Advertisement

Mucin degradation and its significance in inflammatory conditions of the gastrointestinal tract

  • Anthony M. Roberton
  • Anthony P. Corfield
Chapter

Abstract

A protective mucus gel layer covers the surface of the gastrointestinal tract. The main structural component of mucus is the mucins, large, heavily glycosylated glycoproteins that form gels when sufficiently concentrated (Allen, 1981a). Native mucus gels contain 2–10% mucin (mucus glycoprotein) dry weight, most of the balance being water. Other constituents present in mucus from the surface of the gastrointestinal tract are proteins, nucleic acids, lipids, sloughed epithelial cells and bacteria (Allen and Hoskins, 1988).

Keywords

Sialic Acid Oligosaccharide Chain Mucus Glycoprotein Biophysical Research Communication Mucus Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajoika, Y., Allison, L. J. and Jass, J. R. (1996) Significance of MUC1 and MUC2 mucin expression in colorectal cancer. Journal of Clinical Pathology, 49, 560–564.CrossRefGoogle Scholar
  2. Allen, A. (1981a) The structure and function of gastrointestinal mucus, in Basic Mechanisms of Gastrointestinal Mucosal Cell Injury and Protection, (ed. J. W. Harmon ), Williams & Wilkins, Baltimore, MD, pp. 351–367.Google Scholar
  3. Allen, A. (1981b) Structure and function of gastrointestinal mucus, in Physiology of the Gastrointestinal Tract, (ed. L. R. Johnson ), Raven Press, New York, pp. 617–639.Google Scholar
  4. Allen, A. and Hoskins, L. C. (1988) Colonic mucus in health and disease, in Diseases of the Colon and Rectum, (eds R. Kirsner and R. G. Shortes ), Williams & Wilkins, Baltimore, MD, pp. 65–94.Google Scholar
  5. Aslam, A., Spicer, R. D. and Corfield, A. P. (1997) Biochemical analysis of mucin glycoproteins in paediatric colonic mucus. Biochemical Society Transactions, 25, 78.Google Scholar
  6. Aubert, J. P., Porchet, N., Crepin, M. et al. (1991) Evidence for different human tracheobronchial mucin peptides deduced from nucleotide cDNA sequences. American Journal of Respiratory Cell and Molecular Biology, 5, 178–185.PubMedGoogle Scholar
  7. Audie, J. P., Janin, A., Porchet, N. et al. (1993) Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. Journal of Histochemistry and Cytochemistry, 41, 1479–1485.PubMedCrossRefGoogle Scholar
  8. Bell, A. E., Sellers, L. A., Allen, A. et al. (1985) Properties of gastric and duodenal mucus: effect of proteolysis, disulfide reduction, bile, acid, ethanol, and hyper-tonicity on mucus gel structure. Gastroenterology, 88, 269–280.PubMedGoogle Scholar
  9. Bobeck, L. A., Tsai, H., Biesbrock, A. R. and Levine, M. J. (1993) Molecular cloning, sequence and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). Journal of Biological Chemistry, 268, 20563–20569.Google Scholar
  10. Boland, C. R., Lance, P., Levin, B. et al. (1982) Lectin binding indicates an abnormality of the goblet cell glycoconjugates in ulcerative colitis. Gastroenterology, 82, 1021–1028.Google Scholar
  11. Bradshaw, D. J., Homer, K. A., Marsh, P. D. and Beighton, D. (1994) Metabolic cooperation in oral communities during growth on mucin. Microbiology, 140, 3407–3412.PubMedCrossRefGoogle Scholar
  12. Caldwell, D. R., Keeney, M. and van Soest, P. J. (1969) Effects of carbon dioxide on growth and maltose fermentation by Bacteroides amylophilus. Journal of Bacteriology, 98, 668–676.Google Scholar
  13. Capon, C., Leroy, Y., Wieruszeski, J. M. et al. (1989) Structures of 0-glycosidically linked oligosaccharides isolated from human meconium glycoproteins. European Journal of Biochemistry, 182, 139–182.PubMedCrossRefGoogle Scholar
  14. Capon, C., Laboisse, C. L., Wieruszeski, J.-M. et al. (1992) Oligosaccharide structures of mucins secreted by the human colonic cancer cell line CL.16E. Journal of Biological Chemistry, 267, 19248–19257.PubMedGoogle Scholar
  15. Carlstedt, I., Sheehan, J. K., Corfield, A. P. and Gallagher, J. T. (1985) Mucous glycoproteins: a gel of a problem. Essays in Biochemistry, 20, 40–76.PubMedGoogle Scholar
  16. Carlstedt, I., Herrmann, A., Karlsson, H. et al. (1993) Characterisation of two different glycosylated domains from the insoluble mucin complex of rat small intestine. Journal of Biological Chemistry, 268, 18771–18781.PubMedGoogle Scholar
  17. Carlstedt, I., Herrman, A., Hovenberg, H. et al. (1995) ‘Soluble’ and ‘insoluble’ mucins — identification of distinct populations. Biochemical Society Transactions, 23, 845–851.Google Scholar
  18. Carlstedt-Duke, B., Midtvedt, T., Nord, C. E. and Gustafsson, B. E. (1986) Isolation and characterisation of a mucin-degrading strain of Peptostreptococcus from rat intestinal tract. Acta Pathologica Microbiologica et Immunologica Scandinavica (B), 94, 293–300.Google Scholar
  19. Chadwick, V. S. and Anderson, R. P. (1995) The role of intestinal bacteria in etiology and maintenance of inflammatory bowel disease, in Human Colonic Bacteria. Role in Nutrition, Physiology and Pathology, (eds G. R. Macfarlane and G. T. Gibson ), CRC Press, Boca Raton, FL, pp. 227–256.Google Scholar
  20. Corfield, T. (1992) Bacterial sialidases — roles in pathogenicity and nutrition. Glycobiology, 2, 509— 521.Google Scholar
  21. Corfield, A. P. and Warren, B. F. (1996) The modern investigation of mucus glycoproteins and their role in gastrointestinal disease. Journal of Pathology, 180, 8–17.PubMedCrossRefGoogle Scholar
  22. Corfield, A. P., Williams, A. J. K., Clamp, J. R. et al. (1988) Degradation by bacterial enzymes of colonic mucus from normal subjects and patients with inflammatory bowel disease: the role of sialic acid metabolism and the detection of a novel 0-acetylsialic acid esterase. Clinical Science, 74, 71–78.PubMedGoogle Scholar
  23. Corfield, A. P., Wagner, S. A., Clamp, J. R. et al. (1992a) Mucin degradation in the human colon: production of sialidase, sialate 0-acetylase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of faecal bacteria. Infection and Immunity, 60, 3971–3978.PubMedGoogle Scholar
  24. Corfield, A. P., Warren, B. F., Bartolo, D. C. C. et al. (1992b) Mucin changes in ileoanal pouches monitored by metabolic labelling and histochemistry. British Journal of Surgery, 79, 1209–1212.PubMedCrossRefGoogle Scholar
  25. Corfield, A. P., Wagner, S. A., O’Donnell, L. J. D. et al. (1993) The roles of enteric bacterial sialidase, sialate 0-acetyl esterase, and glycosulfatase in the degradation of human colonic mucin. Glycoconjugate Journal, 10, 72–81.PubMedCrossRefGoogle Scholar
  26. Corfield, A. P., Myerscough, N., Bradfield, N. et al. (1996) Colonic mucins in ulcerative colitis: evidence for loss of sulphation. Glycoconjugate Journal, 13, 809–822.PubMedCrossRefGoogle Scholar
  27. DeJong, M. H. and Van der Hoeven, J. S. (1987) The growth of oral bacteria on saliva. Journal of Dental Research, 66, 498–505.CrossRefGoogle Scholar
  28. Dekker, J., Van Beurden-Lammers, W. M. O. and Strous, G. J. (1989) Biosynthesis of gastric mucus glycoprotein of the rat. Journal of Biological Chemistry, 264, 10431–10437.PubMedGoogle Scholar
  29. Dignass, A., Lynch-Devaney, K., Thim, L. and Podolsky, D. K. (1994) Trefoil peptides promote epithelial migration through a transforming growth factor beta-dependent pathway. Journal of Clinical Investigation, 94, 376–383.PubMedCrossRefGoogle Scholar
  30. Dwarakanath, A. D., Campbell, B. J., Tsai, H. H. et al. (1995) Faecal mucinase activity assessed in inflammatory bowel disease using 14C threonine labelled mucin substrate. Gut, 37, 58–62.PubMedCrossRefGoogle Scholar
  31. Filipe, M. I. (1979) Mucins in the human gastrointestinal epithelium: a review. Investigative Cell Pathology, 2, 195–216.PubMedGoogle Scholar
  32. Finnie, I. A., Dwarakanath, A. D., Taylor, B. A. and Rhodes, J. M. (1995) Colonic mucin synthesis is increased by sodium butyrate. Gut, 36, 93–99.PubMedCrossRefGoogle Scholar
  33. Forstner, J. F. and Forstner, G. G. (1994) Gastrointestinal mucus, in Physiology of the Digestive Tract, (ed. L. R. Johnson ), Raven Press, New York, pp. 1245–1283.Google Scholar
  34. Fukuda, M. and Matsumura, G. (1975) Endo-ß-galactosidase of Escherichia freundii. Hydrolysis of pig colonic mucin and milk oligosaccharides by endoglycosidic action. Biochemical and Biophysical Research Communications, 64, 465–471.PubMedCrossRefGoogle Scholar
  35. Gendler, S. J., Lancaster, C. A., Taylor-Papadimitriou, J. et al. (1990) Molecular cloning and expression of human tumour-associated polymorphic epithelial mucin. Journal of Biological Chemistry, 265, 15286–15293.PubMedGoogle Scholar
  36. Glasgow, L. R., Paulson, J. C. and Hill, R. L. (1977) Systematic purification of five glycosidases from Streptococcus (Diplococcus) pneumoniae. Journal of Biological Chemistry, 252, 8615–8623.Google Scholar
  37. Goddard, P. J., Kao, Y. J. and Lichtenberger, L. M. (1990) Luminal surface hydrophobicity of canine gastric mucosa is dependant on a surface mucous gel. Gastroenterology, 98, 361–370.PubMedGoogle Scholar
  38. Gum, J. R. (1995) Human mucin glycoproteins: varied structures predict diverse properties and specific functions. Biochemical Society Transactions, 23, 795–799.PubMedGoogle Scholar
  39. Gum, J. R., Byrd, J. C., Hicks, J. W. et al. (1989) Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. Journal of Biological Chemistry, 264, 6480–6487.PubMedGoogle Scholar
  40. Gum, J. R., Hicks, J. W., Swallow, D. M. et al. (1990) Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochemical and Biophysical Research Communications, 171, 407–415.PubMedCrossRefGoogle Scholar
  41. Gum, J. R., Hicks, J. W., Toribara, N. W. et al. (1994) Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro—von Willebrand factor. Journal of Biological Chemistry, 269, 2440–2446.PubMedGoogle Scholar
  42. Hague, A., Manning, A. M., Hanlon, K. et al. (1993) Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53 independent pathway: implications for the possible role of dietary fibre in the prevention of large bowel cancer. International Journal of Cancer, 55, 498–505.CrossRefGoogle Scholar
  43. Hashiguchi, T. (1993) Mucinase activity of Helicobacter pylori: application of simplified mucinase test. Nippon Rinsho — Japanese Journal of Clinical Medicine, 51, 3166–3169.Google Scholar
  44. Ho, S. B., Roberton, A. M., Shekels, L. L. et al. (1995) Mucins in human gastric epithelium: isolation of a second gastric mucin gene and localisation of mucin gene expression. Gastroenterology, 109, 735–747.PubMedCrossRefGoogle Scholar
  45. Ho, S. B., Ewing, S. L., Montgomery, C. K. and Kim, Y. S. (1996) Altered mucin core peptide immunoreactivity in the colon polyp-carcinoma sequence. Oncology Research, 8, 53–61.PubMedGoogle Scholar
  46. Hodgson, H. J. F. and Bhatti, M. (1995) Assessment of disease in ulcerative colitis and Crohn’s disease. Inflammatory Bowel Disease, 1, 117–134.CrossRefGoogle Scholar
  47. Homer, K. A. and Beighton, D. (1992) Synergistic degradation of transferrin by mutans streptococci in association with other dental plaque bacteria. Microbial Ecology in Health and Disease, 5, 111–116.CrossRefGoogle Scholar
  48. Hoskins, L. C., Agustines, M., McKee, W. B. et al. (1985) Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. Journal of Clinical Investigation, 75, 944–953.PubMedCrossRefGoogle Scholar
  49. Hoskins, L. C., Boulding, E. T., Gerken, T. A. et al. (1992) Mucin glycoprotein degradation by mucin oligosaccharide-degrading strains of human faecal bacteria. Characterisation of saccharide cleavage products and their potential role in nutritional support of larger faecal bacterial populations. Microbial Ecology in Health and Disease, 5, 193–207.CrossRefGoogle Scholar
  50. Houdret, N., Ramphal, R., Scharfman, A. et al. (1989) Evidence for the in vivo degradation of human respiratory mucins during Pseudomonas aeruginosa infection. Biochimica et Biophysica Acta, 992, 96–105.PubMedCrossRefGoogle Scholar
  51. Hounsell, E. F., Davies, M. J. and Renouf, D. V. (1996) 0-linked protein glycosylation structure and function. Glycoconjugate Journal, 13, 19–26.Google Scholar
  52. Hutton, D. A., Pearson, J. P., Allen, A. and Foster, S. N. F. (1990) Mucolysis of the colonic mucus barrier by faecal proteinases: inhibition by interacting polyacrylate. Clinical Science, 78, 265–271.PubMedGoogle Scholar
  53. Iwase, H., Ishikarasaka, I., Hotta, K. et al. (1992) Analysis of porcine gastric mucus glycoprotein added to a culture medium of Streptomyces sp OH-11242 as the only source of carbon. Comparative Biochemistry and Physiology B, 101, 651–655.CrossRefGoogle Scholar
  54. Jass, J. R. and Roberton, A. M. (1994) Colorectal mucin histochemistry in health and disease: a critical review. Pathology International, 44, 487–504.PubMedCrossRefGoogle Scholar
  55. Karlsson, N. G., Johansson, M. E., Asker, N. et al. (1996) Molecular characterisation of the large heavily glycosylated domain glycopeptide from the rat small intestinal Muc2 mucin. Glycoconjugate Journal, 13, 823–831.PubMedCrossRefGoogle Scholar
  56. Kent, P. W., Coles, C. J., Cooper, J. R. and Mian, N. R. (1978) Sulphate ester groups as potential information regulators in glycoproteins, in Carbohydrate Sulphates, (ed. R. G. Schweiger), American Chemistry Society Symposium Series 77, American Chemistry Society, Washington, DC, pp. 29–43.Google Scholar
  57. Lamblin, G., Rahmoune, H., Wieruszeski, J.-M. et al. (1991) Structure of two sulphated oligosaccharides from respiratory mucins of a patient suffering from cystic fibrosis. A fast atom bombardment m.s. and 1H-n. m.r. spectroscopic study. Biochemical Journal, 275, 199–206.PubMedGoogle Scholar
  58. Lasky, L. A. (1995) Sialomucins in inflammation and hematopoiesis. Advances in Experimental Medicine and Biology, 376, 259–260.PubMedCrossRefGoogle Scholar
  59. Levine, M. J., Reddy, M. S., Tabak, L. A. et al. (1987) Structural aspects of salivary glycoproteins. Journal of Dental Research, 66, 436–441.PubMedCrossRefGoogle Scholar
  60. Liau, Y. H. and Horowitz, M. I. (1982) Incorporation in vitro of [3H]glucosamine or [3H] glucose and [35S]SO42- into rat gastric mucosa. Journal of Biological Chemistry, 257, 4709–4718.PubMedGoogle Scholar
  61. Lo-Guidice, J.-M., Wieruszeski, J.-M., Lemoine, J. et al. (1994) Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis. Journal of Biological Chemistry, 269, 18794–18813.PubMedGoogle Scholar
  62. Luckey, T. D. (1972) Introduction to intestinal microecology. American Journal of Clinical Nutrition, 25, 1292–1294.PubMedGoogle Scholar
  63. McCool, D. J., Forstner, J. F. and Forstner, G. G. (1995) Regulated and unregulated pathways for MUC2 mucin secretion in human colonic LS180 adenocarcinoma cells are distinct. Biochemical Journal, 312, 125–132.PubMedGoogle Scholar
  64. Macfarlane, G. T., Hay, S. and Gibson, G. R. (1989) Influence of mucin on glycosidase, protease and arylamidase activities of human gut bacteria grown in a three stage continuous culture system. Journal of Applied Bacteriology, 66, 407–417.PubMedCrossRefGoogle Scholar
  65. Macfarlane, G. T., Allison, G., Gibson, S. A. W. and Cummings, J. H. (1988) Contribution of the microflora to proteolysis in the human large intestine. Journal of Applied Bacteriology, 64, 37–46.PubMedCrossRefGoogle Scholar
  66. Macfarlane, S., McBain, A. J. and Macfarlane, G. T. (1996) Characterisation of proteolytic and peptidolytic activities in human colonic biofilm populations, in ASM Conference on Microbial Biofilms, Salt Lake City, UT, 29 Sept.-5 Oct. 1996, abstracts, p. 31.Google Scholar
  67. McGowan, C. C., Cover, T. L. and Blaser, M. J. (1996) Helicobacter pylori and gastric acid: biological and therapeutic implications. Gastroenterology, 110, 926–938.Google Scholar
  68. Mantle, M. and Allen, A. (1989) Gastrointestinal mucins, in Gastrointestinal Secretions, (ed. J. S. Davison ), John Wright, Bristol, pp. 202–229.Google Scholar
  69. Markesich, D. C., Anand, B. S., Lew, G. M. and Graham, D. Y. (1994) Helicobacter pylori infection does not reduce the viscosity of human gastric mucus gel. Gut, 35, 327–329.Google Scholar
  70. Mawhinney, T. P., Adelstein, E., Morris, D. A. et al. (1987) Structure determination of five sulfated oligosaccharides derived from tracheobronchial mucus glycoproteins. Journal of Biological Chemistry, 262, 2994–3001.PubMedGoogle Scholar
  71. Mawhinney, T. P., Landrum, D. C., Gayer, D. A. and Barbero, G. J. (1992a) Sulfated sialo-oligosaccharides derived from tracheobronchial mucous glycoproteins of a patient suffering from cystic fibrosis. Carbohydrate Research, 235, 179–197.PubMedCrossRefGoogle Scholar
  72. Mawhinney, T. P., Adelstein, E., Gayer, D. A. et al. (1992b) Structural analysis of monosulfated side-chain oligosaccharides isolated from human tracheobronchial mucous glycoproteins. Carbohydrate Research, 223, 187–207.PubMedCrossRefGoogle Scholar
  73. Mian, N., Anderson, C. E. and Kent, P. W. (1979a) Neuraminidase inhibition by chemically sulphated glycopeptides. Biochemical Journal, 181, 377–385.PubMedGoogle Scholar
  74. Mian, N., Anderson, C. E. and Kent, P. W. (1979b) Effect of 0-sulphated groups in lactose and N-acetylneuraminyl-lactose on their enzymic hydrolysis. Biochemical Journal, 181, 387–399.PubMedGoogle Scholar
  75. Midtvedt, A. C., Carlstedt-Duke, B. and Midtvedt, T. (1994) Establishment of a mucin-degrading intestinal microflora during the first two years of human life. Journal of Pediatric Gastroenterology and Nutrition, 18, 321–326.PubMedCrossRefGoogle Scholar
  76. Mikuni-Takagaki, Y. and Hotta, K. (1979) Characterisation of peptic inhibitory activity associated with sulfated glycoprotein isolated from gastric mucosa. Biochimica et Biophysica Acta, 584, 288–297.PubMedCrossRefGoogle Scholar
  77. Miller, J. B., McVeague, P., McNeil, Y. and Gillard, B. (1994) Human milk oligosaccharides. Acta Paediatrica, 83, 1051.PubMedCrossRefGoogle Scholar
  78. Murty, V. L. N., Piotrowski, J., Morita, M. et al. (1992) Inhibition of Helicobacter pylori glycosulfatase activity toward gastric sulfomucin by nitecapone. Biochemistry International, 26, 1091–1099.PubMedGoogle Scholar
  79. Nieuw Amerongen, A. V., Bolscher, J. G. M. and Veerman, E. C. I. (1995) Salivary mucins: protective functions in relation to their diversity. Glycobiology, 5, 733–740.PubMedCrossRefGoogle Scholar
  80. Oliver, L., Newton, J. L., Goddard, P. et al. (1997) Effects of Helicobacter pylori on the adherent gastric mucus barrier. Biochemical Society Transactions, 25, 372.Google Scholar
  81. Parker, N., Tsai, H. H., Ryder, S. D. et al. (1995) Increased rate of sialylation of colonic mucin by cultured ulcerative colitis mucosal explants. Digestion, 56, 52–56.PubMedCrossRefGoogle Scholar
  82. Pittman, K. A., Lakshmanan, S. and Bryant, M. P. (1967) Oligopeptide uptake by Bacteroides ruminicola. Journal of Bacteriology, 93, 1499–1508.Google Scholar
  83. Podolsky, D. K. (1985a) Oligosaccharide structures of human colonic mucin. Journal of Biological Chemistry, 260, 8262–8271.PubMedGoogle Scholar
  84. Podolsky, D. K. (1985b) Oligosaccharide structures of isolated human colonic mucin species. Journal of Biological Chemistry, 260, 15510–15515.PubMedGoogle Scholar
  85. Podolsky, D. K. and Isselbacher, K. J. (1983) Composition of human colonic mucin: selective alteration in inflammatory bowel disease. Journal of Clinical Investigation, 72, 142–153.PubMedCrossRefGoogle Scholar
  86. Podolsky, D. K. and Isselbacher, K. J. (1984) Glycoprotein composition of colonic mucosa: specific alterations in ulcerative colitis. Gastroenterology, 87, 991–998.PubMedGoogle Scholar
  87. Poon, H., Reid, P. E., Ramey, C. W. et al. (1983) Removal of O-acetylated sialic acids from rat colonic epithelial glycoproteins by cell-free extracts of rat faeces. Canadian Journal of Biochemistry and Cell Biology, 61, 868–874.PubMedCrossRefGoogle Scholar
  88. Porchet, N., Nguyen, V. C., Dufosse, J. et al. (1991) Molecular cloning and chromosomal localisation of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochemical and Biophysical Research Communications, 175, 414–422.PubMedCrossRefGoogle Scholar
  89. Probert, C. S. J., Warren, B. F., Perry, T. et al. (1995) South Asian and European colitics show characteristic differences in colonic mucus glycoprotein type and turnover. Potential identification of a lower risk group for severe disease and cancer. Gut, 36, 696–702.PubMedCrossRefGoogle Scholar
  90. Pullan, R. D., Thomas, G. A. O., Rhodes, M. et al. (1994) Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut, 35, 353–359.PubMedCrossRefGoogle Scholar
  91. Quigley, M. E. and Kelly, S. M. (1995) Structure, function, and metabolism of host mucus glycoproteins, in Human Colonic Bacteria. Role in Nutrition, Physiology and Pathology, (eds G. R. Macfarlane and G. T. Gibson ), CRC Press, Boca Raton, FL, pp. 175–199.Google Scholar
  92. Rafay, A. M., Homer, K. A. and Beighton, D. (1996) Effect of mucin and glucose on proteolytic and glycosidic activities of Streptococcus oralis. Journal of Medical Microbiology, 44, 409–417.CrossRefGoogle Scholar
  93. Raouf, A. H., Tsai, H. H., Parker, N. et al. (1992) Sulphation of colonic and rectal mucin in inflammatory bowel disease: reduced sulphation of rectal mucus in ulcerative colitis. Clinical Science, 83, 623–626.PubMedGoogle Scholar
  94. Reid, P. E., Culling, C. F. A., Dunn, W. L. et al. (1984) Chemical and histochemical studies of normal and diseased human gastrointestinal tract. I. A comparison between histologically normal colon, colonic tumours, ulcerative colitis and diverticular disease of the colon. Histochemistry Journal, 16, 235–251.CrossRefGoogle Scholar
  95. Rhodes, J. M., Gallimore, R., Elias, E. and Kennedy, J. F. (1985a) Faecal sulphatase in health and inflammatory bowel disease. Gut, 26, 466–469.PubMedCrossRefGoogle Scholar
  96. Rhodes, J. M., Gallimore, R., Elias, E. et al. (1985b) Faecal mucus degrading glycosidases in ulcerative colitis and Crohn’s disease. Gut, 26, 761–765.PubMedCrossRefGoogle Scholar
  97. Roberton, A. M. and Wright, D. P. (1997) Bacterial glycosulfatases and sulfomucin degradation. Canadian Journal of Gastroenterology, 11, 361–366.Google Scholar
  98. Roberton, A. M., Mantle, M., Fahim, R. E. F. et al. (1989) The putative ‘link’ glycopeptide associated with mucus glycoproteins: composition and properties of preparations from the gastrointestinal tracts of several mammals. Biochemical Journal, 261, 637–647.PubMedGoogle Scholar
  99. Roberton, A. M., Rabel, B., Harding, C. A. et al. (1991) Use of the ileal conduit as a model for studying human small intestinal mucus glycoprotein secretion. American Journal of Physiology, 261 (Gastrointestinal and Liver Physiology, 24 ) G728 - G734.Google Scholar
  100. Roberton, A. M., McKenzie, C., Scharfe, N. and Stubbs, L. (1993) A glycosulphatase that removes sulphate from mucus glycoprotein. Biochemical Journal, 293, 683–689.PubMedGoogle Scholar
  101. Roussel, P. and Lamblin, G. (1996) Human mucosal mucins in diseases, in Glycoproteins and Disease, vol., 1, (eds J. Montreuil, J. F. G. Vliegenthart and H. Schachter ), Elsevier, Amsterdam, pp. 349–391.Google Scholar
  102. Ruseler van Embden, J. G. H. and van Lieshout, L. M. C. (1987) Increased faecal glycosidases in patients with Crohn’s disease. Digestion, 37, 43–50.CrossRefGoogle Scholar
  103. Ruseler van Embden, J. G. H., Schouten, W. R. and van Lieshout, L. M. C. (1994)Google Scholar
  104. Pouchitis: result of microbial imbalance? Gut,35, 658–664.Google Scholar
  105. Ruseler van Embden, J. G. H., Schouten, W. R., van Lieshout, L. M. C. and Auwerda, H. J. A. (1992) Changes in the bacterial composition and enzymic activity in ileostomy and ileal reservoir during intermittent occlusion: a study using dogs. Applied and Environmental Microbiology, 58, 111–118.Google Scholar
  106. Ruseler van Embden, J. G. H., van Lieshout, L. M. C., Gosselink, M. J. and Marteau, P (1995) Inability of Lactobacillus casei strain GG, Lactobacillus acidophilus and Bifidobacterium bifidum to degrade intestinal mucus glycoproteins. Scandinavian Journal of Gastroenterology, 30, 675–680.CrossRefGoogle Scholar
  107. Russo, T. A., Thompson, J. S., Godoy, V. J. and Malamy, M. H. (1990) Cloning and expression of Bacteroides fragilis TA2480 neuraminidase gene nanH in Escherichia coli. Journal of Bacteriology, 172, 2594–2600.Google Scholar
  108. Ryder, S. D., Raouf, A. H., Parker, N. et al. (1995) Abnormal mucosal glycoprotein synthesis in inflammatory bowel diseases is not related to cigarette smoking. Digestion, 56, 370–376.PubMedCrossRefGoogle Scholar
  109. Salyers, A. A., Valentine, P. and Hwa, V. (1993) Genetics of polysaccharide utilisation pathways of colonic Bacteroides species, in Genetics and Molecular Biology of Anaerobic Bacteria, (ed. M. Sebald ), Brock/Springer series in Contemporary Bioscience, Springer-Verlag, New York, pp. 505–516.CrossRefGoogle Scholar
  110. Salyers, A. A., West, S. E. H., Vercellotti, J. R. and Wilkins, T. D. (1977) Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Applied and Environmental Microbiology, 34, 529–533.PubMedGoogle Scholar
  111. Samson, H. J., Allen, A., Pearson, J. P. et al. (1991) Faecal proteinase activity: raised values in patients with ulcerative colitis. Gut, 32, Al235.Google Scholar
  112. Sands, B. E. and Podolsky, D. E. (1996) The trefoil peptide family. Annual Review of Physiology, 58, 253–273.PubMedCrossRefGoogle Scholar
  113. Sarosiek, J., Slomiany, B. L. and Slomiany, A (1987) Evidence for weakening of gastric mucosal integrity by Campylobacter pylori. Scandinavian Journal of Gastroenterology, 23, 585–590.CrossRefGoogle Scholar
  114. Schachter, H. and Brockhausen, I. (1992) The biosynthesis of serine (threonine)-Nacetylgalactosamine-linked carbohydrate moities, in Glycoconjugates, (eds H. J. Allen and E. C. Kisailus ), Marcel Dekker, New York, pp. 263–332.Google Scholar
  115. Scharfman, A., Ramphal, R., Neat, C. et al. (1991) Arylneuraminidase activity of Pseudomonas aeruginosa does not degrade natural substrates such as human respiratory mucins. Infection and Immunity, 59, 4283–4285.PubMedGoogle Scholar
  116. Schauer, R., Kelm, S., Reuter, G. et al. (1995) Biochemistry and role of sialic acids, in Biology of the Sialic Acids, (ed. A. Rosenberg ), Plenum Press, New York, pp. 7–67.Google Scholar
  117. Scheppach, W. (1994) Effects of short chain fatty acids on gut morphology and function. Gut (Supplement), 1, S35 - S38.Google Scholar
  118. Scheppach, W., Sommer, H., Kirchner, T. et al. (1992) Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology, 103, 51–56.PubMedGoogle Scholar
  119. Scudder, P., Hanfland, P., Ventura, K.-J. and Feizi, T. (1984) Endo-I3-D-galactosidases of Bacteroides fragilis and Escherichia freundii hydrolyse linear but not branched oligosaccharide domains of glycolipids of the neolactose series. Journal of Biological Chemistry, 259, 6586–6592.PubMedGoogle Scholar
  120. Sellers, L. A., Allen, A. Morris, E. R. and Ross-Murphy, S. B. (1988) Mucus glycoprotein gels. Role of glycoprotein polymeric structure and carbohydrate side-chains in gel-formation. Carbohydrate Research, 178, 93–110.PubMedCrossRefGoogle Scholar
  121. Shiau, Y.-F., Kelemen, R. J. and Reed, M. A. (1990) Acidic mucin layer facilitates micelle dissociation and fatty acid diffusion. American Journal of Physiology, 259 (Gastrointestinal and Liver Physiology, 221, G671 - G675.Google Scholar
  122. Sidebotham, R. L. and Baron, J. H. (1990) Hypothesis: Helicobacter pylori, crease, mucus and gastric ulcer. Lancet, 335, 193–195.PubMedCrossRefGoogle Scholar
  123. Slomiany, B. L. and Meyer, K. (1972) Isolation and structural studies of sulfated glycoproteins of hog gastric mucosa. Journal of Biological Chemistry, 247, 5062–5070.PubMedGoogle Scholar
  124. Slomiany, B. L. and Meyer, K. (1973) Oligosaccharides produced by acetolysis of blood group active (A + H) sulfated glycoproteins from hog gastric mucin. Journal of Biological Chemistry, 248, 2990–2995.Google Scholar
  125. Slomiany, B. L., Bilski, J., Sarosiek, J. et al. (1987) Campylobacter pyloridis degrades mucin and undermines gastric mucosal integrity. Biochemical and Biophysical Research Communications, 144, 307–314.Google Scholar
  126. Slomiany, B. L., Murty, V. L. N., Piotrowski, J. et al. (1992) Glycosulfatase activity of Helicobacter pylori towards human gastric mucin: effect of sucralfate. Biochemical and Biophysical Research Communications, 183, 506–513.PubMedCrossRefGoogle Scholar
  127. Smalley, J. W., Dwarakanath, A. D., Rhodes, J. M. and Hart, C. A. (1994) Mucin-sulphatase activity of some oral Streptococci. Caries Research, 28, 416–420.PubMedCrossRefGoogle Scholar
  128. Smith, A. C. and Podolsky, D. K. (1987) Biosynthesis and secretion of human colonic mucin glycoproteins. Journal of Clinical Investigation, 80, 300–307.PubMedCrossRefGoogle Scholar
  129. Stanley, R. A., Ram, S. P., Wilkinson, R. K. and Roberton, A. M. (1986) Degradation of pig gastric and colonic mucins by bacteria isolated from the pig colon. Applied and Environmental Microbiology, 51, 1104–1109.PubMedGoogle Scholar
  130. Sundari, C. S., Raman, B. and Balasubramanian, D. (1991) Hydrophobic surfaces in oligosaccharides: linear dextrins are amphiphilic chains. Biochimica et Biophysica Acta, 1065, 35–41.PubMedCrossRefGoogle Scholar
  131. Swallow, D. M., Gendler, S., Griffiths, B. et al. (1987) The human tumour-associated epithelial mucins are coded by an expressed hypervariable gene locus PUM. Nature, 328, 82–84.PubMedCrossRefGoogle Scholar
  132. Tabak, L. A. (1995) In defense of the oral cavity: structure, biosynthesis and function of salivary mucins. Annual Review of Physiology, 57, 547–564.PubMedCrossRefGoogle Scholar
  133. Tanaka, H., Ito, F. and Iwasaki, T. (1992) Purification and charaterisation of a sialidase from Bacteroides fragilis SBT31382. Biochemical and Biophysical Research Communications, 189, 524–529.PubMedCrossRefGoogle Scholar
  134. Thornton, D. J., Howard, M., Devine, P. L. and Sheehan, J. K. (1995) Methods for separation and deglycosylation of mucin subunits. Analytical Biochemistry, 227, 162–167.PubMedCrossRefGoogle Scholar
  135. Toribara, N. W., Roberton, A. M., Ho, S. B. et al. (1993) Human gastric mucin. Identification of a unique species by expression cloning. Journal of Biological Chemistry, 268, 683–689.Google Scholar
  136. Tsai, H. H., Hart, C. A. and Rhodes, J. M. (1991) Production of mucin degrading sulphatase and glycosidases by Bacteroides thetaiotaomicron. Letters in Applied Microbiology, 13, 97–101.CrossRefGoogle Scholar
  137. Tsai, H. H., Sunderland, D., Gibson, G. R. et al. (1992) A novel mucin sulphatase from human faeces: its identification, purification and characterisation. Clinical Science, 82, 447–454.PubMedGoogle Scholar
  138. Tsai, H. H., Dwarakanath, A. D., Hart, C. A. et al. (1995) Increased faecal mucin sulphatase activity in ulcerative colitis: a potential target for treatment. Gut, 36, 570–576.PubMedCrossRefGoogle Scholar
  139. van der Wiel-Korstanje, J. A. A. and Winkler, K. C. (1975) The faecal flora in ulcerative colitis. Journal of Medical Microbiology, 8, 491–501.CrossRefGoogle Scholar
  140. van Klinken, B. J. W., Dekker, J., Buller, H. A. and Einerhand, A. W. C. (1995) Mucin gene structure and expression: protection vs. adhesion. American Journal of Physiology, 269, G613 - G627.PubMedGoogle Scholar
  141. Variyam, E. P. and Hoskins, L. C. (1981) Mucin degradation in human colon ecosystems. Degradation of hog gastric mucin by fecal extracts and fecal cultures. Gastroenterology, 81, 751–758.PubMedGoogle Scholar
  142. Variyam, E. P. and Hoskins, L. C. (1983) In vitro degradation of gastric mucin. Carbohydrate side chains protect polypeptide core from pancreatic proteases. Gastroenterology, 84, 533–537.PubMedGoogle Scholar
  143. Vercellotti, J. R., Salyers, A. A., Bullard, W. S. and Wilkins, T. D. (1977) Breakdown of mucin and plant polysaccharides in the human colon. Canadian Journal of Biochemistry, 55, 1190–1196.PubMedCrossRefGoogle Scholar
  144. Vimr, E. R. and Troy, F. A. (1985) Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. Journal of Bacteriology, 164, 845–853.Google Scholar
  145. Wesley, A. W., Forstner, J. F. and Forstner, G. G. (1983) Structure of intestinal-mucus glycoprotein from human post-mortem or surgical tissue: inferences from correlation analysis of sugar and sulfate composition of individual mucins. Carbohydrate Research, 115, 151–163.PubMedCrossRefGoogle Scholar
  146. Wilkinson, R. K. and Roberton, A. M. (1988) A novel glycosulphatase isolated from a mucus glycopeptide-degrading Bacteroides species. FEMS Microbiology Letters, 50, 195–199.CrossRefGoogle Scholar
  147. Witas, H., Sarociek, J., Aono, M. et al. (1983) Lipids associated with rat small-intestinal mucus glycoprotein. Carbohydrate Research, 120, 67–76.PubMedCrossRefGoogle Scholar
  148. Yolken, R. H., Ojeh, C., Khatri, I. A. et al. (1994) Intestinal mucins inhibit rotavirus replication in an oligosaccharide-dependant manner. Journal of Infectious Diseases, 169, 1002–1006.PubMedCrossRefGoogle Scholar
  149. Zopf, D. and Roth, S. (1996) Oligosaccharide anti-infective agents. Lancet, 347, 1017–1021.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Anthony M. Roberton
  • Anthony P. Corfield

There are no affiliations available

Personalised recommendations