Advertisement

Pharmacology of Opiates

  • Lisa Borg
  • Mary Jeanne Kreek
Chapter

Abstract

There are three major opioid receptors in the central nervous system: mu, kappa, and delta, the genes for which have been cloned. There are also possible subtypes within each class, although separate genes have not yet been cloned for any subtypes. Opioids are both the natural opiates and their synthetic congeners which are the class of agonist and antagonist drugs with primarily morphine-like activity mostly at the mu opioid receptor, and also the other naturally occurring endogenous and synthetic opioid peptides, which act also at the other receptor types.

Keywords

Opioid Receptor Methadone Maintenance Treat Methadone Maintenance Heroin Addiction Enterohepatic Cycling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowic, M. (1994). LAAM: a long-acting methadone for treatment of heroin addiction. Medical Letter on Drugs and Therapeutics, 36, 52.Google Scholar
  2. Änggiird, E., Gunne, L-M., Holmstrand, J., McMahon, R. E., Sandberg, C-G., & Sullivan, H. R. (1974). Disposition of methadone in methadone maintenance. Clinical Pharmacology Therapeutics, 17, 258–266.Google Scholar
  3. Babul, N., & Darke, A. C. (1993). Disposition of morphine and its glucuronide metabolites after oral and rectal administration: Evidence of route specificity. Clinical Pharmacology Therapeutics, 54, 286–292.CrossRefGoogle Scholar
  4. Billings, R. E., McMahon, R. E., & Blake, D. A. (1974). L-acetylmethadol (LAAM) treatment of opiate dependence: Plasma and urine levels of two pharmacologically active metabolites. Life Sciences, 14, 1437–1446.CrossRefPubMedGoogle Scholar
  5. Blaine, J. D., & Renault, P. (Eds.). (1976). RX 3x a Week LRAM: Alternative to methadone (DHEW-NIDA Research Monograph Series No. 8 ). Rockville, MD: National Institute on Drug Abuse.Google Scholar
  6. Bockmuhl, M., & Erhart, G. (1948) Justus Liebigs Annalen der Chemie, 561, 52–85.Google Scholar
  7. Borg, L., & Kreek, M. J. (1995). Clinical problems associated with interactions between methadone pharmacotherapy and medications used in the treatment of HIV-positive and AIDS patients. Current Opinion in Psychiatry, 8, 199–202.CrossRefGoogle Scholar
  8. Borg, L., Ho, A., Peters, J. E., & Kreek, M. J. (1995). Availability of reliable serum methadone determination for management of symptomatic patients. Journal of Addictive Diseases, 14, 83–96.CrossRefPubMedGoogle Scholar
  9. Bowen, D. V., Smit, A. L. C., & Kreek, M. J. (1978). Fecal excretion of methadone and its metabolites in man: Application of GC-MS. In N. R. Daly (Ed.,) Advances in mass spectrometry (pp. 1634–1639 ). Philadelphia: Heyden.Google Scholar
  10. Chan, G. L. C., & Matzke, G. R. (1987). Effects of renal insufficiency on the pharmacokinetics and pharmacodynamics of opioid analgesics. Drug Intelligence and Clinical Pharmacy, 21, 773–783.PubMedGoogle Scholar
  11. Dole, V. P, & Kreek, M. J. (1973). Methadone plasma level: Sustained by a reservoir of drug in tissue. Proceedings of the National Academy of Sciences, USA, 70, 10.CrossRefGoogle Scholar
  12. Dole, V. P, Nyswander, M. E., & Kreek, M. J. (1966). Narcotic blockade. Archives of Internal Medicine, 118, 304–309.CrossRefPubMedGoogle Scholar
  13. Eddy, N. B., May, E. L., & Mosettig, E. (1952). Chemistry and pharmacology of the methadols and acetylmethadols. Journal of Organic Chemistry, 17, 321–326.CrossRefGoogle Scholar
  14. Fraser, H. F., & Isbell, H. (1951). Addiction potentialities of isomers of 6-di-methylamino-4–4-diphenyl-3 acetyoxy-heptane (acetylmethadol). Journal of Pharmacology and Experimental Therapeutics, 101, 12.Google Scholar
  15. Fraser, H. E, & Isbell, H. (1952). Actions and addiction liabilities of alpha-acetylmethadols in man. Journal of Pharmacology and Experimental Therapeutics, 105, 210–215.Google Scholar
  16. Got, P., Baud, E J., Sandouk, P., Diamant-Berger, O., & Scherrmann, J. M. (1994). Morphine disposition in opiate-intoxicated patients: Relevance of nonspecific opiate immunoassays. Journal of Analytical Toxicology, 18, 189–194.PubMedGoogle Scholar
  17. Hachey, D. L., Kreek, M. J., & Mattson, D. H. (1977). Quantitative analysis of methadone in biological fluids using deuterium-labelled methadone and GLCchemical-ionization mass spectrometry. Journal of Pharmaceutical Sciences, 66, 1579–1582.CrossRefPubMedGoogle Scholar
  18. Harte, E. H., Gutjahr, C. L., & Kreek, M. J. (1976). Longterm persistence of dl-methadone in tissues. Clinical Research, 24, 623A.Google Scholar
  19. Hasselström, J., & Säwe, J. (1993). Morphine pharmacokinetics and metabolism in humans: Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clinical Pharntacokinetics, 24, 344–354.CrossRefGoogle Scholar
  20. Henderson, G. L., Wilson, K., & Lau, D. H. M. (1976). Plasma I-a-acetylmethadol (LAAM) after acute and chronic administration. Clinical Pharmacology Therapeutics. 21, 16–25.Google Scholar
  21. Inturrisi, C. E., & Verebely, K. (1972a). A gas-liquid chromatographic method for the quantitative determination of methadone in human plasma and urine. Journal of Chromatography, 65, 361–369.CrossRefPubMedGoogle Scholar
  22. Inturrisi, C. E., & Verebely, K. (1972b). The levels of methadone in the plasma in methadone maintenance. Clinical Pharmacology Therapeutics, 13, 633–637.Google Scholar
  23. Inturrisi, C. E., Schultz, M., Shin, S., Umans, J. G., Angel, L., & Simon, E. J. (1983). Evidence from opiate binding that heroin acts through its metabolites. Life Sciences, 33 (Suppl. 1), 773–776.CrossRefPubMedGoogle Scholar
  24. Inturrisi, C. E., Max, M. B., Foley, K. M., Schultz, M., Shin, S-U., & Houde, R. W. (1984). The pharmacokinetics of heroin in patients with chronic pain. New England Journal of Medicine, 310, 1213–1217.CrossRefPubMedGoogle Scholar
  25. Kaiko, R. F., & Inturrisi, C. E. (1973). A gas-liquid chromatographic method for the quantitative determination of acetylmethadol and its metabolites in human urine. Journal of Chromatography, 82, 315–321.CrossRefPubMedGoogle Scholar
  26. Kaiko, R. F., & Inturrisi, C. E. (1975). Disposition of acetylmethadol in relation to pharmacologic action. Clinical Pharmacology Therapeutics, 18, 96–103.Google Scholar
  27. Kaiko, R. F., Wallenstein, S. L., Rogers, A. G., Grabinski, P. Y., Houde, R. W. (1981). Analgesic and mood effects of heroin and morphine in cancer patients with postoperative pain. New England Journal of Medicine, 304, 1501–1505.CrossRefPubMedGoogle Scholar
  28. Keats, A. S., & Beecher, H. K. (1952). Analgesic activity and toxic effects of acetylmethadol isomers in man. Journal of Pharmacology and Experimental Therapeutics, 105, 210–215.PubMedGoogle Scholar
  29. Kiang, C-H., Campos-Flor, S., & Inturrisi, C. E. (1981). Determination of acetylmethadol and metabolites by use of high-performance liquid chromatography. Journal of Chromatography, 222, 81–93.CrossRefPubMedGoogle Scholar
  30. Kreek, M. J. (1973a). Medical safety and side effects of methadone in tolerant individuals. Journal of the American Medical Association, 223, 665–668.CrossRefPubMedGoogle Scholar
  31. Kreek, M. J. (1973b). Plasma and urine levels of methadone. New York State Journal of Medicine, 73, 2773–2777.PubMedGoogle Scholar
  32. Kreek, M. J. (1978a): Effects of drugs and alcohol on opiate disposition and action. In M. W. Adler, L. Manara, & R. Samnin (Eds.), Factors affecting the action of narcotics (pp. 717–739 ). New York: Raven.Google Scholar
  33. Kreek, M. J. (1978b). Medical complications in methadone patients. Annals of the New York Academy of Sciences, 311, 110–134.CrossRefPubMedGoogle Scholar
  34. Kreek, M. J. (1979). Methadone disposition during the perinatal period in humans. Pharmacology, Biochemistry and Behavior, 11, 1–7.CrossRefGoogle Scholar
  35. Kreek, M. J. (1981). Metabolic interactions between opiates and alcohol. Annals of the New York Academy of Sciences, 362, 36–49.CrossRefPubMedGoogle Scholar
  36. Kreek, M. J. (1981–1982). Disposition of narcotics in the perinatal period. Publication of AMERSA and The Career Teacher Program in Alcohol and Drug Abuse, 3, 7–10.Google Scholar
  37. Kreek, M. J. (1983). Discussion on clinical perinatal and developmental effects of methadone. In J. R. Cooper, F. Altman, B. S. Brown, & D. Czechowicz (Eds.), Research in the treatment of narcotic addiction: State of the art (NIDA Monograph, DHHS Publication No. [ADM] 83–1281, pp. 444–453 ). Rockville, MD: National Institute on Drug Abuse.Google Scholar
  38. Kreek, M. J. (1984). Opioid interactions with alcohol. Journal of Addictive Diseases, 3, 35–46.Google Scholar
  39. Kreek, M. J. (1988). Opiate-ethanol interactions: Implications for the biological basis and treatment of combined addictive diseases. In L. S. Harris (Ed.), Problems of drug dependence, 1987; Proceedings of the 49th annual scientific meeting of the committee on problems of drug dependence (NIDA Research Monograph Series, DHHS Publication No. [ADM] 88–1564,81, pp. 428–439 ). Rockville MD: National Institute on Drug Abuse.Google Scholar
  40. Kreek, M. J. (1990). Drug interactions in humans related to drug abuse and its treatment. Modern Methods in Pharmacology, 6, 265–282.Google Scholar
  41. Kreek, M. J., Schecter, A., Gutjahr, C. L., Bowen, D., Field, E, Queenan, J., & Merkatz, I. (1974). Analyses of methadone and other drugs in maternal and neonatal body fluids: Use in evaluation of symptoms in a neonate of mother maintained on methadone. American Journal of Drug and Alcohol Abuse, 1, 409–419.CrossRefPubMedGoogle Scholar
  42. Kreek, M. J., Garfield, J. W, Gutjahr, C. L., & Giusti, L. M. (1976). Rifampin-induced methadone withdrawal. New England Journal of Medicine, 294, 1104–1106.CrossRefPubMedGoogle Scholar
  43. Kreek, M. J., Gutjahr, C. L., Garfield, J. W, Bowen, D. V, & Field, F. H. (1976). Drug interactions with methadone. Annals of the New York Academy of Science, 281, 350–374.CrossRefGoogle Scholar
  44. Kreek, M. J., Gutjahr, C. L., Bowen, D. V, & Field, F. H. (1978). Fecal excretion of methadone and its metabolites: A major pathway of elimination in man. In A. Schecter, H. Alksne, & E. Kaufman (Eds.), Critical concerns in the field of drug abuse: Proceedings of the 3rd National Drug Abuse Conference (pp. 1206–1210 ). New York: Dekker.Google Scholar
  45. Kreek, M. J., Gratz, M., & Rothschild, M. A. (1978). Hepatic extraction of long-and short-acting narcotics in the isolated perfused rabbit liver. Gastroenterology, 75, 88–94.PubMedGoogle Scholar
  46. Kreek, M. J., Hachey, D. L., & Klein, P. D. (1979). Stereo-selective disposition of methadone in man. Life Sciences, 24, 925–932.CrossRefPubMedGoogle Scholar
  47. Kreek, M. J., Bencsath, F. A., & Field, E H. (1980). Effects of liver disease on urinary excretion of methadone and metabolites in maintenance patients: Quantitation by direct probe chemical ionization mass spectrometry. Biomedical Mass Spectrometry, 7, 385–395.CrossRefPubMedGoogle Scholar
  48. Kreek, M. J., Kalisman, M., Irwin, M., Jaffery, N. F., & Scheflan, M. (1980). Biliary secretion of methadone and methadone metabolites in man. Research Communications in Chemical Pathology and Pharmacology, 29, 67–78.PubMedGoogle Scholar
  49. Kreek, M. J., Schecter, A., Gutjahr, C. L., & Hecht, M. (1980). Methadone use in patients with chronic renal disease. Drug and Alcohol Dependence, 5, 197–205.CrossRefPubMedGoogle Scholar
  50. Kreek, M. J., Bencsath, F. A., Fanizza, A., & Field, E H. (1983). Effects of liver disease on fecal excretion of methadone and its unconjugated metabolites in maintenance patients: Quantitation by direct probe chemical ionization mass spectrometry. Biomedical Mass Spectrometry, 10, 544–549.CrossRefPubMedGoogle Scholar
  51. Levine, R., Zaks, A., Fink, M., Freedman, A. M. (1973). Levomethadyl acetate: Prolonged duration of opioid effects, including cross tolerance to heroin in man. Journal of the American Medical Association, 226, 316–318.CrossRefPubMedGoogle Scholar
  52. Mazoit, J. X., Sandouk, P., Scherrmann, J-P., & Roche, A. (1990). Extrahepatic metabolism of morphine occurs in humans. Clinical Pharmacology Therapeutics, 4, 613–618.CrossRefGoogle Scholar
  53. Misra, A. L., & Mule, S. J. (1975). L-alpha-acetylmethadol (LAAM) pharmacokinetics and metabolism: Current status. American Journal of Drug and Alcohol Abuse, 2, 301–305.CrossRefGoogle Scholar
  54. Nakamura, K., Hachey, D. L., Kreek, M. J., Irving, C. S., & Klein, P. D. (1982). Quantitation of methadone enantiomers in humans using stable isotope-labeled [2H3]-[2H5]-, and [2H8] methadone. Journal of Pharmaceutical Sciences, 71, 39–43.Google Scholar
  55. Neumann, P. B., Henriksen, H., Grosman, N., & Christensen, C. B. (1982). Plasma morphine concentrations during chronic oral administration in patients with cancer pain. Pain, 13, 247–252.CrossRefPubMedGoogle Scholar
  56. Novick, D. M., Kreek, M. J., Fanizza, A. M., Yancovitz, S. R., Gelb, A. M., & Stenger, R. J. (1981). Methadone disposition in patients with chronic liver disease. Clinical Pharmacology Therapeutics, 30, 353–362.CrossRefGoogle Scholar
  57. Novick, D. M., Kreek, M. J., Arns, P. A., Lau, L. L., Yancovitz, S. R., & Gelb, A. M. (1985). Effect of severe alcoholic liver disease on the disposition of methadone in maintenance patients. Alcoholism, Clinical and Experimental Research, 9, 349–354.CrossRefGoogle Scholar
  58. ORLAAM“ drug information. (1993). Levomethadyl acetate hydrochloride oral solution [Package insert]. Author.Google Scholar
  59. Osborne, R., Joel, S., Trew, D., & Slevin, M. (1988). Analgesic activity of morphine-6-glucuronide [Letter]. Lancet, 1, 828.CrossRefPubMedGoogle Scholar
  60. Osborne, R., Joel, S., Trew, D., & Slevin, M. (1990). Morphine and metabolite behavior after different routes of morphine administration: Demonstration of the importance of the active metabolite morphine-6-glucuronide. Clinical Pharmacology Therapeutics, 47, 12–19.CrossRefGoogle Scholar
  61. Owen, J. A., Sitar, D. S., Berger, L., Brownell, L., Duke, P. C., & Mitenko, P. A. (1983). Age-related morphine kinetics. Clinical Pharmacology Therapeutics, 34, 364–368.CrossRefGoogle Scholar
  62. Paul, D., Standifer, K. M., Inturrisi, C. E., & Pasternak, G. W. (1989). Pharmacological characterization of morphine-6ß-glucuronide, a very potent morphine metabolite. Journal of Pharmacology and Experimental Therapeutics, 251, 477–483.PubMedGoogle Scholar
  63. Pond, S. M., Kreek, M. J., Tong, T. G., Raghunath, J., & Benowitz, N. L. (1985). Altered methadone pharmacokinetics in methadone-maintained pregnant women. Journal of Pharmacology and Experimental Therapeutics, 233, 1–6.PubMedGoogle Scholar
  64. Portenoy, R. K., Thaler, H. T., Inturrisi, C. E., Friedlander-Klar, H., & Foley, K. M. (1992). The metabolite morphine-6-glucuronide contributes to the analgesia produced by morphine infusion in patients with pain and normal renal function. Clinical Pharmacology Therapeutics, 51, 422–431.CrossRefGoogle Scholar
  65. Portenoy, R. K., Southam, M. A., Gupta, S. K., Lapin, J., Layman, M., Inturrisi, C. E., & Foley, K. M. (1993). Transdermal fentanyl for cancer pain. Anesthesiology, 78, 36–43.CrossRefPubMedGoogle Scholar
  66. Reisine, T., & Pasternak, G. (1996). Opioid analgesics and antagonists. In J. G. Hardman, A. G. Gilman, & L. E. Limbird (Eds.), Goodman and Gilmans the pharmacological basis of therapeutics ( 9th ed., pp. 521–555 ). New York: McGraw-HillGoogle Scholar
  67. Rubenstein, R. B., Kreek, M. J., Mbawa, N., Wolff, W. I., Korn, R., & Gutjahr, C. L. (1978). Human spinal fluid methadone levels. Drug and Alcohol Dependence, 3, 103–106.CrossRefPubMedGoogle Scholar
  68. Sawynok, J. (1986). The therapeutic use of heroin: A review of the pharmacological literature. Canadian Journal of Physiology and Pharmacology, 64, 1–6.CrossRefPubMedGoogle Scholar
  69. Sullivan, H. R., Smits, S. E., Due, S. L., Booher, R. E., & McMahon, R. E. (1972). Metabolism of d-methadone: Isolation and identification of analgesically active metabolites. Life Sciences, 23, 1093–1104.Google Scholar
  70. Sullivan, H. R., Due, S. L., & McMahon, R. E. (1973). Metabolism of alpha-l-methadol: N-acetylation, a new metabolic pathway. Research Communications in Chemical Pathology and Pharmacology, 6, 1072–1078.PubMedGoogle Scholar
  71. Sung, C-Y., & Way, E. L. (1954). The fate of the optical isomers of alpha-acetylmethadol. Journal of Pharmacology and Experimental Therapeutics, 110, 260–270.PubMedGoogle Scholar
  72. Tong, T. G., Pond, S. M., Kreek, M. J., Jaffery, N. F., & Benowitz, N. L. (1981). Phenytoin-induced methadone withdrawal. Annals of Internal Medicine, 94, 349–351.PubMedGoogle Scholar
  73. Weinberg, D. S. A., Inturrisi, C. E., Reidenberg, B., Moulin, D. W., Nip, T. J., Wallenstein, S., Houde, R. W., & Foley, K. M. (1988). Sublingual absorption of selected opioid analgesics. Clinical Pharmacology Therapeutics, 44, 335–342.CrossRefGoogle Scholar
  74. Westerling, D., Frigen, L., & Hogland, P. (1993). Morphine pharmacokinetics and effects on salivation and continuous reaction times in healthy volunteers. Therapeutic Drug Monitoring, 15, 364–374.CrossRefPubMedGoogle Scholar
  75. Westerling, D., Höglund, P., Lundin, S., & Svedman, P. (1994). Transdermal administration of morphine to healthy subjects. British Journal of Clinical Pharmacology, 37, 571–576.CrossRefPubMedGoogle Scholar
  76. Wolff, K., Hay, A., & Raistrick, D. (1991). High-dose methadone and the need for drug measurements. Clinical Chemistry, 37, 1651–1654.PubMedGoogle Scholar
  77. Wolff, K., Hay, A. W. M., Raistrick, D., & Calvert, R. (1993). Steady-state pharmacokinetics of methadone in opioid addicts. European Journal of Clinical Pharmacology, 44, 189–194.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lisa Borg
    • 1
  • Mary Jeanne Kreek
    • 1
  1. 1.Laboratory on the Biology of Addictive DiseasesThe Rockefeller UniversityNew YorkUSA

Personalised recommendations