Advertisement

1-V Log-Domain Filters

  • Christian Enz
  • Manfred Punzenberger

Abstract

The basic principle of log-domain circuits is introduced and its suitability for the realization of low-voltage (LV) and low-power (LP) continuous-time filters is established. The main limitations of practical implementations including noise are discussed and the advantage of the combination of companding and class AB operation is highlighted. Examples of BiCMOS and standard digital CMOS realizations operating at supply voltages as low as 1 V are presented. A comparison between classical gm-C and log-domain continuous-time filters is drawn on the basis of the power consumption per pole and edge frequency normalized to the dynamic range. This comparison shows that log-domain filters are more power saving than more traditional filters.

Keywords

Bias Current Current Mirror Voltage Swing Weak Inversion Noise Excess Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. A. Vittoz, “Future of Analog in the VLSI Environment,” Proc. IEEE Int. Symp. Circuits Syst., pp. 1372-1375, May 1990.Google Scholar
  2. [2]
    E. A. Vittoz, “Low-Power Design: Ways to Approach the Limits,” Proc. IEEE Int. Symp. Circuits Syst., pp. 14-18, May 1994.Google Scholar
  3. [3]
    E. A. Vittoz, “Low-Power/Low-Voltage Limitations and Prospects in Analog Design,” in Advances in Analog Circuit Design Workshop, Eds. R. S. van de Plassche, W. M. C. Sansen and J. H. Huijsing, Boston, Kluwer Academic Publishers, 1994, first published in Eindhoven, The Netherlands, March 29–31, 1994.Google Scholar
  4. [4]
    R. Castello and P. R. Gray, “Performance Limitation in Switched-Capacitor Filters,” IEEE Trans. Circuits Syst., vol. CAS-32, pp. 865–876, Sept. 1985.Google Scholar
  5. [5]
    C. C. Enz and E. A. Vittoz, “CMOS Low-power analog circuit design,” in Emerging Technologies, Tutorial for 1996 International Symposium on Circuits & Systems, Edited by R. Cavin and W. Liu, IEEE Service Center, Piscataway, NJ, 1996, chapter 1.2, pp. 79-133, ISBN 0-7803-3328-4.Google Scholar
  6. [6]
    R. Castello, F. Montecchi, F. Rezzi and A. Baschirotto, “Low-Voltage Analog Filters,” IEEE Trans. Circuits Syst. I, vol. CAS-42, Nov. 1995.Google Scholar
  7. [7]
    E. A. Vittoz, Micropower techniques, in Design of MOS VLSI circuits for telecommunications, edited by J. Franca and Y. Tsividis, Prentice-Hall, 1994.Google Scholar
  8. [8]
    B. Gilbert, “Translinear circuits: a proposed classification,” Electron. Lett., vol. 11, pp. 14–15, 1975.CrossRefGoogle Scholar
  9. [9]
    Y. Tsividis, V. Gopinathan, and L. Tóth, “Companding in signal processing,” Electron. Lett., vol. 26, pp. 1331–1332, Aug. 1990.CrossRefGoogle Scholar
  10. [10]
    E. M. Blumenkrantz, “The analog floating point technique,” IEEE Symp. on Low-Power Electronics Dig. of Tech. Papers, pp. 72-73, Oct. 1995.Google Scholar
  11. [11]
    Y. Tsividis and D. Li, “Current-mode filters using syllabic companding,” Proc. IEEE Int. Symp. Circuits Syst., pp. 121-124, May 1996.Google Scholar
  12. [12]
    Y. Tsividis, “On Linear Integrators and Differentiators Using Instantaneous Companding”, IEEE Trans. Circuits Syst. II, vol. CAS-42, pp. 561–564, Aug. 1995.CrossRefGoogle Scholar
  13. [13]
    Y. Tsividis, “General approach to signal processors employing companding,” Electron. Lett, vol. 31, pp. 1549–1550, Aug. 1995; errata, Electron. Lett, vol. 32, p. 857, Apr. 25, 1996.CrossRefGoogle Scholar
  14. [14]
    Y. Tsividis, “Externally Linear, Time-Invariant Systems and Their Application to Companding Signal Processors,” IEEE Trans. Circuits Syst. II, vol. CAS-44, pp. 65–85, Feb. 1997.CrossRefGoogle Scholar
  15. [15]
    Y. Tsividis, “Instantaneously Companding Integrators,” Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp. 477–480, June 1997.Google Scholar
  16. [16]
    C. C. Enz,” Low-Power Log-Domain Continuous-Time Filters: an Introduction”, ESS-CIRC’95 Workshop on LP and LV, Sept. 1995.Google Scholar
  17. [17]
    R. W. Adams, “Filtering in the log domain,” Preprint 1470, presented at 63rd Audio Eng. Soc. Conf., New York, May 1979.Google Scholar
  18. [18]
    E. Seevinck, “Companding current-mode integrator: A new circuit principle for continuous-time monolithic filters,” Electron. Lett, vol. 26, pp. 2046–2047, Nov. 1990.CrossRefGoogle Scholar
  19. [19]
    D. R. Frey, “A general class of current mode filters,” Proc. IEEE Int. Symp. Circuits Syst, pp. 1435-1438, May 1993.Google Scholar
  20. [20]
    D. R. Frey, “Log domain filtering: An approach to current mode filtering,” IEE Proc., pt. G, vol. 140, pp. 406–416, Dec. 1993.Google Scholar
  21. [21]
    D. R. Frey, “Current mode class AB second order filter,” Electron. Lett, Vol. 30, pp. 205–206, Feb. 1994.CrossRefGoogle Scholar
  22. [22]
    D. R. Frey, “A 3.3 V electronically tunable active filter usable to beyond 1 GHz,” Proc. IEEE Int. Symp. Circuits Syst., pp. 493-496, May 1994.Google Scholar
  23. [23]
    D. R. Frey, “Exponential State space filters: A generic current mode design strategy,” IEEE Trans. Circuits Syst. I, vol. CAS-43, pp. 34–42, Jan. 1996.CrossRefGoogle Scholar
  24. [24]
    D. R. Frey, “Log-Domain Filtering for RF Applications;” IEEE Journal of Solid-State Circuits, vol. SC-31, pp. 1468–1475, Oct. 1996.CrossRefGoogle Scholar
  25. [25]
    D. Frey, “State Space Synthesis of Log-Domain Filters,” Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp. 481–484, June 1997.Google Scholar
  26. [26]
    D. Perry and G. W. Roberts, “Log-domain filters based on LC Ladder synthesis,” Proc. IEEE Int. Symp. Circuits Syst., pp. 311-314, May 1995.Google Scholar
  27. [27]
    J. Mulder, W. A. Serdijn, A. C. van der Woerd, A. H. M. van Roermund, “A Syllabic Companding Translinear Filter,” Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp. 101–104, June 1997.Google Scholar
  28. [28]
    M. El-Gamal and G. W. Roberts, “LC Ladder-Based Synthesis of Log-Domain Bandpass Filters,” Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp. 105–108, June 1997.Google Scholar
  29. [29]
    V. W. Leung, M. El-Gamal and G. W. Roberts, “Effects of Transistor Nonidealities on Log-Domain Filters,” Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp. 109–112, June 1997.Google Scholar
  30. [30]
    M. El-Gamal, V. W. Leung and G. W. Roberts, “Balanced Log-Domain Filters for VHF Applications,” Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp. 493–496, June 1997.Google Scholar
  31. [31]
    E. M. Drakakis, A. J. Payne and C. Toumazou, “Log-Domain Filters, Translinear Circuits and the Bernouilli Cell,” Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp. 501–504, June 1997.Google Scholar
  32. [32]
    R. Fox, M. Nagarajan and J. Harris, “Practical Design of Single-Ended Log-Domain Filter Circuits,” Proc. IEEE Int. Symp. Circuits Syst., pp. 341–344, vol. 1, June 1997.Google Scholar
  33. [33]
    M. Punzenberger and C. C. Enz, “Low-Voltage Companding Current-Mode Integrators”, Proc. IEEE Int. Symp. Circuits Syst., pp. 2112-2115, May 1995.Google Scholar
  34. [34]
    M. Punzenberger and C. C. Enz, “A new 1.2 V BiCMOS log-domain integrator for companding current-mode filters,” Proc. IEEE Int. Symp. Circuits Syst., pp. 125-128, May 1996.Google Scholar
  35. [35]
    M. Punzenberger and C. C. Enz, “A 1.2 V BiCMOS Companding Current-Mode Integrator for S-A Modulators,” Proc. IEEE Int. Conf. on Electronics, Circuits, and Syst., vol. 1, pp. 235–238, Oct. 1996.Google Scholar
  36. [36]
    M. Punzenberger and C. C. Enz, “A 1.2 V BiCMOS Class AB Log-Domain Filter,” Int. Solid-State Circ. Conf. Dig. of Tech. Papers, pp. 56-57, Feb. 1997.Google Scholar
  37. [37]
    M. Punzenberger and C. C. Enz, “A 1.2 V Low-power BiCMOS Class AB Log-Domain Filters,” IEEE Journal of Solid-State Circuits, vol. SC-32, pp. 1968–1978, Dec. 1997.CrossRefGoogle Scholar
  38. [38]
    M. Punzenberger and C. C. Enz, “Noise in instantaneous companding filters,” Proc. IEEE Int. Symp. Circuits Syst., pp. 337–340, vol. 1, June 1997.Google Scholar
  39. [39]
    M. Punzenberger and C. C. Enz, “A Low-Voltage Power and Area Efficient BiCMOS Log-Domain Filter,” Proc. of the European Solid-State Circ. Conf, pp. 256-259, Sept. 1997.Google Scholar
  40. [40]
    M. Punzenberger and C. Enz, “A Compact Low-Power BiCMOS Log-Domain Filter,” to be published in the IEEE Journal of Solid-State Circuits, July 1998.Google Scholar
  41. [41]
    G. van Ruymbeke, C. Enz, F. Krummenacher and M. Declercq “A BiCMOS Programmable Continuous-Time Filter using Voltage-Companding”, Proc. IEEE Custom Integrated Circuits Conf, pp.93-96, May 1996.Google Scholar
  42. [42]
    G. van Ruymbeke, C. C. Enz, F. Krummenacher and M. Declercq, “A BiCMOS Programmable Continuous-Time Filter Using Image-Parameter Method Synthesis and Voltage-Companding Technique,” IEEE Journal of Solid-State Circuits, vol. SC-32, pp. 377–387, March 1997.CrossRefGoogle Scholar
  43. [43]
    C. C. Enz, M. Punzenberger and D. Python, “Low-Voltage Log-Domain Signal Processing in CMOS and BiCMOS,” Proc. IEEE Int. Symp. Circuits Syst., pp. 489–492, vol. 1, June 1997.Google Scholar
  44. [44]
    C. Toumazou, J. Ngarmnil, and T. S. Lande, “Micropower log-domain filter for electronic cochlea,” Electron. Lett., vol. 30, pp. 1839–1841, Oct. 1994.CrossRefGoogle Scholar
  45. [45]
    C. Toumazou, J. Ngarmnil, and T. S. Lande, “Micropower log-domain filter for electronic cochlea,” Proc. of the European Solid-State Circ. Conf., pp. 86–89, Sept. 1995.Google Scholar
  46. [46]
    D. Python, R. Fried, C. C. Enz, “A 1.2 V Companding Current-Mode Integrator for Standard Digital CMOS Processes,” Proc. IEEE Int. Conf. on Electronics, Circuits, and Syst., vol. 1, pp. 231–234, Oct. 1996.Google Scholar
  47. [47]
    R. Fried, D. Python and C. C. Enz, “Compact log-domain current-mode integrator with high transconductance-to-bias current ratio,” Electron. Lett., vol. 32, pp. 952–953, May 1996.CrossRefGoogle Scholar
  48. [48]
    C. C. Enz, F. Krummenacher and E. A. Vittoz, “An Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications,” Analog Integrated Circuits and Signal Processing, 8, pp. 83–114, July 1995.CrossRefGoogle Scholar
  49. [49]
    R. Fried and C. C. Enz, “Bulk driven MOST transconductor with extended linear range,” Electron. Lett, vol. 32, pp. 638–639, March 1996.CrossRefGoogle Scholar
  50. [50]
    R. Fried and C. C. Enz, “CMOS parametric current amplifier,” Electron. Lett., vol. 32, pp. 1249–1250, July 1996.CrossRefGoogle Scholar
  51. [51]
    R. Fried and C. C. Enz, “MOST implementation of the Gilbert sin(x) Shaper,” Electron. Lett, vol. 32, pp. 2073–2074, Oct. 1996.CrossRefGoogle Scholar
  52. [52]
    R. Fried and C. C. Enz, “Simple and Accurate Voltage Adder/Subtractor,” Electron. Lett, vol. 33, pp. 944–945, May 1997.CrossRefGoogle Scholar
  53. [53]
    Y. Tsividis and J. O. Voorman, Eds., Integrated Continuous-Time Filters. Piscataway: IEEE Press, 1993.Google Scholar
  54. [54]
    J. O. Voorman, W. H. A. Brüls, P. J. Barth, “Integration of Analog Filters in a Bipolar Process,” IEEE Journal of Solid-State Circuits, vol. SC-17, no. 4, pp. 713–722, Aug. 1982, also reprinted in [53].CrossRefGoogle Scholar
  55. [55]
    J. Mulder, A. C. van der Woerd, W. A. Serdijn, A. H. M. van Roermund, “General Current-Mode Analysis Method for Translinear Filters,” IEEE Trans. Circuits Syst. II, vol. CAS-44, pp. 193–197, March 1997.Google Scholar
  56. [56]
    J. Mulder, A. C. van der Woerd, W. A. Serdijn and A. H. M. van Roermund, “Application of the Back Gate in MOS Weak Inversion Translinear Circuits,” IEEE Trans. Circuits Syst. I, vol. CAS-42, Nov. 1995.Google Scholar
  57. [57]
    M. V. D. Gevel and J. C. Kuenen, “√x Circuit Based on a Novel, Back-Gate-Using Multiplier,” Electron. Lett, vol. 30, pp. 183–184, March 1994.CrossRefGoogle Scholar
  58. [58]
    F. Yang, C. C. Enz and G. van Ruymbeke, “Design of Low-Power & Low-Voltage Log-Domain Filters,” Proc. IEEE Int. Symp. Circuits Syst, pp. 117-120, May 1996.Google Scholar
  59. [59]
    R. H. Zele and D. J. Allstot, “Low-Power Continuous-Time Filters,” IEEE Journal of Solid-State Circuits, vol. SC-31, no. 2, pp. 157–168, Feb. 1996.CrossRefGoogle Scholar
  60. [60]
    F. Rezzi, A. Baschirotto and R. Castello, “A 3V 12-55 MHz BiCMOS Continuous-Time Filter with Pseudo-Differential Structure,”, pp. 74-77, Lille, 1995.Google Scholar
  61. [61]
    F. Yang and C. C. Enz, “A Low-Distortion BiCMOS 7th-Order Bessel Filter Operating at 2.5V Supply,” IEEE Journal of Solid-State Circuits,vol. SC-31, pp. 321–330, March 1996.CrossRefGoogle Scholar
  62. [62]
    W. A. Serdijn, M. Broest, J. Mulder, A. C. van der Woerd, A. H. M. van Roermund, “A Low-Voltage Ultra-Low-Power Translinear Integrator for Audio Filter Applications,” IEEE Journal of Solid-State Circuits, vol. SC-32, no. 4, pp. 577–581, April 1997.CrossRefGoogle Scholar
  63. [63]
    M. Koyama, T. Arai, H. Tanimoto, and Y. Yoshida, “A 2.5V Active Low-Pass Filter Using All-n-p-n Gilbert Cells with a 1-Vp-p Linear Input Range,” IEEE Journal of Solid-State Circuits, vol. SC-28, pp. 1246–1252, Dec. 1993.CrossRefGoogle Scholar
  64. [64]
    A. Kaiser, “A Micropower CMOS Continous-Time Low-Pass Filter,” IEEE Journal of Solid-State Circuits, vol. SC-24, no. 3, pp. 736–743, June 1989.CrossRefGoogle Scholar
  65. [65]
    H. Tanimoto, M. Koyama and Y. Yoshida, “Realization of IV Active Filter Using a Linearization Technique Employing Plurality of Emitter-Coupled Pairs,” IEEE Journal of Solid-State Circuits, vol. SC-26, pp. 937–945, July 1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Christian Enz
    • 1
  • Manfred Punzenberger
    • 2
  1. 1.Rockwell Semiconductor SystemsNewport BeachUSA
  2. 2.Electronics LaboratorySwiss Federal Institute of Technology (EPFL)LausanneSwitzerland

Personalised recommendations