Automorphisms and Finite Inner Maps

  • Reinhold Remmert
Part of the Graduate Texts in Mathematics book series (GTM, volume 172)

Abstract

The group Aut G and the semigroup Hol G, which were already studied in 8.4, are central to Sections 1 and 2. For bounded domains G, every sequence f n ∈ Hol G has a convergent subsequence (Montel); this fact has surprising consequences. For example, in H. Cartan’s theorem, one can read off from the convergence behavior of the sequence of iterates of a map f : G → G whether f is an automorphism of G. In 2.5, as an application of Cartan’s theorem, we give a homological characterization of automorphisms.

Keywords

Shrinkage Coherence Nite Prool 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [A]
    Rens, R.: Topologies for homeomorphism groups, Amer. Joarn. Math. 68, 593–610 (1946).CrossRefGoogle Scholar
  2. [B]
    Bieberbach, L.: Über einen Satz des Herrn Carathéodory, Nachr. Königl. Gesellschaft Wiss. Göttingen, Math.-phys. Kl., 552–560 (1913).Google Scholar
  3. [C]
    Cartan, H.: OEuvres 1, Springer, 1979. 9. Automorphisms and Finite Inner MapsGoogle Scholar
  4. [F1]
    Fatou, P.: Sur les equations fonctionelles, Bull. Soc. Math. France 48, 208–314 (1920).MathSciNetGoogle Scholar
  5. [F2]
    Fatou, P.: Sur les fonctions holomorphes et bornées à l’intérieur d’un cercle, Bull. Soc. Math. France 51, 191–202 (1923).MathSciNetMATHGoogle Scholar
  6. [GR]
    Grauert, H. and R. Remmert: Coherent Analytic Sheaves, Grdl. math. Wiss. 265, Springer, 1984.Google Scholar
  7. [Heil]
    Heins, M.H.: A note on a theorem of Radio concerning the (1, m) conformal maps of a multiply-connected region into itself, Bull. Amer. Math. Soc. 47, 128–130 (1941).MathSciNetCrossRefGoogle Scholar
  8. [Heil]
    admits onto itself, Bull. Amer. Math. Soc. 52, 454–457 (1946).MathSciNetCrossRefGoogle Scholar
  9. [HuJ]
    Huber, H.: Über analytische Abbildungen von Ringgebieten in Ringgebiete, Comp. Math. 9, 161–168 (1951).MATHGoogle Scholar
  10. [K]
    Koebe, P.: Abhandlungen zur Theorie der konformen Abbildung, I. Die Kreisabbildung des allgemeinsten einfach und zweifach zusammenhängenden schlichten Bereichs und die Ränderzuordnung bei konformer Abbildung, Journ. reine angew. Math. 145, 177–223 (1915).MATHGoogle Scholar
  11. [R]
    Radô, T.: Zur Theorie der mehrdeutigen konformen Abbildungen, ActaLitt. Sci. Szeged 1,55–64 (1922–23).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Reinhold Remmert
    • 1
  1. 1.Mathematisches InstitutWestfälische Wilhelms—Universität MünsterMünsterGermany

Personalised recommendations