Chemical transformations of bile salts by the intestinal microflora

  • J. Van Eldere


Bile acids are synthesized as primary bile acids in the liver from cholesterol. In humans and all other mammals, bile acid synthesis is the predominant pathway for elimination of cholesterol. After conjugation with glycine or taurine the bile acids are secreted in the bile and via the bile into the intestinal tract where they assist in the digestion and absorption of fat. The largest part of the bile acids are reabsorbed and via the portal blood return to the liver. A small fraction escapes from the enterohepatic circulation and is excreted in the faeces. In the intestinal tract, microorganisms that are part of the intestinal microflora can transform the primary bile acids into secondary bile acids. These secondary bile acids can also be reabsorbed and return to the liver where they can again be transformed into the so-called tertiary bile acids before they are again excreted into the bile. In this chapter the transformations of bile acids by the intestinal microflora and the impact of these bile acid transformations on the host will be discussed.


Bile Acid Bile Salt Cholic Acid Intestinal Microflora Enterohepatic Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, G. D., Bauer H. and Sprinz, H. (1963) Influence of the normal flora on mucosal morphology and cellular renewal in the ileum: a comparison of germ-free and conventional mice. Laboratory Investigation, 12, 355–364.PubMedGoogle Scholar
  2. Ali, S. S., Kuksis, A. and Beveridge, J. M. (1966) Excretion of bile acids by three men on a fat-free diet. Canadian Journal of Biochemistry, 4, 957–969.CrossRefGoogle Scholar
  3. Almé, B., Bremmelgaard, A., Sjövall, J. et al. (1977) Analysis of metabolic profiles of bile acids in urine using a lipophilic anion exchanger and computerized gasliquid chromatography—mass spectometry. Journal of Lipid Research, 18, 339–362.PubMedGoogle Scholar
  4. Aries, V. and Hill, M. J. (1970) Degradation of steroids by intestinal bacteria. II. Enzymes catalyzing the oxidoreduction of the 3a-, 7a, and 12a-hydroxyl groups in cholic acid and the dehydroxylation of the 7–hydroxyl group. Biochimica et Biophysica Acta, 202, 535–543.PubMedCrossRefGoogle Scholar
  5. Back, P. and Gerok, W. (1977) Differences in renal excretion between glycoconjugates, tauroconjugates, sulfoconjugates and glucuronoconjugates of bile acids in cholestasis, in Bile Acid Metabolism in Health and Disease, (eds G. Paumgartner and A. Stiehl ), MTP Press, Lancaster, pp. 93–100.Google Scholar
  6. Back, P., Spaczynski, K. and Gerok, W. (1974) Bile-salt glucuronides in urine. Hoppe-Seyler’s Zeitschrift far Physiologische Chemie, 355, 749–752.Google Scholar
  7. Baraona, E., Pirola, R. C. and Lieber, C. S. (1974) Small intestinal damage and changes in cell population produced by ethanol ingestion in the rat. Gastroenterology, 66, 226–234.Google Scholar
  8. Baraona, E., Palma, R., Navia, E. et al. (1968) The role of unconjugated bile salts in the malabsorption of glucose and tyrosine by everted sacs of jejunum of rats with the ‘blind loop syndrome’. Acta Physiologica Latinoamerica, 18, 291–297.Google Scholar
  9. Barbara, L., Festi, D., Bazzoli, F. et al. (1984) The influence of gallbladder and intestinal motility on serum bile acid levels, in The Enterohepatic Circulation of Bile Acids and Sterol Metabolism, (eds G. Paumgartner, A. Stiehl and W. Gerok ), MTP Press, Lancaster, pp. 139–142.Google Scholar
  10. Barnes, W. S. and Powrie, W. D. (1982) Clastogenic activity of bile acids and organic fractions in human feces. Cancer Letters, 15, 317–327.PubMedCrossRefGoogle Scholar
  11. Björkhem, I., Einarsson, K., Melone, P. et al. (1989) Mechanism of intestinal formation of deoxycholic acid from cholic acid in humans: evidence for a 3–oxo-04–steroid intermediate. Journal of Lipid Research, 30, 1033–1039.PubMedGoogle Scholar
  12. Bjorneklett, A., Fausa, O. and Midtvedt, T. (1983). Small-bowel bacterial overgrowth in the postgastrectomy syndrome. Scandinavian Journal of Gastroenterology, 18, 277–287.PubMedCrossRefGoogle Scholar
  13. Bloch, R., Menge, H., Lorenz-Meyer, M. et al. (1973) Morphologische und biochemische Veränderungen der Dunndarmschleimhaut beim Blind-sack Syndrom. Verhandlungen der deutschen Gesellschaft fur interne Medizin, 79, 853–856.Google Scholar
  14. Borriello, S. P. and Owen, R. W. (1982) The metabolism of lithocholic acid and lithocholic acid-3–a-sulfate by human fecal bacteria. Lipids, 17, 477–482.PubMedCrossRefGoogle Scholar
  15. Breuer, N., Dommes, P., Tandon, R. et al. (1984) Isolierung und Quantifizierung nicht-sulfatierter und sulfatierter Gallensäuren im Stuhl. Journal of Clinical Chemistry and Clinical Biochemistry, 22, 623–631.Google Scholar
  16. Breuer, N. F., Dommes, P., Jaekel, S. et al. (1985) Fecal bile acid excretion pattern in colonic cancer patients. Digestive Diseases and Sciences, 30, 852–859.PubMedCrossRefGoogle Scholar
  17. Burke, V., Gracey, M., Thomas, J. et al. (1975) Inhibition of intestinal amino acid absorption by unconjugated bile salts in vivo. Australian and New Zealand Journal of Medicine, 5, 430–432.CrossRefGoogle Scholar
  18. Coleman, J. P., White, W. B., Egestad, B. et al. (1987) Biosynthesis of a novel bile acid nucleotide and mechanism of 7a-dehydroxylation by an intestinal Eubacterium species. Journal of Biological Chemistry, 262, 4701–4707.PubMedGoogle Scholar
  19. Cowen, A. E., Korman, M. G., Hofmann, A. F. et al. (1975) Metabolism of lithocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates. Gastroenterology, 69, 59–66.PubMedGoogle Scholar
  20. Dawson, A. M. and Isselbacher, K. J. (1960) Studies on lipid metabolism in the small intestine with observations on the role of bile salts. Journal of Clinical Investigation, 39, 730–740.PubMedCrossRefGoogle Scholar
  21. De Barros, S. G., Balistreri, W. F., Soloway, R. D. et al. (1982) Response of total and individual serum bile acids to endogenous and exogenous bile acid input to the enterohepatic circulation. Gastroenterology, 82, 647–652.PubMedGoogle Scholar
  22. Dickinson, A. B., Gustafsson, B. E. and Norman, A. (1971) Determination of bile acid conversion potencies of intestinal bacteria by screening in vitro and subsequent establishment in germ-free rats. Acta Pathologica et Microbiologica Scandinavica Section B, 79B, 691–698.Google Scholar
  23. Donaldson, R. M. Jr (1962) Malabsorption of Co60–labeled cyanocobalamin in rats with intestinal diverticula. I. Evaluation of possible mechanisms. Gastroenterology, 43, 271–281.PubMedGoogle Scholar
  24. Edenharder, R. (1984) Dehydroxylation of cholic acid at C12 and epimerization at C5 and C7 by Bacteroides species. Journal of Steroid Biochemistry, 21, 413–420.PubMedCrossRefGoogle Scholar
  25. Edenharder, R. and Deser, H. J. (1981) The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic, chenódeoxycholic and deoxycholic acid by lecithinase-lipase-negative Clostridia. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Abt 1: orig., reihe B, 174, 91–104.Google Scholar
  26. Edenharder, R., Stubenrauch, S. and Slemrova, J. (1976) Die Bedeutung des bakteriellen Steroidabbaus für die Aetiologie des Dickdarmkrebs. V. Metabolismus von Chenodesoxycholsaure durch saccharolytische Bacteroides-arten. Zentralblatt far Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Abt 1: orig., reihe B, 162, 506–518.Google Scholar
  27. Einarsson, K., Bergstrom, M., Eklof, R. et al. (1992). Comparison of the proportion of unconjugated to total serum cholic acid and the (14C)-xylose breath test in patients with suspected small intestinal bacterial overgrowth. Scandinavian Journal of Clinical and Laboratory Investigation, 52, 425–430.PubMedCrossRefGoogle Scholar
  28. Eyssen, H. J. and Parmentier, G. G. (1979) Influence of the microflora of the rat on the metabolism of fatty acids, sterols and bile salts in the intestinal tract, in Clinical and Experimental Gnotobiotics, (eds T. M. Fliedner, H. Heit, D. Niethammer and H. Pflieger), Zentralblatt fuir Bakteriologie, Suppl. 7. Gustav Fischer Verlag, Stuttgart, pp. 39–44.Google Scholar
  29. Eyssen, H. and Van Eldere, J. (1984) Metabolism of bile acids, in The Germ-Free Animal in Biomedical Research, (eds M. E. Coates and. B. E. Gustafsson ), Laboratory Animals, London, pp. 291–316.Google Scholar
  30. Eyssen, H., Van Eldere, J., Parmentier, G. et al. (1985) Influence of microbial bile salt desulfation upon the fecal excretion of bile salts in gnotobiotic rats. Journal of Steroid Biochemistry, 22, 547–554.PubMedCrossRefGoogle Scholar
  31. Ferrari, A., Pacini, N. and Canzi, E. (1980) A note on bile acid transformations by strains of Bifidobacterium. Journal of Applied Bacteriology, 49, 193–197.CrossRefGoogle Scholar
  32. Finegold, S. M., Sutter, V. L. and Mathesen, G. E. (1983) Normal indigenous intestinal flora, in Human Intestinal Microflora in Health and Disease, (ed. D. J. Hentges ), Academic Press, New York, pp. 3–31.Google Scholar
  33. Fischer, L. J., Millburn, P., Smith, R. L. et al. (1966) The fate of 14C-stilboestrol in the rat. Biochemical Journal, 100, 69–72.Google Scholar
  34. Ford, D. J. and Coates, M. E. (1971) Absorption of glucose and vitamins of the B complex by germfree and conventional chicks. Proceedings of the Nutrition Society, 30, 10A.Google Scholar
  35. Forth, W., Rummel, W. and Glasner, H. (1966) Zur resorptionhemmenden Wirkung von Gallsauren. Naunyn-Schmeidebergs Archiv der Pharmakologie, 254, 364–380.CrossRefGoogle Scholar
  36. Fricker, G., Schneider, S., Gerok, W. et al. (1987) Identification of different transport systems for bile salts in sinusoidal and canalicular membranes of hepatocytes Biological Chemistry Hoppe-Seyler, 368, 1143–1150.PubMedCrossRefGoogle Scholar
  37. Fröhling, W., Stiehl, A., Czygan, P. et al. (1977) Induction of bile acid glucuronide formation in children with intrahepatic cholestasis, in Bile Acid Metabolism in Health and Disease, (eds G. Paumgartner and A. Stiehl ), MTP Press, Lancaster, pp. 101–104.Google Scholar
  38. Giannella, R. A., Broitman, S. A. and Zamchek, N. (1971) Vitamin B12 uptake by intestinal micro-organisms: mechanism and relevance to syndromes of intestinal bacterial overgrowth. Journal of Clinical Investigation, 50, 1100–1107.PubMedCrossRefGoogle Scholar
  39. Giannella, R. A., Rout, W. R. and Toskes, P. P. (1974) Jejunal brush border injury and impaired sugar and amino-acid uptake in the blind loop syndrome. Gastroenterology, 67, 965–974.PubMedGoogle Scholar
  40. Gilliland, S. E. and Speck, M. L. (1977) Deconjugation of bile acids by intestinal lactobacilli. Applied and Environmental Microbiology, 33, 15–18.PubMedGoogle Scholar
  41. Goldin, B. R. and Gorbach, S. L. (1976) The relationship between diet and fecal bacterial enzymes implicated in colon cancer. Journal of the National Cancer Institute, 57, 371–375.PubMedGoogle Scholar
  42. Goldin, B. R., Swenson, L., Dwyer, J. et al. (1980) Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. Journal of the National Cancer Institute, 64, 255–261.PubMedGoogle Scholar
  43. Goldstein, F., Karacadag, S., Wirts, C. W. et al. (1970) Intraluminal small-intestinal utilization of D -xylose by bacteria: a limitation of the D -xylose absorption test. Gastroenterology, 59, 380–386.PubMedGoogle Scholar
  44. Gordon, H. A. and Bruckner-Kardoss, E. (1961) Effect of normal microbial flora on intestinal surface area. American Journal of Physiology, 201, 175–178.PubMedGoogle Scholar
  45. Gracey, M. (1981) Nutrition, bacteria and the gut. British Medical Bulletin, 37, 71–75.PubMedGoogle Scholar
  46. Gracey, M. (1983) The contaminated small bowel syndrome, in Human Intestinal Microflora in Health and Disease, (ed. D. J. Hentges ), Academic Press, New York, pp. 495–515.Google Scholar
  47. Gracey, M., Papadimitriou, J. and Burke, V. (1973) Effects on small-intestinal function and structure induced by feeding a deconjugated bile salt. Gut, 14, 519–528.PubMedCrossRefGoogle Scholar
  48. Gracey, M., Burke, V. and Oshin, A. (1971) Reversible inhibition of intestinal active sugar transport by deconjugated bile salt in vitro. Biochimica et Biophysica Acta, 225, 308–314.CrossRefGoogle Scholar
  49. Gracey, M., Burke, V., Oshin, A. et al. (1971) Bacteria, bile salts and intestinal monosaccharide malabsorption. Gut, 12, 683–692.PubMedCrossRefGoogle Scholar
  50. Grantham, P. H., Horton, R. E., Weisburger, E. K. et al. (1970) Metabolism of the carcinogen N-2–fluorenylacetamide in germ-free and conventional rats. Biochemical Pharmacology, 19, 163–171.PubMedCrossRefGoogle Scholar
  51. Gupta, I., Suzuki, K., Bruce, W. R. et al. (1984) A model study of fecapentaenes: mutagens of bacterial origin with alkylating properties. Science, 225, 521–523.PubMedCrossRefGoogle Scholar
  52. Hajjar, J. J., Khuri, R. N. and Bikhazi, A. B. (1975) Effect of bile salts on amino acid transport by rabbit intestine. American Journal of Physiology, 229, 518–523.PubMedGoogle Scholar
  53. Hardison, W. G. M. (1978) Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology, 75, 71–75.PubMedGoogle Scholar
  54. Haslewood, G. A. D. (1978). The biological importance of bile salts, in Frontiers of Biology, vol. 47, (eds A. Neuberger and E. L. Tatum ), North-Holland, Amsterdam, pp. 206.Google Scholar
  55. Hayakawa, S. (1973) Microbiological transformation of bile acids. Advances in Lipid Research, 11, 143–192.Google Scholar
  56. Heneghan, J. B. (1963) Influence of microbial flora on xylose absorption in rats and mice. American Journal of Physiology, 205, 417–420.PubMedGoogle Scholar
  57. Hill, M. J. and Aries, V. C. (1971) Faecal steroid composition and its relationship to cancer of the large bowel. Journal of Pathology, 104, 129–139.PubMedCrossRefGoogle Scholar
  58. Hill, M. J., Drasar, B. S., Williams, R. E. et al. (1975) Faecal bile-acids and clostridia in patients with cancer of the large bowel. Lancet, i, 535–539.Google Scholar
  59. Hirano, S. and Masuda, N. (1981a) Transformation of bile acids by Eubacterium lentum. Applied and Environmental Microbiology, 42, 912–915.Google Scholar
  60. Hirano, S. and Masuda, N. (1981b) Epimerization of the 7–hydroxyl group of bile acids by the combination of two kinds of microorganisms with 7a-and 7ßhydroxysteroid dehydrogenase activity, respectively. Journal of Lipid Research, 22, 1060–1068.PubMedGoogle Scholar
  61. Hirano, S. and Masuda, N. (1982) Characterization of the NADP-dependent 7/3hydroxysteroid dehydrogenase from Peptostreptococcus productus and Eubacterium aerofaciens. Applied and Environmental Microbiology, 43, 1057–1063.Google Scholar
  62. Hirano, S., Masuda, N., Oda, H. et al. (1981) Transformation of bile acids by mixed microbial cultures from human feces and bile acid transforming activities of isolated bacterial strains. Microbiology and Immunology, 25, 271–282.PubMedGoogle Scholar
  63. Huijghebaert, S. M. and Eyssen, H. J. (1982) Specificity of bile salt sulfatase activity from Clostridium sp. strain S1. Applied and Environmental Microbiology, 44, 1030–1034.PubMedGoogle Scholar
  64. Huijghebaert, S., Parmentier, G. and Eyssen, H. (1984) Specificity of bile salt sulfatase activity in man, mouse and rat intestinal microflora. Journal of Steroid Biochemistry, 20, 907–912.PubMedCrossRefGoogle Scholar
  65. Hylemon, P. B. and Sherrod, J. A. (1975) Multiple forms of 7a-hydroxysteroid dehydrogenase in selected strains of Bacteroides fragilis. Journal of Bacteriology, 122, 418–422.Google Scholar
  66. Hylemon, P. B. and Stellwag, E. J. (1976) Bile acid transformation rates of selected gram-positive and gram-negative intestinal bacteria. Biochemical and Biophysical Research Communications, 69, 1088–1094.PubMedCrossRefGoogle Scholar
  67. Imperato, T. J., Wong, C. G., Chen, J. L. (1977) Hydrolysis of lithocholate sulfate by Pseudomonas aeruginosa. Journal of Bacteriology, 130, 545–547.Google Scholar
  68. Islam, M. A., Raicht, R. F. and Cohen, B. I. (1981) Isolation and quantification of sulfated and unsulfated steroids in human feces. Analytical Biochemistry, 112, 371–377.PubMedCrossRefGoogle Scholar
  69. Jonas, E. A., Craigie, A., Tavill, A. S. et al. (1968) Protein metabolism in the intestinal stagnant loop syndrome. Gut, 9, 466–469.CrossRefGoogle Scholar
  70. Kellogg, T. F., Knight, P. L. and Wostmann, B. S. (1970) Effect of bile acid deconjugation on the fecal excretion of steroids. Journal of Lipid Research, 11, 362–366.PubMedGoogle Scholar
  71. Kim, Y. S. and Spritz, N. (1968) Metabolism of hydroxy fatty acids in dogs with steatorrhea secondary to experimentally produced intestinal blind loops. Journal of Lipid Research, 9, 487–491.PubMedGoogle Scholar
  72. King, C. E. and Toskes, P. P. (1976) Malabsorption following gastric secretion, in Postgastrectomy Syndromes, Major Problems in Clinical Surgery, vol. 20, (eds F. L. Bushkin and E. R. Woodward ), W. B. Saunders, Philadelphia, PA, pp. 129–146.Google Scholar
  73. Kinsella, V. J., Hennessy, W. B. and George, E. P. (1961) Studies on postgastrectomy malabsorption: the importance of bacterial contamination of the upper small intestine. Medical Journal of Australia, 2, 257–261.Google Scholar
  74. Klipstein, F. A., Holdeman, L. V., Corcino, J. J. et al. (1973) Enterotoxigenic intestinal bacteria in tropical sprue. Annals of Internal Medicine, 79, 632–641.PubMedGoogle Scholar
  75. Kobashi, K., Nishizawa, I., Yamada, T. et al. (1978) A new hydrolase specific for taurine conjugates of bile acids. Journal of Biochemistry (Tokyo), 84, 495–497.Google Scholar
  76. Korpela, J. T., Fotsis, T. and Adlercreutz, H. (1986) Multicomponent analysis of bile acids in faeces by anion exchange and capillary column gas—liquid chromatography: application in oxytetracycline treated subjects. Journal of Steroid Biochemistry, 25, 277–284.PubMedCrossRefGoogle Scholar
  77. Levy, N. S. and Toskes, P. P. (1974) Fundus albipunctatus and vitamin A deficiency. American Journal of Ophthalmology, 150, 219–238.Google Scholar
  78. Low-Beer, T. S., Tyor, M. P. and Lack, L. (1969) Effects of sulfation of taurocholic and glycolithocholic acids on their intestinal transport. Gastroenterology, 56, 721–726.Google Scholar
  79. Macdonald, I. A., Hutchison, D. M. and Forrest, T. P. (1981) Formation of ursoand ursodeoxycholic acids from primary bile acids by Clostridium absonum. Journal of Lipid Research, 22, 458–466.Google Scholar
  80. Macdonald, I. A., Williams, C. N. and Mahony, D. E. (1973) 7a-Hydroxysteroid dehydrogenase from Escherichia coli B. Preliminary studies. Biochimica et Biophysica Acta, 309, 243–253.Google Scholar
  81. Macdonald, I. A., Jellett, J. F., Mahoney, D. E. et al. (1979) Bile salt 3a-and 12ahydroxysteroid dehydrogenases from Eubacterium lentum and related strains. Applied and Environmental Microbiology, 37, 992–1000.PubMedGoogle Scholar
  82. Macdonald, I. A., Rochon, Y. P., Hutchison, D. M. et al. (1982) Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 76–hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain co-cultured with 7ahydroxysteroid dehydrogenase-elaborating organisms. Applied and Environmental Microbiology, 44, 1187–1195.PubMedGoogle Scholar
  83. Macdonald, I. A., Bussard, R. G., Hutchinson, D. M. et al. (1984) Rutin-induced,ß-glucosidase activity in Streptococcus faecium VGH-1 and Streptococcus strain FRP-17 isolated from human feces: formation of the mutagen quercetin, from rutin. Applied and Environmental Microbiology, 47, 350–355.PubMedGoogle Scholar
  84. Makino, I., Hashimoto, H., Shinozaki, K. et al. (1975) Sulfated and nonsulfated bile acids in urine, serum, and bile of patients with hepatobiliary diseases. Gastroenterology, 68, 545–553.PubMedGoogle Scholar
  85. Marshall, H. U., Egestad, B., Matern, H. et al. (1987) Evidence for bile acid glucosides as normal constituents in human urine. FEBS Letters, 213, 411–414.CrossRefGoogle Scholar
  86. Mastromarino, A., Reddy, B. S. and Wynder E. L. (1976) Metabolic epidemiology of colon cancer: enzymatic activity of the fecal flora. American Journal of Clinical Nutrition, 29, 1455–1460.PubMedGoogle Scholar
  87. Masuda, N. (1981) Deconjugation of bile salts by Bacteroides and Clostridium. Microbiology and Immunology, 25, 1–11.Google Scholar
  88. Mekhjian, H. S., Phillips, S. F. and Hofmann, A. F. (1968) Conjugated bile salts block water and electrolyte transport by the human colon. Gastroenterology, 54, 1256 (abstr.).Google Scholar
  89. Midtvedt, T. (1974) Microbial bile acid transformation. American Journal of Clinical Nutrition, 27, 1341–1347.PubMedGoogle Scholar
  90. Midtvedt, T. and Norman, A. (1967) Bile acid transformations by microbial strains belonging to genera found in intestinal contents. Acta Pathologica et Microbiologica Scandinavica, 71, 629–638.PubMedCrossRefGoogle Scholar
  91. Moore, W. E. C. and Moore, L. H. (1995) Intestinal flora of populations that have a high risk of colon cancer. Applied and Environmental Microbiology, 61, 3202–3207.PubMedGoogle Scholar
  92. Mudd, D. G., McKelvey, S. T., Norwood, W. et al. (1980) Faecal bile acid concentrations of patients with carcinoma or increased risk of carcinoma in the large bowel. Gut, 21, 587–590.PubMedCrossRefGoogle Scholar
  93. Murray, W. R., Blackwood, A., Trotter, J. M. et al. (1980) Faecal bile acids and clostridia in the aetiology of colorectal cancer. British Journal of Cancer, 41, 923–928.PubMedCrossRefGoogle Scholar
  94. Narisawa, T., Magadia, N. E., Weisburger, J. H. et al. (1974) Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methylN’-nitro-N-nitrosoguanidine in rats. Journal of the National Cancer Institute, 53, 1093–1097.PubMedGoogle Scholar
  95. Neale, G., Gompertz, D., Schjonsby, H. et al. (1972) The metabolic and nutritional consequences of bacterial overgrowth in the small intestine. American Journal of Clinical Nutrition, 25, 1409–1417.PubMedGoogle Scholar
  96. Nygaard, L. and Rootwelt, K. (1968) Intestinal protein loss in rats with blind segments on the bowel. Gastroenterology, 54, 52–55.PubMedGoogle Scholar
  97. Palmer, R. H. and Bolt, M. G. (1971) Bile acid sulfates. I. Synthesis of lithocholic acid sulfates and their identification in human bile. Journal of Lipid Research, 12, 671–679.PubMedGoogle Scholar
  98. Polter, D. E., Boyle, J. D., Miller, L. G. et al. (1968) Anaerobic bacteria as a cause of the blind loop syndrome. Gastroenterology, 54, 1148–1154.PubMedGoogle Scholar
  99. Pope, J. L., Parkinson, T. M. and Olson, J. A. (1966) Action of bile salts on the metabolism and transport of water-soluble nutrients by perfused rat jejunum in vitro. Biochimica et Biophysica Acta, 130, 218–232.CrossRefGoogle Scholar
  100. Radominska-Pyrek, A., Zimniak, P., Chari, M. et al. (1986) Glucuronides of monohydroxylated bile acids: specificity of microsomal glucuronyltransferase for the glucuronidation site, C-3 configuration and side chain length. Journal of Lipid Research, 27, 89–101.PubMedGoogle Scholar
  101. Radominska-Pyrek, A., Zimniak, P., Irshaid, Y. M. et al. (1987) Glucuronidation of 6a-hydroxy bile acids by human liver microsomes. Journal of Clinical Investigation, 80, 234–241.PubMedCrossRefGoogle Scholar
  102. Raedsch, R., Stiehl, A., Rudolph, G. et al. (1983) On the ileal output and composition of bile acids in man. Gastroenterology, 84, 1391.Google Scholar
  103. Reddy, B. S. (1981) Diet and excretion of bile acids. Cancer Research, 41, 3766–3768.PubMedGoogle Scholar
  104. Reddy, B. S. and Wostmann, B. S. (1966) Intestinal disaccharidase activities in the growing germfree and conventional rats. Archives of Biochemistry and Biophysics, 113, 609–616.PubMedCrossRefGoogle Scholar
  105. Reddy, B. S. and Wynder, E. L. (1973) Large bowel carcinogenesis: fecal constituents of populations with diverse incidence rates of colon cancer. Journal of the National Cancer Institute, 50, 1437–1442.PubMedGoogle Scholar
  106. Reddy, B. S., Pleasants, J. B. and Wostmann, B. S. (1969) Effect of intestinal microflora on iron and zinc metabolism, and on activities of metalloenzymes in rats. Journal of Nutrition, 102, 101–108.Google Scholar
  107. Reddy, B. S., Weisburger, J. and Wynder E. L. (1974) Fecal beta-glucuronidase: control by diet. Science, 183, 416–417.PubMedCrossRefGoogle Scholar
  108. Riordan, S. M., McIver, C. J., Duncombe, V. M. et al. (1995) Factors influencing the 1–g 14C-D-xylose breath test for bacterial overgrowth. American Journal of Gastroenterology, 90, 1455–1460.PubMedGoogle Scholar
  109. Robben, J., Parmentier, G. and Eyssen, H. (1986) Isolation of a rat intestinal Clostridium strain producing 5a-and 5ß-bile salt 3a-sulfatase activity. Applied and Environmental Microbiology, 51, 32–38.PubMedGoogle Scholar
  110. Rolfe, R. D. (1989) Role of anaerobic bacteria in other bowel pathology in Anaerobic Infections in Humans, (eds S. M. Finegold and W. L. George), Academic Press, San Diego, CA, pp. 679–690.Google Scholar
  111. Ruddell, W. S., Axon, A. T., Findlay, J. M. et al. (1980) Effect of cimetidine on the gastric bacterial flora. Lancet, i, 672–674.Google Scholar
  112. Rutgeerts, L., Mainguet, P., Tytgat, G. et al. (1974) Enterokinase in contaminated small-bowel syndrome. Digestion, 10, 249–254.PubMedCrossRefGoogle Scholar
  113. Sacquet, E., Parquet, M., Riottot, M. et al. (1983) Intestinal absorption, excretion, and biotransformation of hyodeoxycholic acid in man. Journal of Lipid Research, 24, 604–613.PubMedGoogle Scholar
  114. Shimada, K., Bricknell, K. S. and Finegold, S. M. (1969) Deconjugation of bile acids by intestinal bacteria: review of the literature and additional studies. Journal of Infectious Diseases, 119, 273–281.PubMedCrossRefGoogle Scholar
  115. Shimoda, S. S., O’Brien, T. K. and Saunders, D. R. (1974) Fat absorption after infusing bile salts into the human small intestine. Gastroenterology, 67, 7–18.PubMedGoogle Scholar
  116. Sjövall, J. (1959) Dietary glycine and taurine on bile acid conjugation in man. Bile acids and steroids 75. Proceedings of the Society for Experimental Biology and Medicine, 100, 676–678.PubMedGoogle Scholar
  117. Stiehl, A. (1974) Bile salt sulphates in cholestasis. European Journal of Clinical Investigation, 4, 59–63.PubMedCrossRefGoogle Scholar
  118. Tabaqchali, S., Hatzioannou, J. and Booth, C. C. (1968) Bile salt deconjugation and steatorrhoea in patients with the stagnant loop syndrome. Lancet, ii, 12–16.Google Scholar
  119. Tabaqchali, S., Okubadejo, O. A., Neale, G. et al. (1966) Influence of abnormal bacterial flora on small intestine function. Proceedings of the Royal Society of Medicine, 59, 1244–1246.PubMedGoogle Scholar
  120. Takikawa, H., Otsuka, H., Beppu, T. et al. (1983) Serum concentrations of bile acid glucuronides in hepatobiliary diseases. Digestion, 27, 189–195.PubMedCrossRefGoogle Scholar
  121. Tamura, G., Gold, C., Ferro-Luzzi, A et al. (1980) Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora. Proceedings of the National Academy of Sciences of the USA, 77, 4961–4965.PubMedCrossRefGoogle Scholar
  122. Taylor, R. H., Avgerinos, A., Taylor, A. J. et al. (1981) Bacterial colonisation of the jejunum: an evaluation of five diagnostic tests (abstract). Gut, 22, A442 — A443.Google Scholar
  123. Thomas, G. P., Nakagaki, M., Hofmann, A. F. et al. (1982) A systemic marker for the rapid detection of experimental bacterial overgrowth: the ureolysis breath test (abstract). Gastroenterology, 82, 1197.Google Scholar
  124. Tomkin, G. H. and Weir, D. G. (1972) Indicanuria after gastric surgery. Quarterly Journal of Medicine, 41, 191–203.PubMedGoogle Scholar
  125. van Berge Henegouwen, G. P., Brandt, K. H., Eyssen, H. et al. (1976) Sulphated and unsulphated bile acids in serum, bile and urine of patients with cholestasis. Gut, 17, 861–869.CrossRefGoogle Scholar
  126. van der Waaij, D., Berghuis de Vries, J. M. and Lekkerkerk van der Wees, J. E. C. (1971) Colonisation resistance of the digestive tract in conventional and antibiotic-treated-mice. Journal of Hygiene (Cambridge), 69, 405–411.CrossRefGoogle Scholar
  127. van der Werf, S. D. J., van Berge Henegouwen, G. P. and van den Broeck, W. (1985) Estimation of bile acid pool sizes from their spillover into systemic blood. Journal of Lipid Research, 26, 168–174.PubMedGoogle Scholar
  128. Van Eldere, J., De Pauw, G. and Eyssen, H. J. (1987) Steroid sulfatase activity in a Peptococcus niger strain from the human intestinal microflora. Applied and Environmental Microbiology, 53, 1655–1660.PubMedGoogle Scholar
  129. Van Eldere, J., Celis, P., De Pauw G. et al. (1996) Tauroconjugation of cholic acid stimulates 7a-dehydroxylation by fecal bacteria. Applied and Environmental Microbiology, 62, 656–661.PubMedGoogle Scholar
  130. Willett, W. C., Stampfer, M. J., Colditz, B. A. et al. (1990) Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. New England Journal of Medicine, 323, 1664–1672.PubMedCrossRefGoogle Scholar
  131. Wilpart, M., Mainguet, R., Maskens, A. et al. (1983) Structure-activity relationship among biliary bile acids showing co-mutagenic activity towards 1,2–dimethylhydrazine. Carcinogenesis, 4, 1239–1241.PubMedCrossRefGoogle Scholar
  132. Wilson, F. A. (1981) Intestinal transport of bile acids. American Journal of Physiology, 241, G83 — G92.PubMedGoogle Scholar
  133. Yolton, D. R, Stanely, C. and Savage, D. C. (1971) Influence of the indigenous gastrointestinal microbial flora or duodenal alkaline phosphatase activity in mice. Infection and Immunity, 3, 768–773.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • J. Van Eldere

There are no affiliations available

Personalised recommendations