal 5, 1967, 71–81.Google Scholar
  146. [146]
    W. P. Pierskalla, The multidimensional assignment problem. Operations Research 16, 1968, 422–431.MATHCrossRefGoogle Scholar
  147. [147]
    A. B. Poore, Multidimensional assignment formulation of data association problems arising from multitarget and multisensor tracking, Computation Optimization and Application 3, 1994, 27–54.MathSciNetMATHCrossRefGoogle Scholar
  148. [148]
    A. B. Poore, A numerical study of some data association problems arising in multitarget tracking, in Large Scale Optimization: State of the Art, W. W. Hager, D. W. Hearn, and P. M. Pardalos, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 339–361.CrossRefGoogle Scholar
  149. [149]
    A. B. Poore and N. Rijavec, Partitioning multiple data sets: multidimensional assignments and Lagrangian relaxation, in Quadratic assignment and related problems, P. M. Pardalos and H. Wolkowicz, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science 16, AMS, Providence, RI, 1994, pp. 317–342.Google Scholar
  150. [150]
    A. B. Poore, N. Rijavec, M. Liggins, and V. Vannicola, Data association problems posed as multidimensional assignment problems: problem formulation, in Signal and Data Processing of Small Targets, O. E. Drummond ed., SPIE, Bellingham, WA, 1993, pp. 552–561.CrossRefGoogle Scholar
  151. [151]
    A. B. Poore and A. J. Robertson III, A new Lagrangean relaxation based algorithm for a class of multidimensional assignment problems, Computational Optimization and Applications 8, 1997, 129–150.MathSciNetMATHCrossRefGoogle Scholar
  152. [152]
    J. Pusztaszeri, P. E. Reusing, and T. M. Liebling, Tracking elementary particles near their primary vertex: a combinatorial approach, Journal of Global Optimization 16, 1995, 422–431.Google Scholar
  153. [153]
    A. P. Punnen and K. P. K. Nair, Improved complexity bound for the maximum cardinality bottleneck bipartite matching problem, Discrete Applied Mathematics 55, 1994, 91–93.MathSciNetMATHCrossRefGoogle Scholar
  154. [154]
    L. Qi, E. Balas, and G. Gwan, A new facet class and a polyhedral method for the three-index assignment problem, in Advances in Optimization, D.-Z. Du ed., Kluwer Academic Publishers, 1994, pp. 256–274.Google Scholar
  155. [155]
    K. G. Ramakrishnan, N. K. Karmarkar, and A. P. Kamath, An approximate dual projective algorithm for solving assignment problems, in Network flows and matching- First DIMACS Implementation Challenge, D. S. Johnson and C. C. McGeoch, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science 12, AMS, Providence, RI, 1993, pp. 431–449.Google Scholar
  156. [156]
    F. Rendi, On the complexity of decomposing matrices arising in satellite communication, Operations Research Letters 4, 1985, 5–8.CrossRefGoogle Scholar
  157. [157]
    E. Roohy-Laleh, Improvements to the theoretical efficiency of the network simplex method, Ph.D. Thesis, Carleton University, Ottawa, 1980.Google Scholar
  158. [158]
    G. Rote and F. Rendi, Minimizing the density in lay-out design, Operations Research Letters 5, 1986, 111–118.MathSciNetMATHCrossRefGoogle Scholar
  159. [159]
    J. Shao and W. Wei, A formula for the number of Latin squares, Discrete Mathematics 110, 1992, 293–296.MathSciNetMATHCrossRefGoogle Scholar
  160. [160]
    J. T. Schwarz, Fast probabilistic algorithms for verification of polynomial identities, Journal of the ACM 27, 1980, 701–717.CrossRefGoogle Scholar
  161. [161]
    V. Srinivasan and G. L. Thompson, Cost operator algorithms for the transportation problem, Mathematical Programming 12, 1977, 37 2391.Google Scholar
  162. [162]
    R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.Google Scholar
  163. [163]
    G. L. Thompson, A recursive method for solving assignment problems, in Studies on Graphs and Discrete Programming, Annals of Discrete Mathematics 11, P. Hansen ed., North Holland, Amsterdam, 1981, 319–343.CrossRefGoogle Scholar
  164. [164]
    W. T. Tutte, The factorization of linear graphs, Journal of the London Mathematical Society 22, 1947, 107–111.MathSciNetMATHCrossRefGoogle Scholar
  165. [165]
    L. G. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8, 1979, 189–201.MathSciNetMATHCrossRefGoogle Scholar
  166. [166]
    M. Vlach, Branch and bound method for the three-index assignment problem, Ekonomicko-Matematicky Obzor 12, 1967, 181–191.MathSciNetGoogle Scholar
  167. [167]
    A. Volgenant, Linear and semi-assignment problems: A core oriented approach, Computers of Operations Research 23, 1996, 917–932.MATHCrossRefGoogle Scholar
  168. [168]
    D. W. Walkup, On the expected value of a random assignment problem, SIAM Journal on Computing 8, 1979, 440–442.MathSciNetMATHCrossRefGoogle Scholar
  169. [169]
    D. W. Walkup, Matching in random regular bipartite digraphs, Discrete Mathematics 31, 1980, 59–64.MathSciNetMATHCrossRefGoogle Scholar
  170. [170]
    J. Wein and S. Zenios, Massively parallel auction algorithms for the assignment problem, Proceedings of the 3-rd Symposium on the Frontiers of Massively Parallel Computations, 1990, pp. 90–99.Google Scholar
  171. [171]
    J. Wein and S. Zenios, On the massively parallel solution of the assignment problem, Journal of the Parallel and Distributed Computing 13, 1991, 221–236.Google Scholar
  172. [172]
    G. J. Woeginger, private communication.Google Scholar
  173. [173]
    H. Zaki, A comparison of two algorithms for the assignment problem, Technical Report ORL 90–002, Department of Mechanical and industrial Engineering, University of Illinois, Champaign-Urbana, IL, 1990.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Rainer E. Burkard
    • 1
  • Eranda Çela
    • 1
  1. 1.Institute of MathematicsTechnical University GrazGrazAustria

Personalised recommendations