Advertisement

Overall-Design Techniques

  • Klaas-Jan de Langen
  • Johan H. Huijsing
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 520)

Abstract

In the previous chapters we have seen how to design input stages and output stages. The next step in the design of operational amplifiers consists of determining the required number of stages; for that we consider the main overall parameters of amplifiers. The main overall parameters of operational amplifiers are dc-gain and speed. The gain sets an upper limit for the low-frequencies accuracy of the feedback system in which the amplifier is applied, while speed, in terms of bandwidth, determines the accuracy at higher frequencies. Generally, increasing the number of stages improves the gain but reduces the bandwidth.

Keywords

Output Stage Phase Margin Current Mirror Input Stage Frequency Compensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Buh, G.J.G.M. Geelen, “A fast settling CMOS op amp for SC-circuits with 90-dB DC gain”, IEEE J. Solid-State Circuits, vol. SC-25, no. 12, pp. 1379–1383, Dec. 1990.Google Scholar
  2. [2]
    R. Hogervorst, S.M. Safai, J.P. Tero, J.H. Huijsing, “A Programmable Power-Efficient 3-V CMOS Rail-to-Rail Opamp with Gain Boosting for Driving Heavy Resistive Loads”, Proc. IEEE International Symposium on Circuits and Systems, Seattle, USA, pp. 1544–1547, April 30 - May 3, 1995.Google Scholar
  3. [3]
    E.M. Cherry, D.E. Hooper, Amplifier Devices and Low-pass Amplifier Design. New York: Wiley, 1968.Google Scholar
  4. [4]
    H.W. Bode, Network Analysis and Feedback Amplifier Design. New York: Van Nostrand, 1949.Google Scholar
  5. [5]
    H. Nyquist, “Regeneration Theory”, Bell Systems Technical Journal, Jan. 1932.Google Scholar
  6. [6]
    E.M. Cherry, D.E. Hooper, Amplifier Devices and Low-pass Amplifier Design. New York: Wiley, 1968.Google Scholar
  7. [7]
    R.G.H. Eschauzier and J.H. Huijsing, Frequency compensation techniques for low-power operational amplifiers. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1995.Google Scholar
  8. [8]
    M.J. Fonderie, J.H. Huijsing, Design of Low-voltage Bipolar Operational Amplifiers. Boston: Kluwer, 1993.CrossRefGoogle Scholar
  9. [9]
    K.J. de Langen, R.G.H. Eschauzier, and J.H. Huijsing, “A I-GHz Class-AB Operational Amplifier with Multipath Nested Miller Compensation for 76-dB Gain”, IEEE J. Solid-State Circuits, vol. SC-32, no. 4, pp. 488–498, April 1997. K.J. deGoogle Scholar
  10. [10]
    Langen, J.H. Huijsing, “Compact Low-Voltage Power-Efficient Operational Amplifier Cells for VLSI”, IEEE J. Solid-State Circuits, vol. SC-33, no. 10, pp. 1482–1496, Oct. 1997Google Scholar
  11. [11]
    J.E. Solomon, “The Monolithic Op Amp: A Tutorial Study”, IEEE J. Solid-State Circuits. Vol. SC-3, No. 6, pp. 314–332, Dec. 1974.CrossRefGoogle Scholar
  12. [12]
    R.J. Reay, G.T.A. Kovacs, “An Unconditionally Stable Two-Stage CMOS Amplifier, IEEE J. Solid-State Circuits, vol. SC-30, no. 5, pp. 591–594, May 1995.Google Scholar
  13. [13]
    R.G.H. Eschauzier, J.H. Huijsing, “An Operational Amplifier with Multipath Miller Zero Cancellation for RHP Zero Removal”, in Proc. ESSCIRC 1993, Editions Frontières, Gif-sur-Yvettes, France.Google Scholar
  14. [14]
    J.H. Huijsing, R.G.H. Eschauzier, “Amplifier arrangement with multipath miller zero cancellation”, U.S Patent No. 5,485,121, Jan. 16, 1996.Google Scholar
  15. [15]
    B.K. Ahuja, “An Improved Frequency Compensation Technique for CMOS Operational Amplifiers, IEEE J. Solid-State Circuits, vol. SC-18, no. 6, pp. 629633, Dec. 1983.Google Scholar
  16. [16]
    R. Hogervorst, J.H. Huijsing, Design of Low-Voltage Low-Power Operational Amplifier Cells. Dordrecht, The Netherlands: Kluwer, 1996.Google Scholar
  17. [17]
    J.H. Huijsing, “Multistage amplifier with capacitive nesting for frequency compensation”, U.S. Patent No. 4,559,502, Dec. 17, 1985.Google Scholar
  18. [18]
    J.H. Huijsing, D. Linebarger, “Low-Voltage Operational Amplifier with Rail-toRail Input and Output Ranges”, IEEE J. Solid-State Circuits, Vol SC-20, No. 6, pp. 1144–1150, Dec. 1985.Google Scholar
  19. [19]
    J.H. Huijsing and M.J. Fonderie, “Multi-stage amplifier with capacitive nesting and multi-path forward feeding for frequency compensation”, U.S Patent No. 5,155,447, Oct. 4, 1992.Google Scholar
  20. [20]
    M.J. Fonderie and J.H. Huijsing, “Operational Amplifier with 1-V Rail-to-Rail Multipath-Driven Output Stage, IEEE J. Solid-State Circuits, vol. SC-26, no. 12, pp. 1817–1824, Dec. 1991.Google Scholar
  21. [21]
    R.G.H. Eschauzier, L.P.T. Kerklaan, and J.H. Huijsing, “A 100-MHz 100-dB Operational Amplifier with Multipath Nested Miller Compensation Structure”, IEEE J. Solid-State Circuits, vol. SC-27, no. 12, pp. 1709–1717, Dec. 1992.Google Scholar
  22. [22]
    B.Y. Kamath, R.G. Meyer, P.R. Gray, “Relationship between Frequency Response and Settling Time of Operational Amplifier”, IEEE J. Solid-State Circuits, vol. SC-9, pp. 347–352, no. 6, Dec. 1974.Google Scholar
  23. [23]
    F. You, S.H.K. Embabi, E. Sanchez-Sinencio, “Multistage Amplifier Topologies with Nested G,,,-C Compensation”, IEEE J. Solid-State Circuits, vol. SC-32, no. 12, pp. 2000–2011, Dec. 1997.Google Scholar
  24. [24]
    E. Seevinck, W. de Jager, P. Buitendijk, “A Low-Distortion Output Stage with improved stability for monolithic power amplifiers”, IEEE J. Solid-State Circuits, Vol. SC-23, pp. 794–801, June 1988.Google Scholar
  25. [25]
    B.Y. Kamath, R.G. Meyer and P.R. Gray, “Relationship Between Frequency Response and Settling Time of Operational Amplifiers”, IEEE J. Solid-State Circuits, vol. SC-9, no. 6, pp. 347–352, Dec. 1974.Google Scholar
  26. [26]
    R.G.H. Eschauzier and J.H. Huijsing, Frequency compensation techniques for low-power operational amplifiers. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1995.Google Scholar
  27. [27]
    R.G.H. Eschauzier, R. Hogervorst, J.H. Huijsing, “A Programmable 1.5 V CMOS Class-AB Operational Amplifier with Hybrid Nested Miller Compensation for 120 dB Gain and 6 MHz UGF”, IEEE J. Solid-State Circuits, vol. SC-29, no. 12, pp. 1497–1504, Dec. 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Klaas-Jan de Langen
    • 1
  • Johan H. Huijsing
    • 2
  1. 1.Philips Semiconductors, Inc.SunnyvaleUSA
  2. 2.Delft University of TechnologyThe Netherlands

Personalised recommendations