Toxicological implications of the normal microflora

  • Ian R. Rowland


In relation to its role in toxicity of chemicals and in the aetiology of cancer, the intestinal microflora can have both beneficial and detrimental influences. The participation of the microflora in toxic events is often mediated by metabolism, for example the conversion of an ingested substance into a form which is more or less toxic than the parent compound, resulting in activation or detoxification respectively.


Bile Acid Lactic Acid Bacterium Intestinal Microflora Enterohepatic Circulation Glyceryl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adlercreutz, H. (1993) Dietary lignans and isoflavonoid phytoestrogens and cancer. Kliinisk Laboratorie, 2a, 4 - 12.Google Scholar
  2. Alldrick, A. J., Flynn, J. and Rowland, I. R. (1986) Effect of plant derived flavonoids and polyphenolic acids on the activity of mutagens from cooked food. Mutation Research, 163, 225 - 232.PubMedCrossRefGoogle Scholar
  3. Bolognani, F., Rumney, C. J. and Rowland, I. R. (1997) Influence of carcinogen binding by lactic acid-producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens. Food Chemistry and Toxicology, 6, 535 - 545.CrossRefGoogle Scholar
  4. Brennan-Craddock, W. E., Mallett, A. K., Rowland, I. R. and Neale, S. (1992) Developmental changes to gut microflora metabolism in mice. Journal of Applied Bacteriology, 73, 163 - 167.PubMedCrossRefGoogle Scholar
  5. Brown, J. P. (1988) Hydrolysis of glycosides and esters, in Role of the Gut Flora in Toxicity and Cancer, (ed. I. R. Rowland ), Academic Press, London, pp. 109144.Google Scholar
  6. Bruce, W. R., Baptista, J., Che, T. et al (1982) General structure of ‘fecapentaenes’, the mutagenic substances in human feces. Naturwissenschaften, 69, 557 - 558.PubMedCrossRefGoogle Scholar
  7. Carman, R. J., van Tassell, R. L., Kingston, D. G. I. et al (1988) Conversion of IQ, a dietary pyrolysis carcinogen, to a direct-acting mutagen by normal intestinal bacteria of human. Mutation Research, 206, 335 - 342.PubMedCrossRefGoogle Scholar
  8. Cerniglia, C. E., Freeman, J. P., Franklin, W. and Pack, L. D. (1982) Metabolism of benzidine and benzidine-congener based dyes by human, monkey and rat intestinal bacteria. Biochemical and Biophysical Research Communications, 107, 1224 - 1229.PubMedCrossRefGoogle Scholar
  9. Chipman, J. K., Millburn, P. and Brooks, T. M. (1983) Mutagenicity and in vivo disposition of biliary metabolites of benzo(a)pyrene. Toxicology Letters, 17, 233 - 240.PubMedCrossRefGoogle Scholar
  10. Clarkson, T. W. (1979) General principles underlying the toxic action of metals, in Handbook on Toxicology of Metals, (eds L. Friburg, G. F. Nordbery and V. B. Vouk ), Elsevier, Amsterdam, pp. 99 - 117.Google Scholar
  11. Clinton, S. K. (1992) Dietary protein and carcinogenesis, in Nutrition, Toxicity, and Cancer, (ed. I. R. Rowland ), CRC Press, Boca Raton, FL, pp. 455 - 475.Google Scholar
  12. Cole, C. B., Fuller, R., Mallett, A. K. and Rowland, I. R. (1985) The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. Journal of Applied Bacteriology, 58, 549 - 553.CrossRefGoogle Scholar
  13. De Kok, T. M. C. M., van Faasen, A., ten Hoor, F. and Kleinjans, J. C. S. (1992) Fecapentaene excretion and fecal mutagenicity in relation to nutrient intake and fecal parameters in humans on omnivorous and vegetarian diets. Cancer Letters, 62, 11.PubMedCrossRefGoogle Scholar
  14. Deschner, E. D., Ruperto, J., Wong, G. and Newmark, H. L. (1991) Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis, 12, 1193.PubMedCrossRefGoogle Scholar
  15. Drasar, B. S. (1988) The bacterial flora of the intestine, in Role of the Gut Flora in Toxicity and Cancer, (ed. I. R. Rowland ), Academic Press, London, pp. 23 - 38.Google Scholar
  16. El-Bayoumy, K., Sharma, C., Louis, Y. M. et al (1983) The role of intestinal microflora in the metabolic reduction of 1-nitropyrene to 1-aminopyrene in conventional and germfree rats and in humans. Cancer Letters, 19, 311.PubMedCrossRefGoogle Scholar
  17. Eyssen, H. and Caenepeel, P. (1988) Metabolism of fats, bile acids and steroids, in Role of the Gut Flora in Toxicity and Cancer, (ed. I. R. Rowland ), Academic Press, London, pp. 263 - 286.Google Scholar
  18. Hill, M. J. (1988) Gut flora and cancer in humans and laboratory animals, in Role of the Gut Flora in Toxicity and Cancer, (ed. I. R. Rowland ), Academic Press, London, pp. 461 - 502.Google Scholar
  19. Hinzman, M. J., Novotny, C., Ullah, A. and Shamsuddin, A. M. (1987) Fecal mutagen fecapentaene-12 damages mammalian colon epithelial DNA. Carcinogenesis, 8, 1475.PubMedCrossRefGoogle Scholar
  20. Hirai, N., Kingston, D. G. I., van Tassell, R. L. and Wilkins, T. D. (1982) Structure elucidation of a potent mutagen from human feces. Journal of the American Chemistry Society, 104, 6149 - 6150.CrossRefGoogle Scholar
  21. Hollman P. C. H., de Vries, J. M. H., van Leeuwen, S. D. et al (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. American Journal of Clinical Nutrition, 62, 1276 - 1282.PubMedGoogle Scholar
  22. Larsen, G. L. (1988) Deconjugation of biliary metabolites by microfloral ß-glucuronidases, sulphatases and cysteine conjugate ß-lyases and their subsequent enterohepatic circulation, in Role of the Gut Flora in Toxicity and Cancer, (ed. I. R. Rowland ), Academic Press, London, pp. 79 - 107.Google Scholar
  23. Leach, S. (1988) Mechanisms of endogenous N nitrosation, in Nitrosamines Toxicology and Microbiology, (ed. M. J. Hill ), Ellis Horwood, Chichester, pp. 69 - 87.Google Scholar
  24. Levin, A. A. and Dent, J. G. (1982) Comparison of the metabolism of nitrobenzene by hepatic microsomes and cecal microflora from Fischer-344 rats in vitro and the relative importance of each in vivo. Drug Metabolism and Disposition, 10, 450 - 454.Google Scholar
  25. Lindmark, D. G. and Muller, M. (1976) Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrobial Agents and Chemotherapy, 10, 476.PubMedCrossRefGoogle Scholar
  26. MacDonald, I. A., Bokkenheuser, V. D., Winter, J. et al (1993) Degradation of steroids in the human gut. Journal of Lipid Research, 24, 675 - 700.Google Scholar
  27. Mallett, A. K. and Rowland, I. R. (1988) Factors affecting the gut microflora, in Role of the Gut Flora in Toxicity and Cancer, (ed. I. R. Rowland ), Academic Press, London, pp. 348 - 382.Google Scholar
  28. Manning, B. W., Cerniglia, C. E. and Federle, T. W. (1985) Metabolism of the benzidine-based azo dye Direct Black 38 by human intestinal microbiota. Applied and Environmental Microbiology, 50, 10.PubMedGoogle Scholar
  29. Manning, B. W., Campbell, W. L., Franklin, W. et al (1988) Metabolism of 6-nitrochrysene by intestinal microflora. Applied and Environmental Microbiology, 54, 197.PubMedGoogle Scholar
  30. Massey, R. C., Key, P. E., Mallett, A. K. and Rowland, I. R. (1988) An investigation of the endogenous formation of apparent total N-nitroso compounds in conventional microflora and germ-free rats. Food Chemistry and Toxicology, 26, 595 - 600.CrossRefGoogle Scholar
  31. Midtvedt, T. (1989) Monitoring the functional state of the microflora, in Recent Advances in Microbial Ecology, (eds T. Hattori, Y. Ishida, Y. Maruyama et al.), Japan Scientific Societies Press, Tokyo, pp. 515 - 519.Google Scholar
  32. Mirsalis, J. C., Hamm, T. E., Sherrill, J. M. and Butterworth, B. E. (1982) Role of gut flora in genotoxicity of dinitrotoluene. Nature, 295, 322 - 323.PubMedCrossRefGoogle Scholar
  33. Morotomi, M. and Mutai, M. (1986) In vitro binding of potent mutagenic pyrolyzates to intestinal bacteria. Journal of the National Cancer Institute, 77, 195 - 201.PubMedGoogle Scholar
  34. Ohgaki, H., Takayama, S. and Sugimura, T. (1991) Carcinogenicities of heterocyclic amines. Mutation Research, 259, 399-411.Google Scholar
  35. Orrhage, K., Sillerstrom, E., Gustafsson, J. A. et al (1994) Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutation Research, 311, 239 - 248.PubMedCrossRefGoogle Scholar
  36. Plummer, S. M., Grafstom, R. C., Yang, L. L. et al (1986) Fecapentaene-12 causes DNA damage and mutations in human cells. Carcinogenesis, 7, 1607 - 1609.PubMedCrossRefGoogle Scholar
  37. Reddy, B. G., Pohl, L. R. and Krishna, G. (1976) The requirement of the gut flora in nitrobenzene-induced methemoglobinemia in rats. Biochemistry and Pharmacology 25, 1119 - 1122.CrossRefGoogle Scholar
  38. Reddy, B. S., Weisburger, J. H., Narisawa, T. and Wynder, E. L. (1974) Colon carcinogenesis in germfree rats with 1,2-dimethylhydrazine and N-methyl-Nnitro-N-nitrosoguanidine. Cancer Research, 74, 2368 - 2372.Google Scholar
  39. Rowland, I. R. (1989) Metabolic profiles of intestinal floras, in Recent Advances in Microbial Ecology, (eds T. Hattori, Y. Ishida, Y. Maruyama et al.), Japan Scientific Societies Press, Tokyo, pp. 510 - 514.Google Scholar
  40. Rowland, I. R. (1995). Interaction of the gut flora with metal compounds, in Role of Gut Bacteria in Human Toxicology and Pharmacology, (ed. M. J. Hill ), Taylor & Francis, London, pp 197 - 211.Google Scholar
  41. Rowland, I. R., Mallett, A. K. and Wise, A. (1985) The effect of diet on the mammalian gut flora and its metabolic activities. CRC Critical Reviews in Toxicology, 16, 31 - 103.PubMedCrossRefGoogle Scholar
  42. Rowland, I. R., Mallett, A. K., Bearne, C. A. and Farthing, M. J. G. (1986) Enzyme activities of the hindgut microflora of laboratory animals and man. Xenobiotica, 16, 519 - 523.Google Scholar
  43. Rowland, I. R., Granli, T., Bockman, O. C. et al (1991) Endogenous N-nitrosation in man assessed by measurement of apparent total N-nitroso compound in faeces. Carcinogenesis, 12, 1395 - 1401.PubMedCrossRefGoogle Scholar
  44. Rumney, C. J. and Rowland, I. R. (1992) In vivo and in vitro models of the human colonic flora. Critical Reviews in Food Science and Nutrition, 31, 299 - 331.Google Scholar
  45. Rumney, C. J., Rowland, I. R. and O’Neill, I. K. (1993) Conversion of IQ to 7-OHIQ by gut microflora. Nutrition and Cancer, 19, 67 – 76.Google Scholar
  46. Schiffman, M. H., van Tassell, R. L., Robinson, A. et al (1989) Case control study of colorectal cancer and fecapentaene excretion. Cancer Research, 49, 1322.PubMedGoogle Scholar
  47. Serraino, M. and Thompson, L. U. (1991a) The effect of flaxseed supplementation on early risk markers for mammary carcinogenesis. Cancer Letters, 60, 135.PubMedCrossRefGoogle Scholar
  48. Serraino, M. and Thompson, L. U. (1991b) The effect of flaxseed supplementation on the initiation and promotional stages of mammary tumorigenesis. Nutrition and Cancer, 17, 153.CrossRefGoogle Scholar
  49. Serraino, M. and Thompson, L. U. (1992) Flaxseed supplementation and early markers of colon carcinogenesis. Cancer Letters, 63, 159.PubMedCrossRefGoogle Scholar
  50. Setchell, K. D. R. and Adlercreutz, H. (1988) Mammalian lignans and phyto-oestrogens. Recent studies on their formation, metabolism and biological role in health and disease, in Role of the Gut Flora in Toxicity and Cancer, (ed. I. R. Rowland ), Academic Press, London, pp. 315 - 345.Google Scholar
  51. Shamsuddin, A. M., Ullah, A., Baten, A. and Hale, E. (1991) Stability of fecapentaene-12 and its carcinogenicity in F344 rats. Carcinogenesis, 12, 601.PubMedCrossRefGoogle Scholar
  52. Van der Hoeven, J. C., Lagerweij, W. J., Bruggeman, I. M. et al. (1983) Mutagenicity of extracts of some vegetables commonly consumed in the Netherlands. Journal of Agricultural and Food Chemistry, 31, 1020.Google Scholar
  53. Venturi, M., Hambly, R. J., Glinghammar, B. et al (1997) Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis, 18, 2353.PubMedCrossRefGoogle Scholar
  54. Ward, J. M., Anjo, T., Ohannesian, L. et al (1988) Inactivity of fecapentaene-12 as a rodent carcinogen or tumor initiator. Cancer Letters, 42, 49.PubMedCrossRefGoogle Scholar
  55. Weisburger, J H., Jones, R. C., Wang, C. X. et al (1990) Carcinogenicity tests of fecapentaene-12 in mice and rats. Cancer Letters,49,89.Google Scholar
  56. Zarkovic, M., Qin, X., Nakatsuru, Y. et al (1993) Tumor promotion by fecapentaene-12 in a rat colon carcinogenesis model. Carcinogenesis, 14, 1261.PubMedCrossRefGoogle Scholar
  57. Zhang X. B. and Ohta Y. (1991) Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. Journal of Dairy Science, 74, 1477 - 1481.PubMedCrossRefGoogle Scholar
  58. Zhang X. B. and Ohta Y. (1993) Microorganisms in the gastrointestinal tract of the rat prevent absorption of the mutagen-carcinogen 3-amino-1,4-dimethyl-5Hpyrido(4,3-b)indole. Canadian Journal of Microbiology, 39, 841 - 845.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Ian R. Rowland

There are no affiliations available

Personalised recommendations