Advertisement

Multifilamentary Superconducting Composites

  • Krishan K. Chawla

Abstract

Certain materials lose all resistance to the flow of electricity when cooled to within a few degrees of absolute zero. The phenomenon is called superconductivity, and the materials exhibiting this phenomenon are called superconductors. Superconductors can carry a high current density without any electrical resistance; thus, they can generate the very high magnetic fields that are common in high-energy physics and fusion energy programs. Other fields of application include magnetic levitation vehicles, magneto hydro-dynamic generators, rotating machines, and magnets in general. Kammer-lingh Onnes discovered the phenomenon of superconductivity in 1911. Since then, some 27 elements and hundreds of solid solutions or compounds have been discovered that show this phenomenon of total disappearance of electrical resistance below a critical temperature, T c Figure 9.1 shows the variation of electrical resistivity with temperature of a normal Metal and that of a superconducting material, Nb3Sn. The critical temperature is a characteristic constant of each material. Kunzler et al. (1961) discovered the high critical field capability of Nb3Sn and thus opened up the field of practical, high-field superconducting magnets. It turns out that most of the superconductors came into the realm of economic viability when techniques were developed to put the superconducting species in the form of ultra-thin filaments in a copper matrix; see the following discussion.

Keywords

Critical Current Density Flux Line Copper Matrix Oxide Superconductor Conventional Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.K. Chawla (1973a). Metallography, 6, 55.CrossRefGoogle Scholar
  2. K.K. Chawla (1973b). Philos. Mag., 28, 401.CrossRefGoogle Scholar
  3. M. Cyrot and D. Pavuna (1992). Introduction to Superconductivity and High T c Materials, World Scientific, Singapore, p. 202.Google Scholar
  4. K. Heine, N. Tenbrink, and M. Thoener (1989). Appl. Phys. Lett., 55, 2441.CrossRefGoogle Scholar
  5. H. Hillmann (1981). In Superconductor Materials Science, Plenum, New York, p. 275.Google Scholar
  6. S. Jin (1991). J. Miner. Met.,. Mater. Soc., 43, 7.CrossRefGoogle Scholar
  7. A.R. Kaufmann and J.J. Pickett (1970). Bull. Am. Phys. Soc., 15, 833.Google Scholar
  8. J.E. Kunzler, E. Bachler, F.S.L. Hsu, and J.E. Wernick (1961). Phys. Rev. Lett., 6, 89.CrossRefGoogle Scholar
  9. D. Larbalestier (1996). Science, 274, 736.CrossRefGoogle Scholar
  10. T. Luhman and M. Suenaga (1976). Appl. Phys. Lett., 29, 1.CrossRefGoogle Scholar
  11. L.J. Masur, E.R. Podtburg, C.A. Craven, A. Otto, Z.L. Wang, and D.M. Kroeger (1994). J. Miner. Met.,. Mater. Soc., 46, 28.CrossRefGoogle Scholar
  12. T. Matsuda, K. Harada, H. Kasai, O. Kamimura, and A. Tonomura (1996). Science, 271 Google Scholar
  13. E. Nembach and K. Tachikawa (1979). J. Less Common Met., 19, 1962.Google Scholar
  14. K. Osamura, S.S. Oh, and S. Ochiai (1990). Superconductor Sci. & Tech., 3, 143.CrossRefGoogle Scholar
  15. R. Roberge and S. Foner (1980). In Filamentary A15 Superconductors, Plenum Press, New York, p. 241.CrossRefGoogle Scholar
  16. R.H. Sandhage, G.N. Riley, Jr., and W.L. Carter (1991). J. Miner. Met.,. Mater. Soc., 21, 25.Google Scholar
  17. R.M. Scanian, W.A. Fietz, and E.F. Koch (1975). J. Appl. Phys., 46, 2244.CrossRefGoogle Scholar
  18. K. Tachikawa (1970). In Proceedings of the 3rd ICEC, Illife Science and Technology Publishing, Surrey, UK.Google Scholar
  19. M. Tomsic and A.K. Sarkar (1997). Superconductor Industry, 10, 18.Google Scholar
  20. N. Uno, N. Enomoto, H. Kikuchi, K. Matsumoto, M. Mimura, and M. Nakajima (1991). Adv. Supercond. 2, p. 341.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Krishan K. Chawla
    • 1
  1. 1.Materials and EngineeringThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations