Advertisement

The development of microbial biofilms on medical prostheses

  • Gregor Reid
Chapter

Abstract

Each year in many countries around the world more and more medical prostheses are used in clinical practice and in the management of body functions (Reid, 1994). For example, in the specialty of urology alone, devices such as incontinence pads, catheters, ureteral stents, drainage lines, penile prostheses, prostatic stents and combinations with tissues such as bowel for bladder replacement are used in patient care (Light, Lapin and Vohra, 1995; Reid et al., 1995b; Reid, Tieszer and Bailey, 1995; Herschorn and Ordorica, 1995; Wilson and Delk, 1995). The enormity of the field is illustrated by the fact that over 25 million surgical procedures carried out in the USA alone each year, require the permanent or temporary use of biomaterials. Many examples of biofilm-associated infections on medical devices can be found, such as those in central venous catheters (Kowalewska-Grochowska et al.,1991; Elliott and Faroqui, 1992), a total artificial heart (Jarvik, 1981), contact lenses and intraocular devices (Elder et al., 1995), voice prostheses (Neu et al.,1992) as well as a vast number of prosthetic implants, reviewed in full elsewhere (Dankert, Hogt and Feijen, 1986).

Keywords

Urinary Catheter Bacterial Adhesion Ureteral Stents Plasmid Transfer Penile Prosthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absolom, D. R. (1988) The role of hydrophobicity in infection: bacterial adhesion and phagocytic ingestion. Canadian Journal of Microbiology, 34, 287–298.PubMedCrossRefGoogle Scholar
  2. Absolom, D. R., Lamberti, F. V., Policova, Z. et al (1983) Surface thermodynamics of bacterial adhesion. Applied and Environmental Microbiology, 46, 90–97.PubMedGoogle Scholar
  3. Anglen, J. O., Apostoles, S., Christensen, G. and Gainor, B. (1994) The efficacy of various irrigation solutions in removing slime-producing Staphylococcus. Journal of Orthopedics and Trauma, 8, 390–396.CrossRefGoogle Scholar
  4. Angles, M. L., Marshall, K. C. and Goodman, A. E. (1993) Plasmid transfer between marine bacteria in the aqueous phase and biofilms in reactor microcosms. Applied and Environmental Microbiology, 59, 843–850.PubMedGoogle Scholar
  5. Anwar, H. and Costerton, J. W. (1990) Enhanced activity of combination of tobramycin and piperacillin for eradication of sessile biofilm cells of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 34, 1666–1671.CrossRefGoogle Scholar
  6. Anwar, H. and Strap, J. L. (1992) Changing characteristics of aging biofilms. International Biodeterioration and Biodegradation, 30, 177–186.CrossRefGoogle Scholar
  7. Berger, M. (1991) Inflammation in the lung in cystic fibrosis–a vicious cycle that does more harm than good. Clinical Review of Allergy, 9, 119–142.Google Scholar
  8. Brokke, P., Dankert, J., Carballo, J. and Feijen, J. (1991) Adherence of coagulasenegative staphylococci onto polyethylene catheters in vitro and in vivo: a study on the influence of various plasma proteins. Journal of Biomaterials Applied, 5, 204–226.CrossRefGoogle Scholar
  9. Brown, M. R. W. (1975) The role of the envelope in resistance, in Resistance of Pseudomonas aeruginosa, (ed. M. R. W. Brown ), John Wiley, Chichester, pp. 71107.Google Scholar
  10. Brown, M. R. W. and Williams, P. (1985) The influence of environment on envelope properties affecting survival of bacteria in infections. Annual Review of Microbiology, 39, 527–556.PubMedCrossRefGoogle Scholar
  11. Brown, M. R. W., Allison, D. G. and Gilbert, P. (1988) Resistance of bacterial biofilms to antibiotics: a growth related effect? Journal of Antimicrobial Chemotherapy, 22, 777–783.PubMedCrossRefGoogle Scholar
  12. Bryers, J. D. (1987) Biologically active surfaces: processes governing the formation and persistence of biofilms. Biotechnology Progress, 3, 57–68.CrossRefGoogle Scholar
  13. Busscher, H. J., Bos, R. and van der Mei, H. C. (1995) Initial microbial adhesion is a determinant for the strength of biofilm adhesion. FEMS Microbiology Letters, 128, 229–234.PubMedCrossRefGoogle Scholar
  14. Busscher, H. J., Stokroos, I. and Schakenraad, J. M. (1991) Two dimensional, spatial arrangement of fibronectin adsorbed to biomaterials with different wettabilities. Cells and Materials, 1, 49–57.Google Scholar
  15. Caldwell, D. E. (1995) Cultivation and study of biofilm communities, in Microbial Biofilms, (eds H. M. Lappin-Scott and J. W. Costerton ), Cambridge University Press, Cambridge, pp. 64–79.CrossRefGoogle Scholar
  16. Chamberlain, A. H. L. (1992) The role of adsorbed layers in bacterial adhesion, in Biofilms — Science and Technology, (ed. L. F. Melo ), Kluwer Academic, Dordrecht, pp. 59–67.CrossRefGoogle Scholar
  17. Characklis, W. G., Turakhia, M. H. and Zelver, N. (1990) Transfer and interfacial transport phenomena, in Biofilms, (eds W. G. Characklis and K. C. Marshall ), John Wiley, New York, pp. 265–340.Google Scholar
  18. Christensen, B. E. and Characklis, W. G. (1990) Physical and chemical properties of biofilms, in Biofilms, (eds W. G. Characklis and K. C. Marshall ), John Wiley, New York, pp. 93–130.Google Scholar
  19. Christensen, G. D., Baddour, L. M., Hasty, D. L. et al (1989) Microbial and foreign body factors in the pathogenesis of medical device infections, in Infections Associated with Indwelling Medical Devices, (eds A. L. Bisno and F. A. Waldvogel ), American Society for Microbiology, Washington, DC, pp. 27–59.Google Scholar
  20. Costerton, J. W., Irwin, R. T. and Cheng, K.-T. (1981) The bacterial glycocalyx in nature and disease. Annual Review of Microbiology, 35, 399–424.CrossRefGoogle Scholar
  21. Costerton, J. W., Cheng, K.-J., Geesey, G. G. et al (1987) Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–464.PubMedCrossRefGoogle Scholar
  22. Cozens, R. M., Tuomanen, E., Tosch, W. et al (1986) Evaluation of the bactericidal activity of ß-lactam antibiotics upon slowly growing bacteria cultured in the chemostat. Antimicrobial Agents and Chemotherapy, 29, 797–802.PubMedCrossRefGoogle Scholar
  23. Dankert, J., Hogt, A. H. and Feijen, J. (1986) Biomedical polymers: bacterial adhesion, colonization, and infection. CRC Critical Reviews of Biocompatability, 2, 219–301.Google Scholar
  24. Dasgupta, M. K., Bettcher, K. B., Ulan, R. A. et al (1987) Relationship of adherent bacterial biofilms to peritonitis in chronic ambulatory peritoneal dialysis. Peritoneal Dialysis Bulletin, 7, 168–173.Google Scholar
  25. Dewanti, R. and Wong, A. C. L. (1995) Influence of culture conditions on biofilm formation by Escherichia coli 0157:H7. International Journal of Food Microbiology, 26, 147–164.PubMedCrossRefGoogle Scholar
  26. Elder, M. J., Stapleton, F., Evans, E. and Dart, J. K. (1995) Biofilm-related infections in ophthalmology. Eye, 9, 102–109.PubMedCrossRefGoogle Scholar
  27. Elliott, T. S. J. and Faroqui, M. H. (1992) Infections and intravascular devices. British Journal of Hospital Medicine, 48, 496–503.PubMedGoogle Scholar
  28. Evans, D. J., Allison, D. G., Brown, M. R. W. and Gilbert, P. (1991) Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. Journal of Antimicrobial Chemotherapy, 27, 177–184.Google Scholar
  29. Fletcher, M. (1986) Measurement of glucose utilization by Pseudomonas fluorescens that are free-living and that are attached to surfaces. Applied and Environmental Microbiology, 52, 672–676.PubMedGoogle Scholar
  30. Fletcher, M. and Marshall, K. C. (1982) Bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment. Applied and Environmental Microbiology, 44, 184–192.PubMedGoogle Scholar
  31. Geesey, G. G., Stupy, M. W. and Bremer, P. J. (1992) The dynamics of biofilms. International Biodeterioration and Biodegradation, 30, 135–154.CrossRefGoogle Scholar
  32. Gilbert, P. and Brown, M. R. W. (1995) Mechanisms of the protection of bacterial biofilms from antimicrobial agents, in Microbial Biofilms, (eds H. M. Lappin-Scott and J. W. Costerton ), Cambridge University Press, Cambridge, pp. 118130.Google Scholar
  33. Goodman, A. E. and Marshall, K. C. (1995) Genetic responses of bacteria at surfaces, in Microbial Biofilms, (eds H. M. Lappin-Scott and J. W. Costerton ), Cambridge University Press, Cambridge, pp. 81–98.Google Scholar
  34. Gristina, A. G. (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 237, 1588–1595.PubMedCrossRefGoogle Scholar
  35. Herschorn, S. and Ordorica, R. C. (1995) Penile prosthesis insertion with corporeal reconstruction with synthetic vascular graft material. Journal of Urology, 154, 80–84.PubMedCrossRefGoogle Scholar
  36. Hoiby, N., Fomsgaard, A., Jensen, E. T. et al (1995) The immune response to bacterial biofilms, in Microbial Biofilms, (eds H. M. Lappin-Scott and J. W. Costerton ), Cambridge University Press, Cambridge, pp. 233–250.CrossRefGoogle Scholar
  37. Hopkins, W. J., Uehling, D. T. and Balish, E. (1987) Local and systematic antibody responses accompany spontaneous resolution of experimental cystitis in cynomolgus monkeys. Infection and Immunity, 55, 1951–1956.Google Scholar
  38. Inglis, T. J. J., Tit-Meng, L., Mah-Lee, N. et al. (1995) Structural features of tracheal tube biofilm formed during prolonged mechanical ventilation. Chest, 108, 1049–1052.Google Scholar
  39. Jarvik, R. K. (1981) The total artificial heart. Scientific American, 244, 74.PubMedCrossRefGoogle Scholar
  40. Jensen, E. T., Kharazmi, A., Lam, K. et al (1990) Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilm. Infection and Immunity, 58, 2383–2385.PubMedGoogle Scholar
  41. Jensen, E. T., Kharazmi, A., Hoiby, N. and Costerton, J. W. (1992) Some bacterial parameters influencing the neutrophil oxidative burst response to Pseudomonas aeruginosa biofilms. Acta Pathologica Microbiologica et Immunologica Scandinavica, 100, 727–733.CrossRefGoogle Scholar
  42. Johnson, J. R., Roberts, P. L., Olsen, R. J. et al. (1990) Prevention of catheter-associated urinary tract infection with a silver oxide-coated urinary catheter: clinical and microbiologic correlates. Journal of Infectious Diseases, 162, 1145–1150.Google Scholar
  43. Khardori, N. and Yassien, M. (1995) Biofilms in device-related infections. Journal of Industrial Microbiology, 15, 141–147.PubMedCrossRefGoogle Scholar
  44. Koch, A. L. (1991) Diffusion: the crucial process in many aspects of the biology of bacteria, in Advances in Microbial Ecology 8, (ed. K. C. Marshall ), Plenum Press, New York, pp. 37–70.Google Scholar
  45. 420.
    Development of microbial biofilms on medical prostheses Google Scholar
  46. Korber, D. R., Lawrence, J. R., Lappin-Scott, H. M. and Costerton, J. W. (1995) Growth of microorganisms on surfaces, in Microbial Biofilms, (eds H. M. Lappin-Scott and J. W. Costerton), Cambridge University Press, Cambridge, pp. 15–45.Google Scholar
  47. Kowalewska-Grochowska, K., Richards, R., Moysa, G. L. et al (1991) Guidewire catheter change in central venous catheter biofilm formation in a burn population. Chest, 100, 1090–1095.PubMedCrossRefGoogle Scholar
  48. Lappin-Scott, H. M. and Costerton, J. W. (1989) Bacterial biofilms and surface fouling. Biofouling, 1, 323–342.CrossRefGoogle Scholar
  49. Light, J. K., Lapin, S. and Vohra, S. (1995) Combined use of bowel and the artificial urinary sphincter in reconstruction of the lower urinary tract: infectious complications. Journal of Urology, 153, 331–333.PubMedCrossRefGoogle Scholar
  50. Mack, D., Fischer, W., Krokotsch, A. et al (1996) The intracellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear 0–1,6-linked glucosaminoglycan: purification and structural analysis. Journal of Bacteriology, 178, 175–183.PubMedGoogle Scholar
  51. McLean, R. J. C., Nickel, J. C. and Olson, M. E. (1995) Biofilm associated urinary tract infections, in Microbial Biofilms, (eds H. M. Lappin-Scott and J. W. Coster-ton ), Cambridge University Press, Cambridge, pp. 261–273.CrossRefGoogle Scholar
  52. Miller, J. F., Mekalanos, J. J. and Falkow, S. (1989) Coordinate regulation and sensory transduction in the control of bacterial virulence. Science, 243, 916–922.PubMedCrossRefGoogle Scholar
  53. Neu, T. R., Dijk, F., Verkerke, G. J. et al. (1992) Scanning electron microscopy study of biofilms on silicone voice prostheses. Cells and Materials, 2, 261–269.Google Scholar
  54. Nicas, T. and Hancock, R. E. W. (1980) Outer membrane protein H1 of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylene-diaminetetracetate, polymyxin B, and gentamicin. Journal of Bacteriology, 50, 715–731.Google Scholar
  55. Nickel, J. C. (1996) Prostatitis, in Antibiotic Therapy in Urology, (ed. S. G. Mulholland ), pp. 57–69.Google Scholar
  56. Nivens, D. E., Chambers, J. Q., Anderson, T. R. et al (1993) Monitoring microbial adhesion and biofilm formation by attenuated total reflection/Fourier Transform Infrared Spectroscopy. Journal of Microbiological Methods, 17, 199–213.CrossRefGoogle Scholar
  57. Ozaki, C. K., Phaneuf, M. D., Bide, M. J. et al (1993) In vivo testing of an infection-resistant vascular graft material. Journal of Surgical Research, 55, 543–547.Google Scholar
  58. Parsons, C. L. (1996) Infections of urologic prostheses. Current Opinion in Urology, 6, 41–44.CrossRefGoogle Scholar
  59. Preston, C. A. K., Khoury, A. E., Reid, G. et al (1996) Susceptibility of Pseudomonas aeruginosa in a biofilm to ciprofloxacin and tobramycin. International Journal of Antimicrobial Agents, 7, 251–256.PubMedCrossRefGoogle Scholar
  60. Quirynen, M., van der Mei, H. C., Bollen, C. M. L. et al (1994) The influence of surface free energy on supra-and subgingival plaque microbiology. Journal of Periodontology, 65, 162–167.PubMedCrossRefGoogle Scholar
  61. Raad, I., Darouiche, R., Hachem, R. et al (1995) Antibiotics and prevention of microbial colonization of catheters. Antimicrobial Agents and Chemotherapy, 39, 2397–2400.PubMedCrossRefGoogle Scholar
  62. Ratner, B. D. (1980) Characterization of graft polymers for biomedical applications. Journal of Biomedical Materials Research, 14, 665–687.PubMedCrossRefGoogle Scholar
  63. Reid, G. (1994) Microbial adhesion to biomaterials and infections of the urogenital tract. Colloids and Surfactants B: Biointerfaces, 2, 377–385.CrossRefGoogle Scholar
  64. Reid, G., van der Mei, H. C. and Busscher, H. J. (1998) Microbial biofilms and urinary tract infections, in, Urinary Tract Infections, (eds W. Brumfitt, T. Hamilton-Miller and R. R. Bailey), Chapman and Hall, London, pp. 111–118.Google Scholar
  65. Reid, G. and Tieszer, C. (1993) Preferential adhesion of bacteria from a mixed population to a urinary catheter. Cells and Materials, 3, 171–176.Google Scholar
  66. Reid, G. and Tieszer, C. (1995) Use of lactobacilli to reduce the adhesion of Staphylococcus aureus to catheters. International Biodeterioration and Biodegradation, 34, 73–83.CrossRefGoogle Scholar
  67. Reid, G., Davidson, R. and Denstedt, J. D. (1994) XPS, SEM and EDX analysis of conditioning film deposition onto ureteral stents. Surface Interface Analysis, 21, 581–586.CrossRefGoogle Scholar
  68. Reid, G., Tieszer, C. and Bailey, R. R. (1995) Bacterial biofilms on devices used in nephrology. Nephrology, 1, 269–275.CrossRefGoogle Scholar
  69. Reid, G., Tieszer, C. and Lam, D. (1995) Influence of lactobacilli on the adhesion of Staphylococcus aureus and Candida albicans to diapers. Journal of Industrial Microbiology, 15, 248–253.PubMedCrossRefGoogle Scholar
  70. Reid, G., Hawthorn, L. A., Mandatori, R. et al (1988) Adhesion of lactobacillus to polymer surfaces in vivo and in vitro. Microbial Ecology. 16 (3), 241–251.CrossRefGoogle Scholar
  71. Reid, G., Beg, H. S., Preston, C. and Hawthorn, L. A. (1991) Effect of bacterial, urine and substratum surface tension properties on bacterial adhesion to bio-materials. Biofouling, 4, 171–176.CrossRefGoogle Scholar
  72. Reid, G., Denstedt, J. D., Kang, Y. S. et al (1992a) Microbial adhesion and biofilm formation on ureteral stents in vitro and in vivo. Journal of Urology, 148, 1592–1594.Google Scholar
  73. Reid, G., Tieszer, C., Foerch, R. et al (1992b) The binding of urinary components and uropathogens to a silicone latex urethral catheter. Cells and Materials, 2, 253–260.Google Scholar
  74. Reid, G., Lam, D., Policova, Z. and Neumann, A. W. (1993a) Adhesion of two uropathogens to silicone and lubricious catheters: influence of pH, urea and creatinine. Journal of Materials Science: Materials in Medicine, 4, 17–22.CrossRefGoogle Scholar
  75. Reid, G., Tieszer, C., Foerch, R. et al (1993b) Adsorption of ciprofloxacin to urinary catheters and effect on subsequent bacterial adhesion and survival. Colloids and Surfactants B: Biointerfaces, 1, 9–16.CrossRefGoogle Scholar
  76. Reid, G., Sharma, S., Advikolanu, K. et al (1994) Effect of ciprofloxacin, norfloxacin and ofloxacin in vitro on the adhesion and survival of Pseudomonas aeruginosa on urinary catheters. Antimicrobial Agents and Chemotherapy, 38, 1490–1495.PubMedCrossRefGoogle Scholar
  77. Reid, G., Busscher, H. J., Sharma, S. et al (1995a) Surface properties of catheters, stents and bacteria associated with urinary tract infections. Surface Science Reports, 7, 251–273.CrossRefGoogle Scholar
  78. Reid, G., Tieszer, C., Denstedt, J. and Kingston, D. (1995b) Examination of bacterial and encrustation deposition on ureteral stents of differing surface properties, after indwelling in humans. Colloids and Surfactants B: Biointerfaces, 5, 171–179. Reid, G., van der Mei, H. C., Tieszer, C. and Busscher, H. J. (1996) Uropathogenic Escherichia coli adhere to urinary catheters without using fimbriae. FEMS Immunology and Medical Microbiology, 16, 159–162.CrossRefGoogle Scholar
  79. Riffle, K. H., Helmstetter, C. E., Meyer, A. E. and Baier, R. E. (1990) Escherichia coli retention on solid surfaces as functions of substratum surface energy and cell growth phase. Biofouling, 2, 121–130.Google Scholar
  80. Rupp, M. E., Sloot, N., Meyer, H. G. et al (1995) Characterization of the hemagglutinin of Staphylococcus epidermidis. Journal of Infectious Diseases, 172, 1509–1518.Google Scholar
  81. Russell, A. D. (1995) Mechanisms of bacterial resistance to biocides. International Biodeterioration and Biodegradation, 36, 247–265.CrossRefGoogle Scholar
  82. Savage, D. C. (1977) Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology, 31, 107–133.PubMedCrossRefGoogle Scholar
  83. Schakenraad, J. M., Noordmans, J., Wildevuur, C. R. H. et al (1989) The effect of protein adsorption on substratum surface free energy, infrared absorption and cell spreading. Biofouling, 1, 193–201.CrossRefGoogle Scholar
  84. Schrago, A. W., Chassy, B. M. and Dobrogosz, W. J. (1986) Conjugal plasmid transfer (pAM81) in Lactobacillus plantarum. Applied and Environmental Microbiology, 52, 574–576.Google Scholar
  85. Schulman, C. C. (1995) Non-autologous injected materials for the endoscopic treatment of vesico-ureteral reflux, in Implanted and Injected Materials in Urology, (ed. J. M. Buzelin ), Isis Medical Media, Oxford, pp. 23–35.Google Scholar
  86. Sjollema, J., van der Mei, H. C., Uyen, H. M. and Busscher, H. J. (1990) Direct observation of cooperative effects in oral streptococcal adhesion to glass by analysis of the spacial arrangement of adhering bacteria. FEMS Microbiology Letters, 69, 263–270.CrossRefGoogle Scholar
  87. Stock, J. B., Stock, A. M. and Mottonen, J. M. (1990) Signal transduction in bacteria. Nature, 344, 395–400.PubMedCrossRefGoogle Scholar
  88. Strachan, C. J. (1995) The prevention of orthopaedic implant and vascular graft infections. Journal of Hospital Infection, 30 (Suppl.), 54–63.PubMedCrossRefGoogle Scholar
  89. Tannock, G. W. (1987) Conjugal transfer of plasmid pAM81 in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis. Applied and Environmental Microbiology, 53, 2693–2695.Google Scholar
  90. Teichman, J. M., Abraham, V. E., Stein, P. C. and Parsons, C. L. (1994) Protamine sulfate and vancomycin are synergistic against Staphylococcus epidermidis prosthesis infection in vivo. Journal of Urology, 152, 213–216.Google Scholar
  91. Trieu-Cuot, P., Carlier, C., Martin, P. and Courvalin, P. (1987) Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiology Letters, 48, 289–294.CrossRefGoogle Scholar
  92. Tuomanen, E. (1986) Phenotypic tolerance: the search for ß-lactam antibiotics that kill non-growing bacteria. Reviews of Infectious Diseases, 8 (Suppl.): S279 - S291.PubMedCrossRefGoogle Scholar
  93. van Loosdrecht, M. C. M., Norde, W. and Zehnder, A. J. B. (1987) Influence of cell surface characteristics on bacterial adhesion to solid surfaces, in Proceedings of the 4th European Congress of Biotechnology, pp. 575–580.Google Scholar
  94. Vaudaux, P. E., Lew, D. P. and Waldvogel, F. A. (1989) Host factors predisposing to foreign body infections, in Infections Associated with Indwelling Medical Devices, (eds A. L. Bisno and F. A. Waldvogel ), American Society for Microbiology, Washington, DC, pp. 3–26.Google Scholar
  95. Wadström, T. (1989) Molecular aspects of bacterial adhesion, colonization, and development of infections associated with biomaterials. Journal of Investigative Surgery, 2, 353–360.PubMedCrossRefGoogle Scholar
  96. Williams, G. (1995a) Surgical procedures, indications and results of injected materials for treating urinary incontinence (male and female), in Implanted and Injected Materials in Urology, (ed. J. M. Buzelin ), Isis Medical Media, Oxford, pp. 36–47.Google Scholar
  97. Williams, G. (1995b) Urethral stents: history, surgical procedure, indication and results for treating BPH, urethral stricture and neurological voiding dysfunction, in Implanted and Injected Materials in Urology, (ed. J. M. Buzelin ), Isis Medical Media, Oxford, pp. 74–90.Google Scholar
  98. Wilson, S. K. and Delk, J. R. II (1995) Inflatable penile implant infection: predisposing factors and treatment suggestions. Journal of Urology, 153, 659–661.PubMedCrossRefGoogle Scholar
  99. Yasuda, H., Ajiki, Y., Koga, T. and Yokota, T. (1994) Interaction between clarithromycin and biofilms formed by Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 38, 138–141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Gregor Reid

There are no affiliations available

Personalised recommendations