Advertisement

Blind Signal Equalisation

  • S. N. Anfinsen
  • F. Herrmann
  • A. K. Nandi
Chapter

Abstract

The objective of equalisation is to design a system that optimally removes the distortion that an unknown channel induces on the transmitted signal. This is in effect inverse system modelling, an architecture that is well-known in adaptive filtering theory. The cascade of channel and equaliser should constitute an identity operation, with the exception of a time delay and linear phase shift being allowed.

Keywords

Mean Square Error Blind Deconvolution Constant Modulus Algorithm Blind Equalisation Nonminimum Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. A. Bello. Characterization of randomly time-invariant linear channels. IEEE Transactions on Communications Systems, CS-11:360–393, 1963.Google Scholar
  2. [2]
    A. Benveniste and M. Goursat. Blind equalizers. IEEE Transactions on Communications, COM-32:871–883, 1984.CrossRefGoogle Scholar
  3. [3]
    A. Benveniste and G. Ruget. Robust identification of a nonminimum phase system: blind adjustment of a linear equalizer in data communications. IEEE Transactions on Automated Control, pages 385–399, 1980.Google Scholar
  4. [4]
    D. R. Brillinger. Time Series: Data Analysis and Theory. Holt, Rinehart and Winston, 1974.Google Scholar
  5. [5]
    J. J. Bussgang. Crosscorrelation functions of amplitude-distorted Gaussian signals. Technical Report 216, M.I.T., 1952.Google Scholar
  6. [6]
    Y. Chen, C. L. Nikias, and J. G. Proakis. Crimno: Criterion with memory nonlinearity for blind equalization. In Proceedings of International Signal Processing Workshop on Higher-Order Statistics, pages 57–90, 1991.Google Scholar
  7. [7]
    A. Chevreutil and P. Loubaton. Blind second-order identification of second-order FIR channels: Forced cyclo-stationarity and structured subspace method. IEEE Signal Processing Letters, 4:204–206, 1997.CrossRefGoogle Scholar
  8. [8]
    Z. Ding. On convergence analysis of fractionally spaced adaptive blind equalizers. IEEE Transactions Signal Processing, 1997.Google Scholar
  9. [9]
    Z. Ding, I. B. Collings, and R. W. Liu. A new blind zeroforcing equalizer for multichannel systems. In Proceedings of ICASSP’98, Seattle, Washington, 1998.Google Scholar
  10. [10]
    I. Fijalkow, F. L. de Victoria, and C. R. Johnson. Fractionaly spaced equalization with CMA. In Digital Signal Processing Workshop, Yosemite, California, 1994.Google Scholar
  11. [11]
    I. Fijalkow, C. E. Manlove, and C. R. Johnson. Adaptive fractionally spaced blind CMA equalization: Excess MSE. IEEE Transactions on Signal Processing, SP-46:227–231, 1998.CrossRefGoogle Scholar
  12. [12]
    G. J. Foschini. Equalizing without altering and detecting data. Bell Systems Technical Journal, 64:1885–1911, 1985.Google Scholar
  13. [13]
    L. E. Franks. Signal Theory. Prentice Hall, Englewood Cliffs, New Jersey, 1969.MATHGoogle Scholar
  14. [14]
    W. A. Gardner. Introduction to Random Processes with Applications to Signals and Systems. Macmillan, 1985.Google Scholar
  15. [15]
    W. A. Gardner. Exploiting spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 8(2): 14–36, 1991.CrossRefGoogle Scholar
  16. [16]
    W. A. Gardner. A new method of channel identification. IEEE Transactions on Communication, COM-39:813–817, 1991.CrossRefGoogle Scholar
  17. [17]
    W. A. Gardner and L. E. Franks. Characterization of cyclostationary random signal processes. IEEE Transactions on Information Theory, IT-21:4–14, 1975.CrossRefGoogle Scholar
  18. [18]
    G. B. Giannakis. Filterbanks for blind channel identification and equalization. IEEE Signal Processing Letters, 4:184–189, 1997.CrossRefGoogle Scholar
  19. [19]
    D. N. Godard. Self recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communications, COM-28.1867–1875, 1980.CrossRefGoogle Scholar
  20. [20]
    D. Hatzinakos and C. L. Nikias. Blind equalization using a tricepstrum based algorithm. IEEE Transactions on Communications, COM-39:669–682, 1991.CrossRefGoogle Scholar
  21. [21]
    S. Haykin. Adaptive Filter Theory. Prentice-Hall, Upper Saddle River, New Jersey, 3 edition, 1996.Google Scholar
  22. [22]
    F. Herrmann and A. K. Nandi. Low computation blind super-exponential equaliser. Accepted for publication in IEE Electronics Letters, 1998.Google Scholar
  23. [23]
    I. F. J R Treichler and C. R. J. Jr. Fractionally spaced equalizers. IEEE Signal Processing Magazine, 13(3):65–81, 1996.CrossRefGoogle Scholar
  24. [24]
    B. Jellonek, D. Boss, and K. D. Kammeyer. Generalized eigenvector algorithm for blind equalization. EURASIP Signal Processing, pages 237–264, 1997.Google Scholar
  25. [25]
    B. Jellonek and K. D. Kammeyer. A closed-form solution to blind equalization. EURASIP Signal Processing, 36:251–259, 1994.CrossRefGoogle Scholar
  26. [26][27]
    J. F. Leblanc, I. Fijalkow, and C. R. Johnson. Blind adaptive fractionally spaced CMA equalizer error surface characterizations: Effect of source distributions. In IEEE Proceedings of ICASSP’96, Princeton, New Jersey, 1996. Y. Li and Z. Ding. Convergence analysis of finite length blind adaptive equalizers. IEEE Transactions on Signal Processing, SP-43:2120–2129, 1995.Google Scholar
  27. [28]
    O. Macchi and E. Eweda. Convergence analysis of self-adaptive equalizers. IEEE Transactions on Information Theory, IT-30:161–176, 1984.CrossRefGoogle Scholar
  28. [29]
    J. E. Mazo. Analysis of decision-directed equalizer convergence. Bell Systems Technical Journal, 59:1857–1876, 1980.MathSciNetGoogle Scholar
  29. [30]
    K. A. Meriam, P. Duhamel, J. F. Cardoso, L. Loubaton, S. Mayrar-gue, E. Moulines, and D. Slock. Prediction error methods for time-domain blind identification of multichannel FIR filters. In Proceedings of ICASSP’95, pages 1968–1971, Detroit, Michigan, 1995.Google Scholar
  30. [31]
    E. Moulines, J. F. Cardoso, and S. Mayrargue. Subspace methods for blind identification of multichannel FIR filters. IEEE Transactions on Signal Processing, SP-43:516–525, 1995.CrossRefGoogle Scholar
  31. [32]
    R. Pan and C. R. Nikias. The complex cepstrum of higher order cumulants and nonminimum phase identification. IEEE Transactions on Acoustics and Speech Signal Processing, ASSP-36:186–205, 1988.CrossRefGoogle Scholar
  32. [33]
    G. Picchi and G. Prati. Blind equalization and carrier recovery using a ‘stop-and-go’ decision-directed algorithm. IEEE Transactions on Communications, COM-35:877–887, 1987.CrossRefGoogle Scholar
  33. [34]
    B. Porat and B. Friedlander. Blind equalization of digital communications channels using higher-order moments. IEEE Transactions on Signal Processing, SP-39:522–526, 1991.CrossRefGoogle Scholar
  34. [35]
    J. G. Proakis. Digital Communication. McGraw-Hill, 3 edition, 1995.Google Scholar
  35. [36]
    Y. Sato. A method of self-recovering equalization for multilevel amplitude-modulation systems. IEEE Transactions on Communications, COM-23:679–682, 1975.CrossRefGoogle Scholar
  36. [37]
    E. Serpedin and G. S. Giannakis. Blind channel identification and equalization with modulation-induced cyclostationarity. IEEE Transactions on Signal Processing,, SP-46:1930–1944, 1998.CrossRefGoogle Scholar
  37. [38]
    O. Shalvi and E. Weinstein. New criteria for blind deconvolution of non-minimum phase systems (channels). IEEE Transactions on Information Theory, IT-36,:312–321, 1990.CrossRefGoogle Scholar
  38. [39]
    O. Shalvi and E. Weinstein. Super-exponential methods for blind de-convolution. IEEE Transactions on Information Theory, IT-39:504–519, 1993.CrossRefGoogle Scholar
  39. [40]
    B. Sklar. Digital Communications. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.MATHGoogle Scholar
  40. [41]
    D. T. M. Slock. Blind fractionally-spaced equalization, perfect-reconstruction filter banks and multichannel linear prediction. In Proceedings of ICASSP’94, pages 585–588, Adelaide, Australia, 1994.Google Scholar
  41. [42]
    D. T. M. Slock and C. B. Papadias. Further results on blind identification and equalization in multiple FIR channels. In Proceedings of ICASSP’95, pages 1964–1967, Detroit, Michigan, 1995.Google Scholar
  42. [43]
    L. Tong, G. Xu, and T. Kailath. Fast blind equalization via antenna arrays. In Proceedings of ICASSP’93, pages 272–275, 1993.Google Scholar
  43. [44]
    L. Tong, G. Xu, and T. Kailath. Blind identification and equalization based on second-order statistics: A time domain approach. IEEE Transactions on Information Theory, IT-40:340–349, 1994.CrossRefGoogle Scholar
  44. [45]
    L. Tong, G. Xu, and T. Kailath. Blind identification and equalization based on second-order statistics: A frequency domain approach. IEEE Transactions on Information Theory, IT-41:329–334, 1995.CrossRefGoogle Scholar
  45. [46]
    J. R. Treichler and B. G. Agee. A new approach to multipath correction of constant modulus signals. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-31:459–471, 1983.CrossRefGoogle Scholar
  46. [47]
    M. K. Tsatsanidis and G. B. Giannakis. Transmitter induced cyclosta-tionarity for blind channel equalization. IEEE Transactions on Signal Processing, SP-45:1785–1794, 1997.CrossRefGoogle Scholar
  47. [48]
    J. K. Tugnait. On fractionally spaced blind adaptive equalization under symbol timing offsets using godard and related equalizers. IEEE Transactions on Signal Processing, SP-44:1817–1821, 1996.CrossRefGoogle Scholar
  48. [49]
    H. L. Van-Trees. Detection, Estimation and Modulation Theory, Part I. Wiley, New York, 1968.MATHGoogle Scholar
  49. [50]
    G. Xu, H. Liu, L. Tong, and T. Kailath. A least-squares approach to blind channel identification. IEEE Transactions on Signal Processing, SP-43:2982–2993, 1995.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • S. N. Anfinsen
  • F. Herrmann
  • A. K. Nandi

There are no affiliations available

Personalised recommendations