Skip to main content

Protective Effects of Superoxide Dismutase Related to Its Preferential Binding to Monocytes

  • Chapter
  • 455 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 296))

Abstract

Superoxide dismutase (SOD) was used as a drug under the trade name Palosein before the enzymatic nature of this metallo-protein and the importance of superoxide release by inflammatory cells were recognized. The beneficial effects observed in joint disease of horses may have determined the choice of rheumatid arthritis and osteoarthritis as the first human diseases to be treated with this antioxidant enzyme. The first pilot study with bovine Cu—Zn SOD was published by Lund-Olesen and Menander (1974), and the promising results were confirmed in the following by several placebo-controlled double-blind clinical trials in patients with osteoarthritis (Flohé, 1988). However, improvement was not observed for all clinical and laboratory parameters chosen for the study. Intraarticular injection appeared to be more efficient than systemic treatment. Many other diseases were treated with SOD, including ischemia-reperfusion injury, organ transplantation, side effects of radiation and chemotherapy. For a large number of pathologies, however, the reports remained anecdotical. The general acceptance of SOD as a drug was retarded for various reasons, among which the results of pharmacodynamic studies were probably the most important. Because of the rapid clearance of the enzyme through the kidney, the clinical observations of therapeutic effects were doubted. Efforts were made to increase its maintainance in the circulation by binding the enzyme to various macromolecules, in particular polyethylene glycol. There was also considerable discussion with respect to the dosage. The first clinical trials in rheumatic disease were based on the doses found to beefficient in animal models of inflammation and varied between 2-16 mg daily. These models of inflammation had shown a bell-shaped dose response curve, higher doses being less effective than lower doses (Baret et al., 1984; Michelson et al., 1986; Vaille et al., 1990). Similar observations were reported later for SOD application after reperfusion of ischemic organs, where very high doses had been applied by bolus injection (Omar and McCord, 1990). The concept that SOD acts therapeutically according to its documented catalytic function on superoxide anion radicals released into the extracellular space was also doubtful, since there was no correlation between antiinflammatory activity and the level of circulating exogenous SOD (Baret et al., 1984). It was suggested that the anti-inflammatory action of exogenous SOD is due to attachment of the enzyme to the cell membrane (Michelson et al., 1986). This notion was supported by observations from our laboratory, demonstrating prevention of perinuclear halo formation in UVA-exposed fibroblast cultures by pretreatment with exogenous SOD, even after rinsing of the cells and resuspension in fresh, SOD-free medium before irradiation (Emerit et al., 1981). Recent observations of anticlastogenic effects in SOD-pretreated and washed lymphocyte cultures yielded similar results, which stimulated the investigations reported here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baret, A., Jadot, G., Puget, K., 1984, Pharmacocinetic and antiinflammatory properties in the rat of superoxide dismutases from various species. Biochem. Pharmacol. 33: 2755–2760.

    Article  CAS  Google Scholar 

  • Beckman, J.S., Minor, R.L., White, C.W., Repine, J.E., Rosen, G.M., Freeman, B.A., 1988, Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J. Biol. Chem. 263: 6884–6892.

    CAS  Google Scholar 

  • Blakeley, W.F., Fuciarelli, A.F., Wegher, B.J., Dizdaroglu, M., 1990, Hydrogen peroxide induced base damage in deoxyribonucleic acid. Radiation Res. 121: 338–343.

    Article  Google Scholar 

  • Dini, L., and Rotilio, G., 1989, Electron microscopic evidence for endocytosis of superoxide dismutase by hepatocytes using protein-gold adducts. Biochem. Biophys. Res. Commun. 162: 940–944.

    Article  CAS  Google Scholar 

  • Emerit, I., 1994, Reactive oxygen species, chromosome mutation and cancer: Possible role of clastogenic factors in carcinogenesis. Free Radic. Biol. Med. 16: 99–109.

    Article  CAS  Google Scholar 

  • Emerit, I., Michelson, A.M., Martin, E., Emerit, J., 1981, Perinuclear halo formation as an indication of phototoxic effects. Dermatologica 163: 295–299.

    Article  CAS  Google Scholar 

  • Emerit, I. Garban, F., Vassy, J., Levy, A., Filipe, P., Freitas, J., 1996, Superoxide-mediated clastogenesis and anti-clastogenic effects of exogenous superoxide dismutase. Proc. Natl. Acad. Sci. USA 93:12799–12804.

    Google Scholar 

  • Flohé, L., 1988, Superoxide dismutase for therapeutic use: Clinical experience, dead ends and hopes. Mol. Cellul. Biochem. 84: 123–131.

    Article  Google Scholar 

  • Kyle, M.E., Nakae, D., Sakaida, I., Miccadei, S., Farber, J.L., 1988, Endocytosis of superoxide dismutase is required in order for the enzyme to protect hepatocytes from the cytotoxicity of hydrogen peroxide. J. Biol. Chem. 263: 3784–3789.

    CAS  Google Scholar 

  • Lund-Olesen, K., Menander K.B., 1974, Orgoteine, a new antiinflammatory metalloprotein drug: Preliminary evaluation of clinical efficacy and safety in degenerative joint disease. Curr. Ther. Res. 16: 706–717.

    CAS  Google Scholar 

  • Mello-Filho, A.C., Meneghini, R., 1984, In vivo formation of single strand breaks in DNA is mediated by the Haber Weiss reaction. Biochem. Biophys. Acta 781: 56–63.

    Article  CAS  Google Scholar 

  • Michelson, A.M., Puget, K., 1980, Cell penetration by exogenous superoxide dismutase. Acta Physiol. Scand. Suppl. 492: 67–80.

    CAS  Google Scholar 

  • Michelson, A.M., Puget, K, Jadot, G., 1986, Anti-inflammatory activity of superoxide dismutases: Comparison of enzymes from different sources in different models in rats: Mechanism of action. Free Radic. Res. Commun. 2: 43–56.

    Article  CAS  Google Scholar 

  • Nordenson, I., 1977., Effect of superoxide dismutase and catalase on spontaneously occuring chromosome breaks in patients with Fanconi’s anemia. Hereditas 82: 147–149.

    Google Scholar 

  • Nordenson, I., Beckman, G., Beckman L., 1976, The effect of superoxide dismutase and catalase on radiation-induced chromosome breaks. Hereditas 82: 125–128.

    Article  CAS  Google Scholar 

  • Ochi, T., Cerutti, P., 1987, Clastogenic action of hydroperoxy, 5,8,11,13-icosatetraenoic acids in mouse embryo fibroblasts C3H/10 1/2. Proc. Natl. Acad. Sci. USA 84: 990–994.

    Article  CAS  Google Scholar 

  • Omar, B.A., McCord, J.M., 1990, The cardioprotective effect of Mn-Superoxide dismutase is lost at high doses in the postischemic isolated rabbit heart. Free Radic. Biol. Med. 9: 465–479.

    Article  CAS  Google Scholar 

  • Vaille, A., Jadot, G., Elizagaray, A., 1990, Anti-inflammatory activity of various superoxide dismutases on polyarthritis in the Lewis rat. Biochem. Pharmacol. 39: 247–255.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Emerit, I., Vassy, J., Garban, F., Filipe, P., Freitas, J. (1998). Protective Effects of Superoxide Dismutase Related to Its Preferential Binding to Monocytes. In: Özben, T. (eds) Free Radicals, Oxidative Stress, and Antioxidants. NATO ASI Series, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2907-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2907-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3292-1

  • Online ISBN: 978-1-4757-2907-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics