Blind System Identification

  • J. K. Richardson
  • A. K. Nandi


In this chapter a comparison of blind system identification methods for linear time-invariant (LTI) systems using HOS is presented [37]. These methods [35] use only the system output data to identify the system model under the assumption that the system is driven by an independent and identically distributed (i.i.d.) non-Gaussian sequence that is unobservable.


Move Average Filter Coefficient Input Distribution ARMA Process Order Cumulants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Akaike. A new look at the statistical model identification. IEEE Transactions Automatic Control, AC-19:716–723, 1974.MathSciNetCrossRefGoogle Scholar
  2. [2]
    S. A. Alshebeili, A. N. Venetsanopoulos, and A. E. Cetin. Cumulant based identification approaches for nonminimum phase FIR systems. Proceedings of IEEE, 41:1576–1588, 1993.MATHGoogle Scholar
  3. [3]
    H. Bartelt, A. W. Lohman, and B. Wirnitzer. Phase and amplitude recovery from bispectra. Applied Optics, 23:3121–3129, 1984.CrossRefGoogle Scholar
  4. [4]
    M. Boumahdi. Blind identification using the kurtosis with applications to field data. Signal Processing, 48:205–216, 1996.MATHCrossRefGoogle Scholar
  5. [5]
    D. R. Brillinger. The identification of a particular nonlinear time series system. Biometrika, 64:509–515, 1977.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    T. W. S. Chow and G. Fei. On the identification of non-minimum phase non-gaussian MA and ARMA models using a third-order cumulant. International Journal of Electronics, 79:839–852, 1995.CrossRefGoogle Scholar
  7. [7]
    J. R. Dickie and A. K. Nandi. A comparative study of AR order selection methods. Signal Processing, 40:239–255, 1994.CrossRefGoogle Scholar
  8. [8]
    P. M. Djuric and S. M. Kay. Order selection of autoregressive models. IEEE Transactions on Signal Processing, 40:2829–2833, 1992.CrossRefGoogle Scholar
  9. [9]
    J. A. Fonollosa and J. Vidal. System identification using a linear combination of cumulant slices. Proceedings of IEEE, 41:2405–2411, 1993.MATHGoogle Scholar
  10. [10]
    G. B. Giannakis. Cumulants: A powerful tool in signal processing. Proceedings of IEEE, 75:1333–1334, 1987.CrossRefGoogle Scholar
  11. [11]
    G. B. Giannakis and J. M. Mendel. Identification of nonmimimum phase systems using higher order statistics. IEEE Transactions on Accoustics, Speech and Signal Processing, 37:360–377, 1989.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    G. B. Giannakis and A. Swami. On estimating noncausal nonminimum phase ARMA models of non-gaussian processes. IEEE Transactions on Accoustics, Speech and Signal Processing, 38(3):478–495, March 1990.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    S. M. Kay. Modern Spectral Estimation. Prentice Hall, Englewood Cliffs, New Jersey, 1988.MATHGoogle Scholar
  14. [14]
    K. Konstantinides. Threshold bounds in svd and a new iterative algorithm for order selection in ar models. IEEE Transactions on Signal Processing, 39:757–763, 1991.CrossRefGoogle Scholar
  15. [15]
    G. Liang, D. M. Wilkes, and J. A. Cadzow. ARMA model order estimation based on the eignevalues of the covariance matrix. IEEE Transactions on Signal Processing, 41:3003–3009, 1993.MATHCrossRefGoogle Scholar
  16. [16]
    K. S. Lii. Non-gaussian ARMA model identification and estimation. Proc Bus and Econ Statistics (ASA), pages 135–141, 1982.Google Scholar
  17. [17]
    K. S. Lii and M. Rosenblatt. Deconvolution and estimation of transfer function phase and coefficients for non-gaussian linear processes. Annals of Statistics, 10:1195–1208, 1982.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    K. S. Lii and M. Rosenblatt. Non-gaussian linear processes, phase and deconvolution. Statistical Signal Processing, pages 51–58, 1984.Google Scholar
  19. [19]
    K. S. Lii and M. Rosenblatt. A fourth-order deconvolution technique for non-gaussian linear processes. In P. R. Krishnaiah, editor, Multivariate Analysis VI. Elsevier, Amsterdam, The Netherlands, 1985.Google Scholar
  20. [20]
    P. Lin and S. Mao. Non-gaussian ARMA identification via higher order cumulant. Signal Processing, 33:357–362, 1993.MATHCrossRefGoogle Scholar
  21. [21]
    D. Mampel, A. K. Nandi, and K. Schelhorn. Unified approach to trimmed mean estimation and its application to bispectrum of eeg signals. Journal of the Franklin Institute, 333B:369–383, 1996.CrossRefGoogle Scholar
  22. [22]
    S. L. J. Marple. Digital Spectral Analysis with Applications. Prentice Hall, Englewood Cliffs, New Jersey, 1987.Google Scholar
  23. [23]
    J. K. Martin and A. K. Nandi. Blind system identification using second, third and fourth order cumulants. Journal of the Franklin Institute of Science, 333B:1–13, 1996.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    T. Matsuoka and T. J. Ulrych. Phase estimation using the bispectrum. Proceedings of IEEE, 72:1403–1411, 1984.CrossRefGoogle Scholar
  25. [25]
    J. M. Mendel. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. Proceedings of IEEE, 79:277–305, 1991.CrossRefGoogle Scholar
  26. [26]
    Y. J. Na, K. S. Kim, I. Song, and T. Kim. Identification of nonminimum phase FIR systems using third- and fourth-order cumulants. IEEE Transactions on Signal Processing, 43:2018–2022, 1995.CrossRefGoogle Scholar
  27. [27]
    A. K. Nandi. On the robust estimation of third-order cumulants in applications of higher-order statistics. Proceedings of IEE, Part F, 140:380–389, 1993.Google Scholar
  28. [28]
    A. K. Nandi. Blind identification of FIR systems using third order cumulants. Signal Processing, 39:131–147, 1994.MATHCrossRefGoogle Scholar
  29. [29]
    A. K. Nandi and J. A. Chambers. New lattice realisation of the predictive least-squares order selection criterion. IEE Proceedings F, 138:545–550, 1991.Google Scholar
  30. [30]
    A. K. Nandi and D. Mampel. Improved estimation of third order cumulants. FREQUENZ, 49:156–160, 1995.CrossRefGoogle Scholar
  31. [311.
    A. K. Nandi and R. Mehlan. Parameter estimation and phase reconstruction of moving average processes using third order cumulants. Mechanical Systems and Signal Processing, 8:421–436, 1994.CrossRefGoogle Scholar
  32. [32]
    C. L. Nikias. ARMA bispectrum approach to nonminimum phase systemn identification. IEEE Transactions on Accoustics, Speech and Signal Processing, 36:513–524, 1988.MATHCrossRefGoogle Scholar
  33. [33]
    C. L. Nikias. Higher-order spectral analysis. In S. S. Haykin, editor, Advances in Spectrum Analysis and Array Processing, volume I, chapter 7. Prentice Hall, Englewood Cliffs, New Jersey, 1991.Google Scholar
  34. [34]
    C. L. Nikias and H. H. Chiang. Higher-order spectrum estimation via noncausal autoregressive modeling and deconvolution. IEEE Transactions on Accoustics, Speech and Signal Processing, 36:1911–1913, 1988.MATHCrossRefGoogle Scholar
  35. [35]
    C. L. Nikias and J. M. Mendel. Signal procesing with higher-order spectra. IEEE Signal Processing Magazine, pages 10 – 37, 1993.Google Scholar
  36. [36]
    C. L. Nikias and R. Pan. ARMA modelling of fourth-order cumulants and phase estimation. Circuits, Systems and Signal Processing, 7(13):291–325, 1988.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    J. K. Richardson. Parametric modelling for linear system identification and chaotic system noise reduction. PhD thesis, University of Strathclyde, Glasgow, UK, 1996.Google Scholar
  38. [38]
    J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.MATHCrossRefGoogle Scholar
  39. [39]
    J. Rissanen. A predictive least-squares principle. I M A J. Math. Control Inform., 3:211–222, 1986.MATHCrossRefGoogle Scholar
  40. [40]
    G. Schwarz. Estimation of the dimension of a model. Annals of Statistics, 6:461–464, 1978.MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    L. Srinivas and K. V. S. Hari. FIR system identification using higher order cumulants — a generalised approach. IEEE Transaction on Signal Processing, 43:3061–3065, 1995.CrossRefGoogle Scholar
  42. [42]
    A. G. Stogioglou and S. McLaughlin. MA parameter estimation and cumulant enhancement. IEEE Transactions on Signal Processing, 44:1704–1718, 1996.CrossRefGoogle Scholar
  43. [43]
    A. Swami and J. M. Mendel. ARMA parmaeter estimation using only output cumulants. IEEE Transactions on Accoustics, Speech and Signal Processing, 38:1257–1265, 1990.MathSciNetCrossRefGoogle Scholar
  44. [44]
    I. The MathWorks. HOSA toolbox for use with MATLAB.Google Scholar
  45. [45]
    J. K. Tugnait. Identification of non-minimum phase linear stochastic systems. Automatica, 22:457–464, 1986.MATHCrossRefGoogle Scholar
  46. [46]
    J. K. Tugnait. Identification of linear stochastic systems via second- and fourth-order cumulant matching. IEEE Transactions on Information Theory, 33:393–407, 1987.MATHCrossRefGoogle Scholar
  47. [47]
    J. K. Tugnait. Approaches to FIR system identification with noisy data using higher order statistics. IEEE Transactions on Accoustics, Speech and Signal Processing, 38:1307–1317, 1990.MATHCrossRefGoogle Scholar
  48. [48]
    J. K. Tugnait. New results on FIR system identification using higher order statistics. IEEE Transactions on Signal Processing, 39:2216–2221, 1991.CrossRefGoogle Scholar
  49. [49]
    X. Zhang and Y. Zhang. FIR system identification using higher order statistics alone. IEEE Transactions on Signal Processing, 42:2854–2858, 1994.CrossRefGoogle Scholar
  50. [50]
    Y. Zhang, D. Hatzinakos, and A. N. Venetsanopoulos. Bootstrapping techniques in the estimation of higher-order cumulants from short data records. Proceedings of the International Conference of Accoustics, Speech and Signal Processing, IV:200–203, 1993.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • J. K. Richardson
  • A. K. Nandi

There are no affiliations available

Personalised recommendations