Skip to main content

Abstract

The objective of equalisation is to design a system that optimally removes the distortion that an unknown channel induces on the transmitted signal. This is in effect inverse system modelling, an architecture that is well-known in adaptive filtering theory. The cascade of channel and equaliser should constitute an identity operation, with the exception of a time delay and linear phase shift being allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. Bello. Characterization of randomly time-invariant linear channels. IEEE Transactions on Communications Systems, CS-11:360–393, 1963.

    Google Scholar 

  2. A. Benveniste and M. Goursat. Blind equalizers. IEEE Transactions on Communications, COM-32:871–883, 1984.

    Article  Google Scholar 

  3. A. Benveniste and G. Ruget. Robust identification of a nonminimum phase system: blind adjustment of a linear equalizer in data communications. IEEE Transactions on Automated Control, pages 385–399, 1980.

    Google Scholar 

  4. D. R. Brillinger. Time Series: Data Analysis and Theory. Holt, Rinehart and Winston, 1974.

    Google Scholar 

  5. J. J. Bussgang. Crosscorrelation functions of amplitude-distorted Gaussian signals. Technical Report 216, M.I.T., 1952.

    Google Scholar 

  6. Y. Chen, C. L. Nikias, and J. G. Proakis. Crimno: Criterion with memory nonlinearity for blind equalization. In Proceedings of International Signal Processing Workshop on Higher-Order Statistics, pages 57–90, 1991.

    Google Scholar 

  7. A. Chevreutil and P. Loubaton. Blind second-order identification of second-order FIR channels: Forced cyclo-stationarity and structured subspace method. IEEE Signal Processing Letters, 4:204–206, 1997.

    Article  Google Scholar 

  8. Z. Ding. On convergence analysis of fractionally spaced adaptive blind equalizers. IEEE Transactions Signal Processing, 1997.

    Google Scholar 

  9. Z. Ding, I. B. Collings, and R. W. Liu. A new blind zeroforcing equalizer for multichannel systems. In Proceedings of ICASSP’98, Seattle, Washington, 1998.

    Google Scholar 

  10. I. Fijalkow, F. L. de Victoria, and C. R. Johnson. Fractionaly spaced equalization with CMA. In Digital Signal Processing Workshop, Yosemite, California, 1994.

    Google Scholar 

  11. I. Fijalkow, C. E. Manlove, and C. R. Johnson. Adaptive fractionally spaced blind CMA equalization: Excess MSE. IEEE Transactions on Signal Processing, SP-46:227–231, 1998.

    Article  Google Scholar 

  12. G. J. Foschini. Equalizing without altering and detecting data. Bell Systems Technical Journal, 64:1885–1911, 1985.

    Google Scholar 

  13. L. E. Franks. Signal Theory. Prentice Hall, Englewood Cliffs, New Jersey, 1969.

    MATH  Google Scholar 

  14. W. A. Gardner. Introduction to Random Processes with Applications to Signals and Systems. Macmillan, 1985.

    Google Scholar 

  15. W. A. Gardner. Exploiting spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 8(2): 14–36, 1991.

    Article  Google Scholar 

  16. W. A. Gardner. A new method of channel identification. IEEE Transactions on Communication, COM-39:813–817, 1991.

    Article  Google Scholar 

  17. W. A. Gardner and L. E. Franks. Characterization of cyclostationary random signal processes. IEEE Transactions on Information Theory, IT-21:4–14, 1975.

    Article  Google Scholar 

  18. G. B. Giannakis. Filterbanks for blind channel identification and equalization. IEEE Signal Processing Letters, 4:184–189, 1997.

    Article  Google Scholar 

  19. D. N. Godard. Self recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communications, COM-28.1867–1875, 1980.

    Article  Google Scholar 

  20. D. Hatzinakos and C. L. Nikias. Blind equalization using a tricepstrum based algorithm. IEEE Transactions on Communications, COM-39:669–682, 1991.

    Article  Google Scholar 

  21. S. Haykin. Adaptive Filter Theory. Prentice-Hall, Upper Saddle River, New Jersey, 3 edition, 1996.

    Google Scholar 

  22. F. Herrmann and A. K. Nandi. Low computation blind super-exponential equaliser. Accepted for publication in IEE Electronics Letters, 1998.

    Google Scholar 

  23. I. F. J R Treichler and C. R. J. Jr. Fractionally spaced equalizers. IEEE Signal Processing Magazine, 13(3):65–81, 1996.

    Article  Google Scholar 

  24. B. Jellonek, D. Boss, and K. D. Kammeyer. Generalized eigenvector algorithm for blind equalization. EURASIP Signal Processing, pages 237–264, 1997.

    Google Scholar 

  25. B. Jellonek and K. D. Kammeyer. A closed-form solution to blind equalization. EURASIP Signal Processing, 36:251–259, 1994.

    Article  Google Scholar 

  26. J. F. Leblanc, I. Fijalkow, and C. R. Johnson. Blind adaptive fractionally spaced CMA equalizer error surface characterizations: Effect of source distributions. In IEEE Proceedings of ICASSP’96, Princeton, New Jersey, 1996. Y. Li and Z. Ding. Convergence analysis of finite length blind adaptive equalizers. IEEE Transactions on Signal Processing, SP-43:2120–2129, 1995.

    Google Scholar 

  27. O. Macchi and E. Eweda. Convergence analysis of self-adaptive equalizers. IEEE Transactions on Information Theory, IT-30:161–176, 1984.

    Article  Google Scholar 

  28. J. E. Mazo. Analysis of decision-directed equalizer convergence. Bell Systems Technical Journal, 59:1857–1876, 1980.

    MathSciNet  Google Scholar 

  29. K. A. Meriam, P. Duhamel, J. F. Cardoso, L. Loubaton, S. Mayrar-gue, E. Moulines, and D. Slock. Prediction error methods for time-domain blind identification of multichannel FIR filters. In Proceedings of ICASSP’95, pages 1968–1971, Detroit, Michigan, 1995.

    Google Scholar 

  30. E. Moulines, J. F. Cardoso, and S. Mayrargue. Subspace methods for blind identification of multichannel FIR filters. IEEE Transactions on Signal Processing, SP-43:516–525, 1995.

    Article  Google Scholar 

  31. R. Pan and C. R. Nikias. The complex cepstrum of higher order cumulants and nonminimum phase identification. IEEE Transactions on Acoustics and Speech Signal Processing, ASSP-36:186–205, 1988.

    Article  Google Scholar 

  32. G. Picchi and G. Prati. Blind equalization and carrier recovery using a ‘stop-and-go’ decision-directed algorithm. IEEE Transactions on Communications, COM-35:877–887, 1987.

    Article  Google Scholar 

  33. B. Porat and B. Friedlander. Blind equalization of digital communications channels using higher-order moments. IEEE Transactions on Signal Processing, SP-39:522–526, 1991.

    Article  Google Scholar 

  34. J. G. Proakis. Digital Communication. McGraw-Hill, 3 edition, 1995.

    Google Scholar 

  35. Y. Sato. A method of self-recovering equalization for multilevel amplitude-modulation systems. IEEE Transactions on Communications, COM-23:679–682, 1975.

    Article  Google Scholar 

  36. E. Serpedin and G. S. Giannakis. Blind channel identification and equalization with modulation-induced cyclostationarity. IEEE Transactions on Signal Processing,, SP-46:1930–1944, 1998.

    Article  Google Scholar 

  37. O. Shalvi and E. Weinstein. New criteria for blind deconvolution of non-minimum phase systems (channels). IEEE Transactions on Information Theory, IT-36,:312–321, 1990.

    Article  Google Scholar 

  38. O. Shalvi and E. Weinstein. Super-exponential methods for blind de-convolution. IEEE Transactions on Information Theory, IT-39:504–519, 1993.

    Article  Google Scholar 

  39. B. Sklar. Digital Communications. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

    MATH  Google Scholar 

  40. D. T. M. Slock. Blind fractionally-spaced equalization, perfect-reconstruction filter banks and multichannel linear prediction. In Proceedings of ICASSP’94, pages 585–588, Adelaide, Australia, 1994.

    Google Scholar 

  41. D. T. M. Slock and C. B. Papadias. Further results on blind identification and equalization in multiple FIR channels. In Proceedings of ICASSP’95, pages 1964–1967, Detroit, Michigan, 1995.

    Google Scholar 

  42. L. Tong, G. Xu, and T. Kailath. Fast blind equalization via antenna arrays. In Proceedings of ICASSP’93, pages 272–275, 1993.

    Google Scholar 

  43. L. Tong, G. Xu, and T. Kailath. Blind identification and equalization based on second-order statistics: A time domain approach. IEEE Transactions on Information Theory, IT-40:340–349, 1994.

    Article  Google Scholar 

  44. L. Tong, G. Xu, and T. Kailath. Blind identification and equalization based on second-order statistics: A frequency domain approach. IEEE Transactions on Information Theory, IT-41:329–334, 1995.

    Article  Google Scholar 

  45. J. R. Treichler and B. G. Agee. A new approach to multipath correction of constant modulus signals. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-31:459–471, 1983.

    Article  Google Scholar 

  46. M. K. Tsatsanidis and G. B. Giannakis. Transmitter induced cyclosta-tionarity for blind channel equalization. IEEE Transactions on Signal Processing, SP-45:1785–1794, 1997.

    Article  Google Scholar 

  47. J. K. Tugnait. On fractionally spaced blind adaptive equalization under symbol timing offsets using godard and related equalizers. IEEE Transactions on Signal Processing, SP-44:1817–1821, 1996.

    Article  Google Scholar 

  48. H. L. Van-Trees. Detection, Estimation and Modulation Theory, Part I. Wiley, New York, 1968.

    MATH  Google Scholar 

  49. G. Xu, H. Liu, L. Tong, and T. Kailath. A least-squares approach to blind channel identification. IEEE Transactions on Signal Processing, SP-43:2982–2993, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anfinsen, S.N., Herrmann, F., Nandi, A.K. (1999). Blind Signal Equalisation. In: Nandi, A.K. (eds) Blind Estimation Using Higher-Order Statistics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2985-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2985-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5078-9

  • Online ISBN: 978-1-4757-2985-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics