Advertisement

Macromechanics of Composites

  • Krishan K. Chawla

Abstract

Laminated fibrous composites are made by bonding together two or more laminae. The individual unidirectional laminae or plies are oriented in such a manner that the resulting structural component has the desired mechanical and/or physical characteristics in different directions. Thus, one exploits the inherent anisotropy of fibrous composites to design a composite material with appropriate properties.

Keywords

Laminate Composite Free Edge Laminate Plate Interlaminar Stress Independent Elastic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Christensen (1979). Mechanics of Composite Materials, John Wiley & Sons, New York.Google Scholar
  2. I.M. Daniel and O. Ishai (1994). Engineering Mechanics of Composite Materials, Oxford University Press, New York.Google Scholar
  3. J.C. Halpin (1984). Primer on Composite Materials, second ed., Technornic, Lancaster, PA.Google Scholar
  4. R.M. Jones (1975). Mechanics of Composite Materials, Scripta Book Co., Washington, DC.Google Scholar
  5. A.E.H. Love (1952). A Treatise on the Mathematical Theory of Elasticity, fourth ed., Dover, New York.Google Scholar
  6. R.L. McCullough (1971). Concepts of Fiber-Resin Composites, Marcel Dekker, New York, p. 16.Google Scholar
  7. J.F. Nye (1969). Physical Properties of Crystals, Oxford University Press, London.Google Scholar
  8. D.W. Oplinger, B.S. Parker, and F.P. Chiang (1974). Exp. Mech., 14, 747.CrossRefGoogle Scholar
  9. N.J. Pagano and R.B. Pipes (1971). J. Composite Mater., 5, 50.CrossRefGoogle Scholar
  10. R.B. Pipes and I.M. Daniel (1971). J. Composite Mater., 5, 255.CrossRefGoogle Scholar
  11. R.B. Pipes, B.E. Kaminski, and N.J. Pagano (1973). In Analysis of the Test Methods for High Modulus Fibers and Composites, ASTM STP 521, ASTM, Philadelphia, p. 218.CrossRefGoogle Scholar
  12. R.B. Pipes and N.J. Pagano (1970). J. Composite Mater., 4, 538.Google Scholar
  13. R.B. Pipes and N.J. Pagano (1974). J. Appl. Mech, 41, 668.CrossRefGoogle Scholar
  14. S. Timoshenko and J.N. Goodier (1951). Theory of Elasticity, McGraw-Hill, New York.Google Scholar
  15. S.W. Tsai and H.T. Hahn (1980). Introduction to Composite Materials, Technomic, Westport, CT.Google Scholar
  16. J.M. Whitney (1973). In Analysis of the Test Methods for High Modulus Fibers and Composites, ASTM SW 521, ASTM, Philadelphia, p. 167.CrossRefGoogle Scholar

Suggested Reading

  1. L.R. Calcote (1969). Analysis of Laminated Composite Structures, Van Nostrand Reinhold, New York.Google Scholar
  2. I.M. Daniel and O. Ishai (1994). Engineering Mechanics of Composite Materials, Oxford University Press, New York.Google Scholar
  3. C.T. Herakovich (1998). Mechanics of Fibrous Composites, John Wiley & Sons, New York.Google Scholar
  4. M.W. Hyer (1997). Stress Analysis of Fiber-Reinforced Composite Materials, McGraw-Hill, New York.Google Scholar
  5. R.M. Jones (1975). Mechanics of Composite Materials, Scripta Book Co., Washington, DC.Google Scholar
  6. S.W. Tsai and H.T. Hahn (1980). Introduction to Composite Materials, Technomic, Westport, CT.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Krishan K. Chawla
    • 1
  1. 1.Materials and EngineeringThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations