Advertisement

Pharmacology of Alcohol

  • Walter A. Hunt
Chapter

Abstract

Ethanol is the most abused substance in the world today. In the United States, roughly two thirds of the population drinks alcoholic beverages without ill effects. However, over 7% of adults, based on a 1992 survey, are considered alcoholic, with many more classified as alcohol abusers (B. F. Grant et al., 1994). Excessive ethanol consumption accounts for 3% of all deaths, including 50% of traffic fatalities, 38% of drowning deaths, 50% of homicides, 30% of suicides, most cases of cirrhosis of the liver, and fetal alcohol syndrome, the leading cause of mental retardation. This chapter provides the essential pharmacology of ethanol, including its basic properties, how the body processes it when ingested, its behavioral effects, and its possible mechanisms of action.

Keywords

NMDA Receptor Ethanol Consumption Experimental Therapeutics Chronic Ethanol Fetal Alcohol Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahern, K. B., Lustig, H. S., and Greenberg, D. A. (1994). Enhancement of NMDA toxicity and calcium responses by chronic exposure of cultured neurons to ethanol. Neuroscience Letters, 165, 211–214.PubMedCrossRefGoogle Scholar
  2. Alkana, R. L., and Malcolm, R. D. (1980). Comparison of the effects of acute alcohol intoxication on behavior in humans and other animals. In K. Eriksson, J. D. Sinclair, and K. Kiianmaa (Eds.), Animal models in alcohol research (pp. 193–269 ). London: Academic Press.Google Scholar
  3. Allan, A. M., Spuhler, K. P., and Harris, R. A. (1988). Gamma aminobutyric acid-activated chloride channels: Relationships in ethanol sensitivity. Journal of Pharmacology and Experimental Therapeutics, 244, 866–870.Google Scholar
  4. Bennett, R. H., Cherek, D. R., and Spiga, R. (1993). Acute and chronic alcohol tolerance in humans: Effects of dose and consecutive days of exposure. Alcoholism: Clinical and Experimental Research, 17, 740–745.Google Scholar
  5. Berman, S. M., Whipple, S. C., Fitch, R. J., and Noble, E. P. (1993). P3 in young boys as a predictor of adolescent substance use. Alcohol, 10, 69–76.PubMedCrossRefGoogle Scholar
  6. Bode, D. C., and Molinoff, P. B. (1988). Effects of ethanol in vitro on the beta-adrenergic receptor-coupled adenylate cyclase system. Journal of Pharmacology and Experimental Therapeutics, 246, 1040–1047.PubMedGoogle Scholar
  7. Buck, K. J., and Harris, R. A. (1990). Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. Il. Chronic effects of ethanol. Journal of Pharmacology and Experimental Therapeutics, 253, 713–719.Google Scholar
  8. Chandler, L. J., Newson, H., Sumners, C., and Crews, F. T. (1993). Chronic ethanol exposure potentiates NMDA excitotoxicity in cerebral cortical neurons. Journal of Neurochemistry, 60, 1578–1581.PubMedCrossRefGoogle Scholar
  9. Chandler, L. J., Sumners, C., and Crews, E T. (1993). Ethanol inhibits NMDA receptor-mediated excitotoxicity in rat primary neuronal cultures. Alcoholism: Clinical and Experimental Research, 17, 54–60.CrossRefGoogle Scholar
  10. Chao, H. M. (1995). Alcohol and the mystique of flushing. Alcoholism: Clinical and Experimental Research, 19, 104–109.CrossRefGoogle Scholar
  11. Chin, J. H., and Goldstein, D. B. (1977a). Drug tolerance in biomembranes: A spin label study of the effects of ethanol. Science, 196, 684–685.Google Scholar
  12. Chin, J. H., and Goldstein, D. B. (1977b). Effects of low concentrations of ethanol on the fluidity off spin-labeled erythrocyte and brain membranes. Molecular Pharmacology, /3, 435–441.Google Scholar
  13. Cotman, C. W, Bridges, R. J., Taube, J. S., Clark, A. S., Geddes, J. W, and Monaghan, D. T. (1989). The role of the NMDA receptor in central nervous system plasticity and pathology. Journal of N1H Research, 1, 65–74.Google Scholar
  14. Crews, F. T., and Chandler, L. J. (1993). Excitotoxicity and the neuropathology of ethanol. In W. A. Hunt and S. J. Nixon (Eds.), Alcohol-induced brain damage (pp. 355–371 ). Bethesda, MD: National Institutes of Health.Google Scholar
  15. Criswell, H. E., Simson, P. E., Duncan, G. E., McCown, T. J., Herbert, J. S., Morrow, A. L., and Breese, G. R. (1993). Molecular basis for regionally specific action of ethanol on y-aminobutyric acidA receptors: generalization to other ligand-gated ion channels. Journal of Pharmacology and Experimental Therapeutics, 267, 522–537.Google Scholar
  16. Criswell, H. E., Simson, P. E., Knapp, D. J., Devaud, L. L., McCown, T. J., Duncan, G. E., Morrow, A. L., and Breese, G. R. (1995). Effect of Zolpidem on yaminobutyric acid (GABA)-induced inhibition predicts the interaction of ethanol with GABA on individual neurons in several rat brain regions. Journal of Pharmacology and Experimental Therapeutics, 273, 526–536.PubMedGoogle Scholar
  17. Damgaard, S. E. (1982). The D(VK) isotope effect of the cytochrome P-450-mediated oxidation of ethanol and its biological applications. European Journal of Biochemistry, 125, 593–603.Google Scholar
  18. Darden, J. H., and Hunt, W. A. (1977). Reduction of striatal dopamine release during an ethanol withdrawal syndrome. Journal of Neurochemistry, 29, 1143–1145.PubMedCrossRefGoogle Scholar
  19. Diamond, I., and Gordon, A. S. (1994). Role of adenosine in mediating cellular and molecular responses to ethanol. In B. Jansson, H. Jornvall, U. Rydberg, L. Terenius, and B. L. Vallee (Eds.), Toward a molecular basis of alcohol use and abuse (pp. 175–183 ). Boston: Birkhauser Verlag.CrossRefGoogle Scholar
  20. Dildy-Mayfield, J. E., Machu, T., and Leslie, S. W. (1991). Ethanol and voltage-or receptor-mediated increases in cytosolic Ca’ in brain cells. Alcohol, 9, 63–69.CrossRefGoogle Scholar
  21. Dingledine, R., Hynes, M. A., and King, G. L. (1986). Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice. Journal of Physiology 380, 175–189.PubMedGoogle Scholar
  22. Duncan, G. E., Breese, G. R., Criswell, H. E., McCown, T. J., Herbert, J. S., Devaud, L. L., and Morrow, A. L. (1995). Distribution of [3H]zolpidem binding sites in relation to messenger RNA encoding the al, 132, and y2 subunits of GABAA receptors in rat brain. Neuroscience, 64, 1113–1128.PubMedCrossRefGoogle Scholar
  23. Fils-Aime, M. L., Eckardt, M. J., George, D. T., Brown, G. L., Mefford, I., and Linnoila, M. (1996). Early-onset alcoholics have lower cerebrospinal fluid 5-hydroxyindoleacetic acid levels than late-onset alcoholics. Archives of General Psychiatry, 53, 211–216.PubMedCrossRefGoogle Scholar
  24. Freed, W. J., and Michaelis, E. K. (1978). Glutamic acid and ethanol dependence. Pharmacology, Biochemistry and Behavior, 5, 509–514.Google Scholar
  25. Froehlich, J. C., and Li,T-K. (1993). Opioid peptides. In M. Galanter (Ed.), Recent developments in alcoholism (Vol. 11, pp. 187–205 ). New York: Plenum.Google Scholar
  26. Froehlich, J. C., and Li, T-K. (1994). Opioid involvement in alcohol drinking. Annuals of the New York Academy of Sciences, 739, 156–167.CrossRefGoogle Scholar
  27. Gessa, G. L., Muntoni, F., Vargui, L., and Mereu, G. (1985). Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Research, 348, 201–203.Google Scholar
  28. Gianoulakis, C. (1993). Endogenous opioids and excessive alcohol consumption. Journal of Psychiatry and Neuroscience, 18, 148–156.PubMedGoogle Scholar
  29. Goldstein, A., and Judson, B. A. (1971). Alcohol dependence and opiate dependence: Lack of relationship in mice. Science, 172, 290–292.PubMedCrossRefGoogle Scholar
  30. Gordon, A. S., Collier, K., and Diamond, I. (1986). Ethanol regulation of adenosine receptor-dependent cAMP levels in a clonal neural cell line: An in vitro model of cellular tolerance to ethanol. Proceedings of the National Academy of Sciences (USA), 53, 21052108..Google Scholar
  31. Grant, B. E, Harford, T. C., Dawson, D. A., Chou, P, Dufour, M., and Pickering, R. (1994). Prevalence of DSM-IV alcohol abuse and dependence: United States, 1992. Alcohol Health and Research World, 18, 243–248.Google Scholar
  32. Grant, K. A., Valverius, P., Hudspith, M., and Tabakoff, B. (1990). Ethanol withdrawal seizures and the NMDA receptor complex. European Journal of Pharmacology, 176, 289–296.Google Scholar
  33. Haraguchi, M., Samson, H. H., and Tolliver, G. A. (1990). Reduction in oral ethanol self-administration in the rat by the 5-HT uptake blocker fluoxetine. Pharmacology, Biochemistry, and Behavior; 35, 259–262.PubMedCrossRefGoogle Scholar
  34. Harris, R. A., and Schroeder, F. (1981). Ethanol and the physical properties of brain membranes: Fluorescence studies. Molecular Pharmacology, 20, 128–137.PubMedGoogle Scholar
  35. Hasin, D., and Grant, B. (1994). 1994 draft DSM-IV criteria for alcohol use disorders: Comparison to DSM-111-R and implications. Alcoholism: Clinical and Experimental Research, 18, 1348–1353.Google Scholar
  36. Hill, S. Y., Steinhauer, S., Lowers, L., and Locke, J. (1995). Eight-year longitudinal follow-up of P300 and clinical outcome in children from high-risk for alcoholism families. Biological Psychiatry, 37, 823–827.PubMedCrossRefGoogle Scholar
  37. Hoffman, P. L., and Tabakoff, B. (1990). Ethanol and guanine nucleotide binding proteins: A selective interaction. FASEB Journal, 4, 2612–2622.PubMedGoogle Scholar
  38. Hoffman, P. L., Urwyler, S., and Tabakoff, B. (1982). Alterations in opiate receptor function after chronic ethanol exposure. Journal of Pharmacology and Experimental Therapeutics 222182–189.Google Scholar
  39. Hoffman, P. L., Rabe, C. S., Moses, F., and Tabakoff, B. (1989). N-methyl-D-aspartate receptors and ethanol: Inhibition of calcium flux and cyclic GMP production. Journal of Neurochemistry, 52, 1937–1940.PubMedCrossRefGoogle Scholar
  40. Hoffman, P. L., lorio, K. R., Snell, L. D., and Tabakoff, B. (1995). Attenuation of glutamate-induced neurotoxicity in chronically ethanol-exposed cerebellar granule cells by NMDA receptor antagonists and ganglioside GM,. Alcoholism: Clinical and Experimental Research, 19, 721–726.CrossRefGoogle Scholar
  41. Hollmann, M., and Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience 1731–108.Google Scholar
  42. Hong, J. S., Majchrowicz, E., Hunt, W. A., and Gillin, J. C. (1981). Reduction in cerebral methionine-enkephalin content during the ethanol withdrawal syndrome. Substance and Alcohol Actions/Misuse, 2, 233–240.Google Scholar
  43. Hunt, W. A. (1985). Alcohol and biological membranes. New York: Guilford.Google Scholar
  44. Hunt, W. A. (1993). Neuroscience research: How has it contributed to our understanding of alcohol abuse and alcoholism?-A review. Alcoholism: Clinical and Experimental Research 17I055–1065.Google Scholar
  45. Hunt, W. A. (1994). Ethanol and other aliphatic alcohols. In C. R. Craig and R. E. Stitzel (Eds.) Modern pharmacology (4th ed., pp. 451–457). Boston: Little, Brown.Google Scholar
  46. Hunt, W. A., and Nixon, S. J. (1993). Alcohol-induced brain damage. Bethesda, MD: National Institutes of Health.Google Scholar
  47. Imperato, A., and DeChiara, G. (1986). Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats. Journal of Pharmacology and Experimental Therapeutics 239219–228.Google Scholar
  48. Inatomi, N., Kato, S., Ito, D., and Lieber, C. S. (1989). Role of peroxisomal fatty acid beta-oxidation in ethanol metabolism. Biochemical and Biophysical Research Communications 163418–423.Google Scholar
  49. lorio, K. R., Reinlib, L., Tabakoff, B., and Hoffman, P. L. (1992). Chronic exposure of cerebellar granule cells to ethanol results in increased N-methyl-D-aspartate receptor function. Molecular Pharmacology, 41, 1142–1148.Google Scholar
  50. lorio, K. R., Tabakoff, B., and Hoffman, P L. (1993). Glutamate-induced neurotoxicity is increased in cerebellar granule cells exposed chronically to ethanol. European Journal of Pharmacology 248209–212.Google Scholar
  51. Kalb, R. G. (1995). Current excitement about the glutamate receptor. The Neuroscientist, 1, 60–63.CrossRefGoogle Scholar
  52. Kiianmaa, K., Nurmi, M., Nykanen, I., and Sinclair, J. D. (1995). Effect of ethanol on extracellular dopamine in the nucleus accumbens of alcohol-preferring AA and alcohol-avoiding ANA rats. Pharmacology, Biochemistry, and Behavior, 52, 29–34.Google Scholar
  53. Koob, G. F. (1992). Neural mechanisms of drug reinforcement. Annals of the New York Academy of Sciences, 654, 171–191.Google Scholar
  54. Koob, G. E, and Weiss, F. (1990). Pharmacology of drug self-administration. Alcohol, 7, 193–197.PubMedCrossRefGoogle Scholar
  55. Kosterlitz, H. L., and Hughes, J. (1975). Some thoughts on the significance of enkephalin, the endogenous ligand. Life Sciences, 17, 91–96.PubMedCrossRefGoogle Scholar
  56. Krauss, S. W., Ghirnikar, R. B., Diamond, I., and Gordon, A. S. (1993). Inhibition of adenosine uptake by ethanol is specific for one class of nucleotide transporters. Molecular Pharmacology, 44, 1021–1026.PubMedGoogle Scholar
  57. Li, T-K. (1991). What can we expect from models in alcohol research? Limitations and relevance to the human condition. In T. N. Palmer (Ed.), Alcoholism: A molecular perspective (pp. 323–332 ). New York: Plenum (NATO ASI Series).Google Scholar
  58. Lieber, C. S. (1988). The microsomal ethanol oxidizing system: Its role in ethanol and xenobiotic metabolism. Biochemical Society Transactions, 16, 232–239.PubMedGoogle Scholar
  59. Lovinger, D. M., White, G., and Weight, F. F. (1989). Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science, 243, 1721–1724.PubMedCrossRefGoogle Scholar
  60. Lucchi, L., Bosio, A., Spano, P. E, and Trabucchi, M. (1981). Action of ethanol and salsolinol on opiate receptor function. Brain Research, 232, 506–510.CrossRefGoogle Scholar
  61. Lüddens, H., and Korpi, E. R. (1996). GABAA receptors: pharmacology, behavioral roles, and motor disorders. Neuroscientist, 2, 15–23.Google Scholar
  62. Lustig, H. S., Chan, J., and Greenberg, D. A. (1992). Ethanol inhibits excitotoxicity in cerebral cortical cultures. Neuroscience Letters, 135, 259–261.PubMedCrossRefGoogle Scholar
  63. Luthin, G. R., and Tabakoff, B. (1984). Activation of adenylate cyclase by alcohols requires the nucleotide-binding protein. Journal of Pharmacology and Experimental Therapeutics, 228, 579–587.PubMedGoogle Scholar
  64. Lyon, R. C., McComb, J. A., Schreurs, J., and Goldstein, D. H. (1981). A relationship between alcohol intoxication and the disordering of brain membranes by a series of short-chain alcohols. Journal of Pharmacology and Experimental Therapeutics, 218, 669–675.PubMedGoogle Scholar
  65. Macdonald, R. L., and Olsen, R. W. (1994). GABAA receptor channels. Annual Review of Neuroscience, 17, 569–602.PubMedCrossRefGoogle Scholar
  66. McBride, W. J., Murphy, J. M., Lumeng, L., and Li, T-K. (1990). Serotonin, dopamine and GABA involvement in alcohol drinking of selectively bred rats. Alcohol, 7, 199–205.PubMedCrossRefGoogle Scholar
  67. McBride, W. J., Murphy, J. M., Gatto, G. J., Levy, A. D., Yoshimoto, K., Lumeng, L., and Li, T K. (1993). CNS mechanisms of alcohol self-administration. Alcohol and Alcoholism, 2 (Suppl.), 463–467.Google Scholar
  68. McCreery, M. J., and Hunt, W. A. (1978). Physico-chemical correlates of alcohol intoxication. Neuropharmacology, 17, 451–461.PubMedCrossRefGoogle Scholar
  69. McCusker, C. G., and Brown, K. (1990). Alcohol-predictive cues enhance tolerance to and precipitate “craving” for alcohol in social drinkers. Journal of Studies on Alcohol, 51, 494–499.PubMedGoogle Scholar
  70. Melchior, C. L.. and Tabakoff, B. (1981). Modification of environmentally cued tolerance to ethanol in mice. Journal of Pharmacology and Experimental Therapeutics, 219, 175–180.PubMedGoogle Scholar
  71. Meyer, H. (1899). Welche Eigenschaft der Anasthetica bedingt ihre narkitische Wirkung? Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie and Pharmakologie, 42, 109–118.CrossRefGoogle Scholar
  72. Mhatre, M., and Ticku, M. J. (1989). Chronic ethanol treatment selectively increases the binding of inverse agonists for benzodiazepine binding sites in cultured spinal cord neurons. Journal of Pharmacology and Experimental Therapeutics, 251, 164–168.PubMedGoogle Scholar
  73. Mhatre, M., and Ticku, M. J. (1992). Chronic ethanol administration alters y-aminobutyric acidA receptor gene expression. Molecular Pharmacology, 42, 415–422.PubMedGoogle Scholar
  74. Michaelis, E. K., Mulvaney, M. J. and Freed, W. J. (1978). Effects of acute and chronic ethanol intake on synaptosomal glutamate binding activity. Biochemical Pharmacology 271685–1691.Google Scholar
  75. Miles, M. F., Diaz, J. E., and DeGuzman, V. (1992). Ethanol-responsive gene expression in neural cell cultures. Biochimica et Biophysica Acta, 1138, 268–274.PubMedCrossRefGoogle Scholar
  76. Mochly-Rosen, D., Chang, L., Cheever, L., Kim, M., Diamond, I., and Gordon, A. S. (1988). Chronic ethanol causes heterologous desensitization by reducing a, mRNA. Nature (London), 333, 848–850.Google Scholar
  77. Morrisett, R. A. (1994). Potentiation of N-methyl-D-aspartate receptor-dependent afterdischarges in rat dentate gyrus following in vitro ethanol withdrawal. Neuroscience Letters, 167, 175–178.Google Scholar
  78. Morrisett, R. A., and Swartzwelder, H. S. (1993). Attenuation of hippocampal long-term potentiation by ethanol: A patch-clamp analysis of glutamatergic and GABAergic mechanisms. Journal of Neuroscience, 13, 2254–2272.Google Scholar
  79. Morrow, A. L., Suzdak, P. D., Karanian, J. W., and Paul, S. M. (1988). Chronic ethanol administration alters gamma aminobutyric acid, pentobarbital and ethanol-mediated ‘CI uptake in cerebral cortical synaptoneurosomes. Journal of Pharmacology and Experimental Therapeutics, 246, 158–164.PubMedGoogle Scholar
  80. Morrow, A. L., Devaud, L. L., Bucci, D., and Smith, F. D. (1994). GABAA and NMDA receptor subunit mRNA expression in ethanol dependent rats. Alcohol and Alcoholism, 2 (Suppl.), 91–97.Google Scholar
  81. Murphy, J. M., McBride, W. J., Lumeng, L, and Li, T-K. (1987). Contents of monoamines in forebrain regions of alcohol-preferring (P) and -nonpreferring (NP) lines of rats. Pharmacology, Biochemistry, and Behavior, 26, 389–392.Google Scholar
  82. Nagy, L. E., Diamond, I., Collier, K., Lopez, L., Ullman, B., and Gordon, A. S. (1989). Adenosine is required for ethanol-induced heterologous desensitization. Molecular Pharmacology, 36, 744–748.PubMedGoogle Scholar
  83. Nagy, L. E., Diamond, 1., Casso, D. J., Franklin, C., and Gordon, A. S. (1990). Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleotide transporter. Journal of Biological Chemistry. 265, 1946–1951.Google Scholar
  84. Nagy, L. E., Diamond, 1., and Gordon, A. S. (1991). cAMPdependent protein kinase regulates inhibition of adenosine transport by ethanol. Molecular Pharmacology, 40, 812–817.Google Scholar
  85. Nestler, E. J. (1995). Molecular basis of addictive states. Neuroscientist, 1, 212–220.CrossRefGoogle Scholar
  86. Newlin, D. B., and Thomson, J. B. (1990). Alcohol challenge with sons of alcoholics: A critical review and analysis. Psychological Bulletin, 108, 383–402.PubMedCrossRefGoogle Scholar
  87. Nutt, D., Glue, P., Wilson, S., Groves, S., Coupland, N., and Bailey, J. (1993). Flumazenil in alcohol withdrawal. Alcohol and Alcoholism 2 (Suppl.), 337–341.Google Scholar
  88. O’Brien, C. P. (1996). Drug addiction and drug abuse. In J. G. Hardman, L. E. Limbird, P. B. Molinoff, R. W. Ruddon, and A. G. Gilman (Eds.) Goodman and Gilman’s The pharmacological basis of therapeutics (9th ed., pp. 557–577). New York: McGraw-Hill.Google Scholar
  89. O’Malley, S. S., Jaffe, A. J., Chang, G., Schottenfeld, R. S., Meyer, R. E., and Rounsaville, B. (1992). Naltrexone and coping skills, therapy for alcohol dependence. A controlled study. Archives of General Psychiatry, 49, 881–887.PubMedCrossRefGoogle Scholar
  90. O’Malley, S. S., Jaffe, A. J., Chang, G., Rode, S., Schottenfeld, R. S., Meyer, R. E., and Rounsaville, B. (1996). Six-month follow-up of naltrexone and psychotherapy for alcohol dependence. Archives of General Psychiatry, 53, 217–224.PubMedCrossRefGoogle Scholar
  91. Overton, E. (1896). Über die osmotischen Eigenschaften der Zelle in ihrer Betdeutung flit die Toxikologie and Pharmakologie. Zeitschrift für physikalishe Chemie, 22, 189–209.Google Scholar
  92. Portas, C. M., Devoto, P., and Gessa, G. L. (1994). Effect of ethanol on extracellular 5-hydroxytryptamine output in rat frontal cortex. European Journal of Pharmacology, 270, 123–125.PubMedGoogle Scholar
  93. Przewlocki, R., Hollt, V, Duka, T. H., Kleber, G., Gram-sch, C. H., Haarmann, I., and Herz, A. (1979). Longterm morphine treatment decreases endorphin levels in rat brain and pituitary. Brain Research, 174, 357–361.PubMedCrossRefGoogle Scholar
  94. Rabin, R., and Molinoff, P. B. (1981). Activation of adenylate cyclase by ethanol in mouse striatal tissue. Journal of Pharmacology and Experimental Therapeutics, 216, 129–134.PubMedGoogle Scholar
  95. Rabin, R., and Molinoff, P. B. (1983). Multiple sites of action of ethanol on adenylate cyclase. Journal of Pharmacology and Experimental Therapeutics, 227, 551–556.PubMedGoogle Scholar
  96. Riaz, A., and Faingold, C. L. (1994). Seizures during ethanol withdrawal are blocked by focal microinjection of excitant amino acid antagonists into the inferior colliculus and pontine reticular formation. Alcoholism: Clinical and Experimental Research, 18, 1456–1462.CrossRefGoogle Scholar
  97. Ripley, T. L., and Little, H. J. (1995). Effects on ethanol withdrawal hyperexcitability of chronic treatment with a competitive N-methyl-D-aspartate receptor antagonist. Journal of Pharmacology and Experimental Therapeutics, 272, 112–118.PubMedGoogle Scholar
  98. Rossetti, Z. L., Melis, E, Carboni, S., Diana, M., and Gessa, G. L. (1992). Alcohol withdrawal in rats is associated with a marked fall in extraneuronal dopamine. Alcoholism: Clinical and Experimental Research, 16, 529–532.CrossRefGoogle Scholar
  99. Saito, T., Lee, J. M., and Tabakoff, B. (1985). Ethanol’s effects on cortical adenylate cyclase activity. Journal of Neurochemistry, 44, 1037–1044.PubMedCrossRefGoogle Scholar
  100. Saito, T., Lee, J. M., Hoffman, P. L., and Tabakoff, B. (1987). Effects of chronic ethanol treatment on the 3adrenergic receptor-coupled adenylate cyclase system of mouse cerebral cortex. Journal of Neuroscience, 48, 1817–1822.Google Scholar
  101. Samson, H. H. (1986). Initiation of ethanol reinforcement using a sucrose-substitution procedure in food-and water-sated rats. Alcoholism: Clinical and Experimental Research, 10, 436–442.CrossRefGoogle Scholar
  102. Samson, H. H., Tolliver, G. A., and Schwartz-Stevens, K. (1990). Oral ethanol self-administration: A behavioral pharmacological approach to CNS control mechanisms. Alcohol, 7, 187–191.PubMedCrossRefGoogle Scholar
  103. Sapru, M. K., Diamond, I., and Gordon, A. S. (1994). Adenosine receptors mediate cellular adaptation to ethanol in NG108–15 cells. Journal of Pharmacology and Experimental Therapeutics, 271, 542–548.PubMedGoogle Scholar
  104. Schuckit, M. A. (1985). Ethanol-induced changes in body sway in men at high alcoholism risk. Archives of General Psychiatry, 42, 375–379.PubMedCrossRefGoogle Scholar
  105. Schuckit, M. A. (1994). Low level response to alcohol as a predictor of future alcoholism. American Journal of Psychiatry, 151, 184–189.PubMedGoogle Scholar
  106. Schuckit, M. A., and Gold, E. O. (1988). A simultaneous evaluation of multiple markers of ethanol/placebo challenges in sons of alcoholics and controls. Archives of General Psychiatry, 45, 211–216.PubMedCrossRefGoogle Scholar
  107. Schuckit, M. A., and Smith, T. L. (1996). An 8-year follow-up of 450 sons of alcoholic and control subjects. Archives of General Psychiatry, 53. 202–210.PubMedCrossRefGoogle Scholar
  108. Schulteis, G., Markou, A., Cole, M., and Koob, G. F. (1995). Decreased brain reward produced by ethanol withdrawal. Proceedings of the National Academy of Sciences (USA), 92, 5880–5884.Google Scholar
  109. Schulteis, G., Hyytiä, P, Heinrichs, S. C., and Koob, G. F. (1996). Effects of chronic ethanol exposure on oral self-administration of ethanol or saccharin by Wistar rat. Alcoholism: Clinical and Experimental Research, 20, 164–171.CrossRefGoogle Scholar
  110. Schulz, R., Wüster, M., Duka, T., and Herz, A. (1980). Acute and chronic ethanol treatment changes endorphin levels in brain and pituitary. Psychopharmacology, 68, 221–227.PubMedCrossRefGoogle Scholar
  111. Schwartz-Stevens, K. S., Files, E J., and Samson, H. H. (1992). Effects of morphine and naloxone on ethanol-and sucrose-reinforced responding in nondeprived rats. Alcoholism: Clinical and Experimental Research, 16, 822–832.CrossRefGoogle Scholar
  112. Sdao-Jarvie, K., and Vogel-Sprott, M. D. (1991). Response expectancies affect acquisition and display of behavioral tolerance to alcohol. Alcohol, 8, 491–498.PubMedCrossRefGoogle Scholar
  113. Self, D. W., Terwilliger, R. Z., Nestler, E. J., and Stein, L. (1994). Inactivation of G, G1„ß proteins in nucleus accumbens reduces both cocaine and heroin reinforcement. Journal of Neuroscience, 14, 6239–6247.PubMedGoogle Scholar
  114. Sellers, E. M., and Kalant, H. (1976). Alcohol intoxication and withdrawal. New England Journal of Medicine, 294, 757–762.PubMedCrossRefGoogle Scholar
  115. Simson, P. E., Criswell, H. E., and Breese, G. R. (1993). Inhibition of NMDA-evoked electrophysiological activity by ethanol in selected brain regions: Evidence for ethanol-sensitive and ethanol-insensitive NMDA-evoked responses. Brain Research, 607, 9–16.PubMedCrossRefGoogle Scholar
  116. Snell, L. D., Tabakoff, B., and Hoffman, P. L. (1993). Radioligand binding to the N-methyl-D-aspartate receptor/ionophore complex: Alterations by ethanol in vitro and by chronic in vivo ethanol ingestion. Brain Research, 602, 91–98.PubMedCrossRefGoogle Scholar
  117. Suzdak, P. D., Schwartz, R. D., Skolnick, P., and Paul, S. M. (1986). Ethanol-stimulates gamma-aminobutyric acid receptor mediated chloride transport in rat brain synaptoneurosomes. Proceedings of the National Academy of Sciences (USA), 47, 1942–1947.Google Scholar
  118. Swift, R. M., Whelihan, W, Kuznetsov, O., Buongiorno, G., and Hsuing, H. (1994). Naltrexone-induced alterations in human ethanol intoxication. American Journal of Psychiatry, 151, 1463–1467.PubMedGoogle Scholar
  119. Tabakoff, B., and Hoffman, P. L. (1983). Alcohol interactions with brain opiate receptors. Life Sciences, 32, 197–204.PubMedCrossRefGoogle Scholar
  120. Tabakoff, B., Cornell, N, and Hoffman, R. L. (1986). Alcohol tolerance. Annals of Emergency Medicine, 15, 1005–1012.Google Scholar
  121. Tabakoff, B., Whelan, J. R, Ovchinikova, L., Nhamburo, R, Yoshimura, M., and Hoffman, P. L. (1995). Quantitative changes in G proteins do not mediate ethanol-induced downregulation of adenylyl cyclase in mouse cortical cortex. Alcoholism: Experimental and Clinical Research, 19, 187–194.CrossRefGoogle Scholar
  122. Trevisan, L., Fitzgerald, L. W, Brose, N., Gasic, G. R, Heinemann, S. E, Duman, R. S., and Nestler, E. J. (1994). Chronic ingestion of ethanol up-regulates NMDARI receptor subunit immunoreactivity in rat hippocampus. Journal of Neurochemistry, 62, 1635–1638.PubMedCrossRefGoogle Scholar
  123. Uzbay, T. T., Akarsu, E. S., and Kapaalp, S. O. (1995). Effects of flumazenil on ethanol withdrawal syndrome in rats. Arzneimittelforschung, 45, 120–124.PubMedGoogle Scholar
  124. Victor, M., and Adams, R. D. (1953). The effect of alcohol on the nervous system. In H. H. Merritt and C. C. Hare (Eds.), Metabolic and toxic diseases of the nervous system (pp. 526–573 ). Baltimore: Williams and Wilkins.Google Scholar
  125. Vogel-Sprott, M. D. (1992). Acute recovery and tolerance to low doses of alcohol: Differences in cognitive and motor skill performance. Psychopharmacology, 61, 287–291.CrossRefGoogle Scholar
  126. Vogel-Sprott, M. D., Rawana, E., and Webster, R. (1984). Mental rehearsal of a task under ethanol facilitates tolerance. Pharmacology, Biochemistry, and Behavior, 21, 329–331.Google Scholar
  127. Volpicelli, J. R., Ulm, R. R., and Hopson, N. (1991). Alcohol drinking in rats during and following morphine injections. Alcohol, 8, 289–292.PubMedCrossRefGoogle Scholar
  128. Volpicelli, J. R., Alterman, A. I., Hayashida, M., and O’Brien, C. P. (1992). Naltrexone in the treatment of alcohol dependence. Archives of General Psychiatry, 49, 876–880.PubMedCrossRefGoogle Scholar
  129. Volpicelli, J. R., Watson, N. T., King, A. C., Sherman, C. E., and O’Brien, C. P. (1995). Effect of naltrexone on alcohol high in alcoholics. American Journal of Psychiatry, 152, 613–615.PubMedGoogle Scholar
  130. Waller, M. B., McBride, W. J., Lumeng, L., and Li, T-K. (1983). Initial sensitivity and acute tolerance to ethanol in P and NP lines of rats. Pharmacology, Biochemistry and Behavior, 19, 683–686.CrossRefGoogle Scholar
  131. Wand, G. S., Diehl, A. M., Levine, M. A., Wolfgang, D., and Samy, S. (1993). Chronic ethanol treatment on the beta-adrenergic receptor-coupled adenylate cyclase activity in the central nervous system on two lines of ethanol-sensitive mice. Journal of Biological Chemistry, 268, 2595–2601.PubMedGoogle Scholar
  132. Weiss, F., Lorang, M. T., Bloom, F. E., and Koob, G. E (1993). Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: Genetic and motivational determinants. Journal of Pharmacology and Experimental Therapeutics, 267, 250–258.PubMedGoogle Scholar
  133. Weiss, F., Parsons, L. H., Hyytiä, P, Schulteis, G., Lorang, M. T., Bloom, E. E., and Koob, G. F. (1996). Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. Journal of Neuroscience, 16, 3474–3485.PubMedGoogle Scholar
  134. Whittington, M. A., Lambert, J. D., and Little, H. J. (1995). Increased NMDA receptor and calcium channel activity underlying ethanol withdrawal hyperexcitability. Alcohol and Alcoholism, 30, 105–114.PubMedGoogle Scholar
  135. Wixon, H. N., and Hunt, W. A. (1980). Effect of acute and chronic ethanol treatment on gamma-aminobutyric acid levels and on aminooxyacetic acid-induced GABA accumulation. Substance and Alcohol Actions/Misuse, /, 481–491.Google Scholar
  136. Yang, X., Criswell, H. E., Simson, P., Moy, S, and Breese, G. R. (1996). Evidence for a selective effect of ethanol on NMDA responses: Ethanol affects a subtype of the ifenprodil-sensitive NMDA receptor. Journal of Pharmacology of Experimental Therapeutics, 178, 114–124.Google Scholar
  137. Yoshimoto, K., McBride, W. J., Lumeng, L., and Li, T-K. (1992). Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats. Alcoholism: Clinical and Experimental Research, 16, 781–785.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Walter A. Hunt
    • 1
  1. 1.Neurosciences and Behavioral Research BranchNational Institute on Alcohol Abuse and AlcoholismBethesdaUSA

Personalised recommendations