Pharmacology of Amphetamines

  • Timothy E. Wilens
  • Thomas J. Spencer


Amphetamines are among the oldest compounds available in the United States. Amphetamine (AMPH) was first synthesized in 1887 and found in the 1920s to be a potential alternative to ephedrine which had been running in short supply for the treatment of asthma (Alles, 1928). It was available without prescription to the public for the treatment of asthma first as a benzedrine inhaler and then as benzedrine tablets (Goff & Ciraulo, 1991). Similarly, methamphetamine was synthesized and made available to the public at approximately the same time.


Growth Hormone Transporter Protein Mandelic Acid Attention Deficit Disorder Presynaptic Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alles, G. A. (1928). The comparative physiological action of phenylethanolamine. Journal of Pharmacology and Experimental Therapeutics, 32, 121–128.Google Scholar
  2. Angrist, B., Corwin, J., & Bartlik, B. (1987). Early pharmacokinetics and clinical effects of oral d-amphetamine in normal subjects. Biological Psychiatry, 22, 1357–1368.CrossRefGoogle Scholar
  3. Anngard, E., Gunne, L. M., & Jonsson, L. (1970). Pharmacokinetic and clinical studies on amphetamine dependent subjects. European Journal of Clinical Pharmacology, 3, 3–11.CrossRefGoogle Scholar
  4. Anthony, J. C., & Helzer, J. E. (1991). Syndromes of drug abuse and dependence. In L. Robins & D. Regier (Eds.), Psychiatric disorders in America (pp. 116–154 ). New York: Free Press.Google Scholar
  5. Arnold, E. B., Molinoff, P., & Rutledge, C. (1977). The release of endogenous norepinephrine and dopamine in cerebral cortex by amphetamine. Journal of Pharmacology and Experimental Therapeutics, 202, 544–557.PubMedGoogle Scholar
  6. Axelrod, J., Whitby, L., & Hutting, G. (1961). Effect of psychotropic drugs on the uptake of 3H-norepinephrine by tissues. Science, 133, 383–384.PubMedCrossRefGoogle Scholar
  7. Balster, R. L., & Schuster, C. R. (1973). A comparison of d-amphetamine, I-amphetamine, and methamphetamine self administration in rhesus monkeys. Pharmacology, Biochemistry and Behavior, 1, 67–71.CrossRefGoogle Scholar
  8. Bannon, M. J., Granneman, J. G., & Kapatos, G. (1995). The dopamine transporter. In E E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 179–188 ). New York: Raven.Google Scholar
  9. Barnes, D. M. (1988). New data intensify the agony over ecstasy. Science, 239, 864–866.PubMedCrossRefGoogle Scholar
  10. Bell, D. S. (1970). The experimental reproduction of amphetamine psychosis. Archives of General Psychiatry, 127, 1170–1175.Google Scholar
  11. Berger, U. V, Gu, X. E, & Azmitita, E. C. (1992). The substitute amphetamines 3,4-methylenedioxymethamphetamine, methamphetamine, p-chloroamphetamine and fenfluramine induce 5-hydroxytryptamine release via a common mechanism blocked by fluoxetine and cocaine. European Journal of Pharmacology, 215, 153–160.PubMedCrossRefGoogle Scholar
  12. Biel, J. M. (1970). Structure-activity relationships of amphetamine and derivatives. In E. Costa & S. Garattini (Eds.), Amphetamines and related compounds (pp. 3–19 ). New York: Raven.Google Scholar
  13. Birmaher, B., Greenhill, L. L., Cooper, T. B., Fried J., & Maminski, B. (1989). Sustained release methylphenidate: Pharmacokinetic studies in ADDH males. Journal of the American Academy of Child and Adolescent Psychiatry, 28, 768–772.PubMedCrossRefGoogle Scholar
  14. Braestrup, C. (1977). Biochemical differentiation of amphetamine vs methylphenidate and nomifensine in rats. Journal of Pharmacy and Pharmacology, 29, 463–470.PubMedCrossRefGoogle Scholar
  15. Butcher, S. P., Liptrot, J., & Aburthnott, G. W. (1991). Characterization of methylphenidate and nomifensive induced dopamine release in rat striatum using in vivo brain microdialysis. Neuroscience Letters, 122, 245–248.PubMedCrossRefGoogle Scholar
  16. Caldwell, J., & Sever, P. S. (1974). The biochemical pharmacology of abused drugs. Clinical Pharmacology Therapeutics, 16, 625–638.Google Scholar
  17. Chiueh, C. D., & Moore, K. E. (1975). D-Amphetamine induced release of newly synthesized and stored dopamine from the caudate nucleus in vivo. Journal of Pharmacology and Experimental Therapeutics, 1975, 642–653.Google Scholar
  18. Climko, R. P., Roehrich, H., Sweeney, D. R., & Al-Razi, J. (1987). Ecstasy: A review of MDMA and MDA. International Journal of Psychiatry in Medicine, 16, 359–372.CrossRefGoogle Scholar
  19. Cole, R. L., Konradi, C., Douglass, J., & Hyman, S. E. (1995). Neuronal adaptation to amphetamine and dopamine: Molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron, 14, 813–823.PubMedCrossRefGoogle Scholar
  20. Collier, C. P., Soldin, S. J., Swanson, J. M., MacLeod, S. M., Weinberg, F., & Rochefort, J. G. (1985). Pemo- line pharmacokinetics and long term therapy in children with attention deficit disorder and hyperactivity. Clinical Pharmacokinetics, 10, 269–278.PubMedCrossRefGoogle Scholar
  21. Elia, J. (1991). Stimulants and antidepressant pharmacokinetics in hyperactive children. Psychopharmacology Bulletin, 27, 411–415.PubMedGoogle Scholar
  22. Elia, J., Borcherding, B. G., Potter, W. Z., Mefford, I. N., Rapoport, J. L., & Keysor, C. S. (1990). Stimulant drug treatment of hyperactivity: Biochemical correlates. Clinical Pharmacology Therapeutics, 48, 57–66.CrossRefGoogle Scholar
  23. Fawcett, J., & Busch, K. A. (1995). Stimulants in psychiatry. In A. Schatzberg & C. Nemeroff (Eds.), Textbook of psychopharmacology (pp. 417–435 ). Washington, DC: American Psychiatric Association.Google Scholar
  24. Gawin, F. H., & Kleber, H. D. (1986). Abstinence symptomatology and psychiatric diagnoses in cocaine abusers: Clinical observations. Archives of General Psychiatry, 43, 107–113.PubMedCrossRefGoogle Scholar
  25. Gawin, F. H., Khalsa, M. E., & Ellinwood, E. (1994). Stimulants. In M. Galanter & H. D. Kleber (Eds.), Textbook of substance abuse treatment (pp. 111–139 ). Washington, DC: American Psychiatric Press.Google Scholar
  26. Giros, B., Jaber, M.. Jones, S., Wrightman, M., Caron, M. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature, 379, 606–612.Google Scholar
  27. Glennon, R. A. (1987). Psychoactive phenylisopropylamines. In H. Y. Meltzer (Ed.), Psychopharmacology: The third generation of progress (pp. 1627–1634 ). New York: Raven.Google Scholar
  28. Goff, D. C., & Ciraulo, D. A. (1991). Stimulants. In D. A. Ciraulo & R. I. Shader (Eds.), Clinical manual of chemical dependence (pp. 233–257 ). Washington, DC: American Psychiatric Press.Google Scholar
  29. Greenhill, L. L., & Osman, B. B. (1991). Ritalin: Theory and patient management. New York: Lieben.Google Scholar
  30. Greenhill, L. L., Puig-Antich, J., Novacenko, H., Solomon, M., Anghern, C., Florea, J., Goetz, R., Fiscina, B., & Sachar, E. J. (1984). Prolactin, growth hormone and growth responses in boys with attention deficit disorder and hyperactivity treated with methylphenidate. Journal of the American Academy of Child Psychiatry, 23, 58–67.PubMedCrossRefGoogle Scholar
  31. Heikkila, R. E., Orlansky, H., & Cohen, G. (1975). Studies on the distinction between uptake inhibition and release of (3H) dopamine in rat brain tissue slices. Biochemistry and Pharmacology, 24, 847–852.CrossRefGoogle Scholar
  32. Hoffman, B. B., & Lefkowitz, R. J. (1990). Catecholamines and sympathomimetic drugs. In A. G. Gilman, T. W. Ralf, A. S. Nies, & P. Taylor (Eds.), The pharmacological basis of therapeutics (pp. 187–220 ). New York: Pergamon.Google Scholar
  33. Hubbard, J. W., Srinivas, N. R., Quinn, D., & Midha, K. K. (1989). Enantioselective aspects of the disposition of dI-threo-methylphenidate after the administration of a sustained-release formulation to children with attention deficit disorder. Journal of Pharmaceutical Sciences, 78, 944–947.PubMedCrossRefGoogle Scholar
  34. Hyman, S. E., & Nestler, E. J. (1996). Initiation and adaptation: A paradigm for understanding psychotropic drug action. American Journal of Psychiatry. 153, 151–162.PubMedGoogle Scholar
  35. Jaffe, S. L. (1991). Intranasal abuse of prescribed methylphenidate by an alcohol and drug abusing adolescent with ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 30, 773–775.PubMedGoogle Scholar
  36. Konradi, C., Cole, R. L., Heckers, S., & Hyman, S. E. (1994). Amphetamine regulates gene expression in rat striatum via transcription factor CREB. Journal of Neuroscience, 14, 5623–5634.PubMedGoogle Scholar
  37. Kuczenski, R. (1983). Biochemical actions of amphetamine and other stimulants. In 1. Creese (Ed.), Stimulants: Neurochemical, behavioral, and clinical perspectives (pp. 31–61 ). New York: Raven.Google Scholar
  38. Kuczenski, R., Segal. D. S., Leith, N. J., & Applegate, C. D. (1987). Effects of amphetamine, methylphenidate, and apomorphine on regional brain serotonin and 5-hydroxyindole acetic acid. Psychopharmacology, 93, 329–335.Google Scholar
  39. Langer, D. H., Sweeney, K. P., Bartenbach, D. E., Davis, P M., & Menander, K. B. (1986). Evidence of lack of abuse or dependence following pemoline treatment: Results of a retrospective survey. Drug and Alcohol Dependency, 17, 213–227.CrossRefGoogle Scholar
  40. Levi, G., & Raiteri, M. (1993). Carrier-mediated release of neurotransmitters. Trends in Neurosciences, 16, 415–420.PubMedCrossRefGoogle Scholar
  41. Masand, P. S., & Tesar, G. E. (1996). Use of stimulants in the medically ill. In The Psychiatric Clinics of North America (pp. 515–547 ). Philadelphia: Saunders.Google Scholar
  42. Nestler, E. (1992). Molecular mechanisms of drug addic- tion. Journal of Neuroscience, 12, 2439–2450.PubMedGoogle Scholar
  43. Patrick, K. S., Caldwell, R. W., Ferris, R. M., & Breese, G. R. (1987). Pharmacology of the enantiomers of threo-methylphenidate. Journal of Pharmacology and Experimental Therapeutics, 241, 152–158.PubMedGoogle Scholar
  44. Patrick, S. K., Mueller, R. A., Gualtieri, C. T., & Breese, G. R. (1987). Pharmacokinetics and actions of methylphenidate. In H. Y. Meltzer (Ed.), Psycho-pharmacology: The third generation of progress (pp. 1387–1396 ). New York: Raven.Google Scholar
  45. Pelham, W. E., Sturges, J., Hoza, J., Schmidt, C., Bijlsma, J. J., Milich, R., & Moorer, S. (1987). Sustained release and standard methylphenidate effects on cognitive and social behavior in children with attention deficit disorder. Pediatrics, 80, 491–501.PubMedGoogle Scholar
  46. Pelham, W. E., Greenslade, K. E., Vodde-Hamilton, M., Murphy, D. A., Greenstein, J. J., Gnagy, E. M., Guthrie, K. J., Hoover, M. D., & Dahl, R. E. (1990). Relative efficacy of long-acting stimulants on children with attention deficit-hyperactivity disorder: A comparison of standard methylphenidate sustained-release methylphenidate, sustained-release dextroamphetamine, and pemoline. Pediatrics, 86, 226–237.PubMedGoogle Scholar
  47. Ricaurte, G. A., Forno, L., Wilson, M., DeLanney, L., Irwin, I., Molliver, M. E., & Langston, J. W. (1988). 3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. Journal of the American Medical Association, 260, 51–55.Google Scholar
  48. Ruskin, D., & Marshall, J. E (1994). Amphetamine and cocaine induced fos in the rat striatum depends on D2 dopamine receptor activation. Synapse, 18, 233–240.PubMedCrossRefGoogle Scholar
  49. Sallee, E, Stiller, R., Perel, J., & Bates, T. (1985). Oral pemoline kinetics in hyperactive children. Clinical Pharmacological Therapy, 37, 606–609.CrossRefGoogle Scholar
  50. Sebrechts, M. M., Shaywitz, S. E., Shaywitz, B. A., Jatlow, P., Anderson, G. M., & Cohen, D. J. (1986). Components of attention, methylphenidate dosage, and blood levels and children with attention deficit disorder. Pediatrics, 77, 222–228.PubMedGoogle Scholar
  51. Seiden, L. S., Fischman, M. W, & Schuster, C. R. (1975). Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug and Alcohol Dependence, 1, 215–219.CrossRefGoogle Scholar
  52. Seiden, L. S., Sabol, K. E., & Ricaurte, G. A. (1993). Amphetamine: Effects on catecholamine systems and behavior. Annual Review of Pharmacology and Toxicology. 32, 639–677.Google Scholar
  53. Sharma, R. P., Javaid, J. 1., Pandey, G. N., Easton, M., & Davis, J. (1990). Pharmacological effects of methylphenidate on plasma homovanillic acid and growth hormone. Psychiatry Research, 32, 9–17.Google Scholar
  54. Shaywitz, B. A., Shaywitz, S. E., Sebrechts, M. M., Anderson, G. M., Cohen, D. J., Jatlow, P, & Young, J. G. (1990). Growth hormone and prolactin response to methylphenidate in children with attention deficit disorder. Life Sciences, 46, 625–633.PubMedCrossRefGoogle Scholar
  55. Solanto, M. V (1984). Neuropharmacological basis of stimulant drug action in attention deficit disorder with hyperactivity: A review and synthesis. Psychological Bulletin, 95, 387–409.PubMedCrossRefGoogle Scholar
  56. Solanto, M. V. (1986). Behavioral effects of low-dose methylphenidate in childhood attention deficit disorder: Implications for a mechanism of stimulant drug action. Journal of the American Academy of Child and Adolescent Psychiatry, 25, 96–101.CrossRefGoogle Scholar
  57. Volkow, N. D., Ding, Y., Fowler, J. S., Wang, G., Logan, J., Gatley, J. S., Dewey, S., Ashby, C., Liebermann, J., Hitzemann, R., & Wolf, A. P. (1995). Is methylphenidate like cocaine? Archives of General Psychiatry, 52, 456–463.PubMedCrossRefGoogle Scholar
  58. Weizman, R., Dick, J., Gil-Ad, I., Weitz, R., Tyano, S., & Laron, Z. (1987). Effects of acute and chronic methylphenidate administration on B-endorphin, growth hormone, prolactin and cortisol in children with attention deficit disorder and hyperactivity. Life Sciences, 40, 2247–2252.PubMedCrossRefGoogle Scholar
  59. Wilens, T. E., & Biederman, J. (1992). The stimulants. In D. Shafer (Ed.), The Psychiatric Clinics of North America (pp. 191–222 ). Philadelphia: Saunders.Google Scholar
  60. Zaczek, R., Battaglia, G., Contrera, J. E, Culp, S., & DeSouza, E. B. (1989). Methylphenidate and pemoline do not cause depletion of rat brain monoamine markers similar to that observed with methamphetamine. Toxicology Applied Pharmacology, 100, 227–233.CrossRefGoogle Scholar
  61. Zametkin, A. J., & Rapoport, J. L. (1987). Neurobiology of attention deficit disorder with hyperactivity: Where have we come in 50 years? Journal of the American Academy of Child and Adolescent Psychiatry, 26, 676–686.PubMedCrossRefGoogle Scholar
  62. Zametkin, A. J., Linnoila, M., Karoum, F., & Sallee, R. (1986). Pemoline and urinary excretion of catecholamines and indoleamines in children with attention deficit disorder. American Journal of Psychiatry, 143, 359–362.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Timothy E. Wilens
    • 1
    • 2
  • Thomas J. Spencer
    • 1
    • 2
  1. 1.Psychopharmacology UnitMassachusetts General HospitalBostonUSA
  2. 2.Department of PsychiatryHarvard Medical SchoolBostonUSA

Personalised recommendations