Ceramic Matrix Composites

  • Krishan K. Chawla


Ceramic materials in general have a very attractive package of properties: high strength and high stiffness at very high temperatures, chemical inertness, low density, and so on. This attractive package is marred by one deadly flaw, namely, an utter lack of toughness. They are prone to catastrophic failures in the presence of flaws (surface or internal). They are extremely susceptible to thermal shock and are easily damaged during fabrication and/ or service. It is therefore understandable that an overriding consideration in ceramic matrix composites (CMCs) is to toughen the ceramics by incorporating fibers in them and thus exploit the attractive high-temperature strength and environmental resistance of ceramic materials without risking a catastrophic failure. It is worth pointing out at the very outset that there are certain basic differences between CMCs and other composites. The general philosophy in nonceramic matrix composites is to have the fiber bear a greater proportion of the applied load. This load partitioning depends on the ratio of fiber and matrix elastic moduli, E f /E m . In nonceramic matrix composites, this ratio can be very high, while in CMCs, it is rather low and can be as low as unity. Another distinctive point regarding CMCs is that because of limited matrix ductility and generally high fabrication temperature, thermal mismatch between components has a very important bearing on CMC performance.


Carbon Fiber Fiber Volume Fraction Thermal Shock Resistance Ceramic Matrix Ceramic Matrix Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Aveston, G.A. Cooper, and A. Kelly (1971). In The Properties of Fibre Composites, IPC Science & Technology Press, Guildford, UK, p. 15.Google Scholar
  2. S.J. Barclay, J.R. Fox, and H.K. Bowen (1987). J. Mater Sci., 22, 4403.CrossRefGoogle Scholar
  3. P.F. Becher and G.C. Wei (1984). Comm. Am. Ceram. Soc., 67, 259.Google Scholar
  4. W. Beier and S. Markmann (Dec, 1997). Adv. Mater. & Processes, 152, 37.Google Scholar
  5. R.T. Bhatt (1986). NASA TN-88814. Google Scholar
  6. R.T. Bhatt (1990). J. Mater. Sci., 25, 3401.CrossRefGoogle Scholar
  7. A.R. Boccaccini, D.H. Pearce, J. Janczak, W. Beier and C.B. Ponton (1997a). Materials Science and Technology, 13, 852.CrossRefGoogle Scholar
  8. A.R. Boccaccini, C.B. Ponton and K.K. Chawla (1997b). Mat. Sci. Eng. A241, 142.Google Scholar
  9. R.K. Bordia and R. Raj (1988). J. Am. Ceram. Soc., 71, 302.CrossRefGoogle Scholar
  10. J.J. Brennan and K.M. Prewo (1982). J. Mater. Sci., 17, 2371.CrossRefGoogle Scholar
  11. C.V. Burkland, W.E. Bustamante, R. Klacka, and J.-M. Yang (1988). In Whisker- and Fiber-Toughened Ceramics, ASM Intl., Materials Park, OH, p. 225.Google Scholar
  12. W.C. Carter, E.P. Butler, and E.R. Fuller, Jr. (1991). Scripta Metall. et Mater., 25, 579–584.CrossRefGoogle Scholar
  13. K.K. Chawla (1993). Ceramic Matrix Composites, Chapman & Hall, London.Google Scholar
  14. K.K. Chawla, M.K. Ferber, Z.R. Xu, and R. Venkatesh (1993a). Mater. Sci. & Eng., A162, 35–44.CrossRefGoogle Scholar
  15. K.K. Chawla, Z.R. Xu, A. Hlinak, and Y.-W. Chung (1993b). In Advances in Ceramic-Matrix Composites, Am. Ceram. Soc., p. 725–736.Google Scholar
  16. N. Chawla, P.K. Liaw, E. Lara-Curzio, R.A. Lowden, and M.K. Ferber (1994). In High Performance Composites: Commonalty of Phenomena, The Minerals, Metals & Materials Society, Warrendale, PA, p. 291.Google Scholar
  17. A.H. Chokshi and J.R. Porter (1985). J. Am. Ceram. Soc., 68, cl44.CrossRefGoogle Scholar
  18. J. Cook and J.E. Gordon (1964). Proc R Soc., London, A228, 508.Google Scholar
  19. J.A. Cornie, Y.-M. Chiang, D.R. Uhlmann, A. Mortensen, and J.M. Collins (1986). Am. Ceram. Soc Bull., 65, 293.Google Scholar
  20. R.W. Davidge (1979). Mechanical Behavior of Ceramics, Cambridge University Press, Cambridge, p. 116.Google Scholar
  21. L.C. De Jonghe, M.N. Rahaman, C.H. Hseuh (1986). Acta Met.,., 39, 1467.Google Scholar
  22. J.A. DiCarlo (June 1985). J. Met.,., 37, 44.Google Scholar
  23. A.G. Evans, (1985). Mater. Sci. Eng., 71, 3.CrossRefGoogle Scholar
  24. A.G. Evans and D.B. Marshall (1989). Acta Met., 37, 2567.CrossRefGoogle Scholar
  25. E. Fitzer and R. Gadow (1986). Am. Ceram. Soc. Bull., 65, 326.Google Scholar
  26. E. Fitzer and D. Hegen (1979). Angew. Chem., 91, 316.CrossRefGoogle Scholar
  27. E. Fitzer and J. Schlichting (1980). Z. Werkstofftech., 11, 330.CrossRefGoogle Scholar
  28. C.W. Forrest, P. Kennedy, and J.V. Shennan (1972). Special Ceramics, British Ceramic Research Association, Stoke-on-Trent, UK, Vol.5, p. 99.Google Scholar
  29. V. Gupta (1991). MRS Bulletin, XVI-4, 39.Google Scholar
  30. V. Gupta, J. Yuan, and D. Martinez (1993), J. Amer. Ceram. Soc., 76, 305.CrossRefGoogle Scholar
  31. B. Harris (1980). Met.,. Sci., 14, 351.Google Scholar
  32. M.Y. He and J.W. Hutchinson (1989). J. App. Mecj, 56, 270.CrossRefGoogle Scholar
  33. M. Herron and S.H. Risbud (1986). Am. Ceram. Soc. Bull, 65, 342.Google Scholar
  34. W.B. Hillig (1988). J. Amer. Ceram. Soc., 71, C-96.CrossRefGoogle Scholar
  35. J. Homeny, W.L. Vaughn, and M.K. Ferber (1987). Amer. Cer. Soc. Bull., 67, 333.Google Scholar
  36. J.W. Hutchinson and H.M. Jensen (1990). Mech. Maths., 9, 139–163.CrossRefGoogle Scholar
  37. P.D. Jero (1990). Am. Ceram. Soc. Bull., 69, 484.Google Scholar
  38. P.D. Jero and R.J. Kerans (1990). Scripta. Metall., 24, 2315–2318.CrossRefGoogle Scholar
  39. P.D. Jero, R.J. Kerans, and T.A. Parthasarathy (1991). J. Am. Ceram. Soc., 74, 2793–2801.CrossRefGoogle Scholar
  40. B. Kellett and F.F. Lange (1989). J. Am. Ceram. Soc., 67, 369.CrossRefGoogle Scholar
  41. R.J. Kerans and T.A. Parthasarathy (1991). J. Am. Ceram. Soc., 74, 1585–1596.CrossRefGoogle Scholar
  42. D. Lewis (1991). In Metal Matrix Composites: Processing and Interfaces, Academic Press, Boston, p. 121.CrossRefGoogle Scholar
  43. H.Y. Liu, N. Claussen, M.J. Hoffmann, and G. Petzow (1991). J. Eur.Ceram. Soc., 7, 41.CrossRefGoogle Scholar
  44. T.J. Mackin, P.D. Warren, and A.G. Evans (1992). Acta Metall. Mater., 40, 1251–1257.CrossRefGoogle Scholar
  45. D.R. Mumm and K.T. Faber (1992). Ceram. Eng. & Sci. Proc., 7–8, 70–77.Google Scholar
  46. S. Nourbakhsh, F.L. Liang, and H. Margolin (1990). Met.,. Trans. A, 21A, 213.CrossRefGoogle Scholar
  47. S. Nourbakhsh and H. Margolin (1990). Met.,. Trans. A, 20A, 2159.Google Scholar
  48. D.C. Phillips (1983). In Fabrication of Composites, North-Holland, Amsterdam, p. 373.Google Scholar
  49. D.C. Phillips, R.A.J. Sambell, and D.H. Bowen (1972). J. Mater. Sci., 7, 1454.CrossRefGoogle Scholar
  50. K.M. Prewo (1982). J. Mater. Sci., 17, 3549.CrossRefGoogle Scholar
  51. K.M. Prewo (1986). In Tailoring Multiphase and Composite Ceramics, Vol. 20, Materials Science Research, Plenum Press, New York, p. 529.CrossRefGoogle Scholar
  52. K.M. Prewo and JJ. Brennan (1980). J. Mater. Sci., 15, 463.CrossRefGoogle Scholar
  53. K.M. Prewo, J.J. Brennan, and G.K. Layden (1986). Am. Ceram. Soc. Bull., 65, 305.Google Scholar
  54. M.N. Rahaman and L.C. De Jonghe (1987). J. Am. Ceram. Soc., 70, C-348.CrossRefGoogle Scholar
  55. R. Raj and R.K Bordia (1989). Acta Met.,., 32, 1003.CrossRefGoogle Scholar
  56. M. Ruhle and A.G. Evans (1988). Mater. Sci. and Eng., A107, 187.Google Scholar
  57. M.D. Sacks, H.W. Lee, and O.E. Rojas (1987). J. Am. Ceram. Soc., 70, C-348.Google Scholar
  58. R.A.J. Sambell, D.H. Bowen, and D.C. Phillips (1972). J. Mater. Sci., 7, 773.Google Scholar
  59. R.A.J. Sambell, D.C. Phillips, and D.H. Bowen (1974). In Carbon Fibres: Their Place in Modern Technology, the Plastics Institute, London, p. 16/9.Google Scholar
  60. L.J. Schioler and J.J. Stiglich (1986). Am. Ceram. Soc. Bull., 65, 289.Google Scholar
  61. P.D. Shalek, J.J. Petrovic, G.F. Hurley, and F.D. Gac (1986). Amer. Ceram. Soc. Bull., 65, 351.Google Scholar
  62. B.F. Sorensen (1993). Scripta Metall. et Mater., 28, 435–439.CrossRefGoogle Scholar
  63. D.P. Stinton, A.J. Caputo, and R.A. Lowden (1986). Am. Ceram. Soc. Bull., 65, 347.Google Scholar
  64. T.N. Tiegs and P.F. Becher (1986). In Tailoring Multiphase and Composite Ceramics, Plenum Press, New York, p. 639.CrossRefGoogle Scholar
  65. A.W. Urquhart (1991). Mater. Sci. Eng., A144, 75.Google Scholar
  66. R. Venkatesh and K.K. Chawla (1992). J. Mater. Sci., 11, 650–652.Google Scholar
  67. G.C. Wei and P.F. Becher (1984). Am. Ceram. Soc. Bull., 64, 298.Google Scholar
  68. P.A. Willer Met, R.A. Pett, and T.J. Whalen (1978). “Development and Processing of Injection-Moldable Reaction-Sintered SiC Compositions,” Amer. Ceram. Soc. Bull., 57, 744.Google Scholar
  69. M. Yang and R. Stevens (1990). J. Mater. Sci., 25, 4658.CrossRefGoogle Scholar

Suggested Reading

  1. K.K. Chawla (1993). Ceramic Matrix Composites, Chapman & Hall, London.Google Scholar
  2. K.S. Mazdiyasni (Ed.) (1990). Ceramic Fiber Reinforced Composites, Noyes Pub., Park Ridge, NJ.Google Scholar
  3. D.C. Phillips (1983). “Fiber Reinforced Ceramics,” In Fabrication of Ceramics, vol. 4 of Handbook of Composites, North-Holland, Amsterdam, p. 373.Google Scholar
  4. R. Warren (Ed.) (1991). Ceramic Matrix Composites, Blackie & Sons, Glasgow, UK.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Krishan K. Chawla
    • 1
  1. 1.Materials and EngineeringThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations