Mechanisms of Antioxidant Action

  • Enrique Cadenas
Part of the NATO ASI Series book series (NSSA, volume 296)


Oxidative stress can be viewed as the disturbance in the oxidant—antioxidant balance in favor of the former (Sies, 1985). Over the years, the research disciplines interested in oxidative stress have been growing steadfastedly, thus increasing our knowledge of the importance of the cell redox status and aiding at the recognition of oxidative stress as a process with implications for a large number of pathophysiological states. From this multi- and interdisciplinary interest in oxidative stress emerges a picture that attest to the vast consequences of the complex and dynamic interplay of oxidants and antioxidants in a cellular setting.


Uric Acid Lipoic Acid Peroxyl Radical Radical Character Synthetic Antioxidant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C.M., Hallberg, A., Linden, M., Brattsand, R., Moldéus, P., and Cotgreave, I.A., 1994, Antioxidant activity of some diarylselenides in biological systems. Free Rad. BioL Med. 16: 17–28.CrossRefGoogle Scholar
  2. Aruoma, O.I., and Halliwell, B., 1989, Inactivation of a1-antiproteinase by hydroxyl radicals. The effect of uric acid. FEBS Lett. 244: 76–80.CrossRefGoogle Scholar
  3. Asmus, K.-D., 1990, Sulfur-centered free radicals. Meth. Enzymol. 186: 168–180.CrossRefGoogle Scholar
  4. Azzi, A., Boscoboinik, D., Cantoni, 0., Fazzio, A., Marilley, D., O’Donnel, V., Özer, N.K., Spycher, S., TabatabaVakili, S., and Tasinato, A., 1997, Modulation by oxidants and antioxidants of signal transduction and smooth muscle cell proliferation, In Oxidative Stress and Signal Transduction, ( Forman, H.J., and Cadenas, E., eds.), pp. 323–342, Chapman & Hall, New York.CrossRefGoogle Scholar
  5. Becker, B.H., 1993, Towards the physiological function of uric acid. Free Rad. Biol. Med. 14: 615–631.CrossRefGoogle Scholar
  6. Beyer, R.E., and Ernster, L., 1990, The antioxidant role of coenzyme Q. In Highlights in Ubiquinone Research (Lenazz, G., Barnabei, 0., Rabbi, A., and Battino, M., eds.), pp. 191–213, Taylor and Francis, London. Bielski, B.H.J., 1982, Chemistry of ascorbic acid radicals. In Ascorbic Acid: Chemistry, Metabolism, and Uses ( Seib, P.A., and Tolbeert, B.M., eds.), pp. 81–100, American Chemical Society, Washington.Google Scholar
  7. Bielski, B.H.J., and Cabelli, D.E., 1991, Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. /nt. J. Radial. Biol. 59: 291–319.CrossRefGoogle Scholar
  8. Bieri, J.G., and Tolliver, T.J., 1981, On the occurrence of a-tocopherylquinone in rat tissue. Lipids 16: 777–789.CrossRefGoogle Scholar
  9. Boveris, A., and Cadenas, E., 1997, Cellular sources and steady-state levels of reactive oxygen species. In Oxygen, Gene Expression, and Cellular Function ( Clerch, L.B., and Massaro, D.J., eds.), pp. 1–25, Marcel Dekker Inc., New York.Google Scholar
  10. Bowry, V.W., Ingold, K.U., and Stocker, R., 1992, Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a prooxidant. Biochem. 1 288: 341–344.Google Scholar
  11. Bowry, V.W., and Stocker, R., 1993, Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J. Am. Chem. Soc. 115: 6029–6044.Google Scholar
  12. Brown, L.A.S., and Jones, D.P., 1997, The biology of ascorbic acid, In Handbook of Synthetic Antioxidants, ( Packer, L., and Cadenas, E., eds.), pp. 117–154, Marcel Dekker Inc., New York.Google Scholar
  13. Buettner, G.R., and Jurkiewicz, B.A., 1993, Ascorbate free radical as a marker of oxidative stress: An EPR study. Free Rad. Biol. Med. 14: 49–55.CrossRefGoogle Scholar
  14. Buettner, G.R., and Jurkiewicz, B.A., 1997, Chemistry and Biochemistry of Ascorbic acid, In Handbook of Synthetic Antioxidants, ( Packer, L., and Cadenas, E., eds.), pp. 91–115, Marcel Dekker Inc., New York.Google Scholar
  15. Cadenas, E., Boveris, A., Ragan, C.I., and Stoppani, A.O.M., 1977, Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heart mitochondria. Arch. Biochem. Biophys. 180: 248–257.CrossRefGoogle Scholar
  16. Cadenas, E., Merenyi, G., and Lind, J., 1989, Pulse radiolysis study on the reactivity of trolox C phenoxyl radical with superoxide anion. FEBS Lett. 253: 235–238.CrossRefGoogle Scholar
  17. Cadenas, E., Hochstein, P., and Ernster, L, 1992, Pro-and antioxidant functions of quinones and quinone reductases in mammalian cells. Adv. Enzymol. 65: 97–146.Google Scholar
  18. Cadenas, E., and Packer, L. (eds.), 1996, Handbook of Natural Antioxidants, Marcel Dekker Inc., New York.Google Scholar
  19. Clerch, L.B., and Massaro, D.J. (eds.), 1997, Oxygen, Gene Expression, and Cellular Function, Marcel Dekker Inc., New York.Google Scholar
  20. Cotgreave, I.A., and Engman, L., 1997, The development of diaryl chalcogenides and a-(phenylselenyl) ketones with antioxidant and glutathione peroxidase-mimetic properties, In Handbook of Synthetic Antioxidants ( Packer, L., and Cadenas, E., eds.), pp. 305–320, Marcel Dekker Inc., New York.Google Scholar
  21. D’Arcy-Dohert, M., Wilson, I., Wardman, P., Basra, J., Patterson, L.H., and Cohen, G.M., 1986, Peroxidase activation of 1-naphthol to pahthoxy or naphthoxy-derived radicals and their reactions with glutathione, Chem. Biol. Interact. 58: 199–215.CrossRefGoogle Scholar
  22. Floyd, R.A., Liu, G.-J., and Wong, P.K., 1997, Nitrone radical traps as protectors of oxidative damage in the central nervous system, In Handbook of Synthetic Antioxidants ( Packer, L., and Cadenas, E., eds.), pp. 339–350, Marcel Dekker Inc., New York.Google Scholar
  23. Forman, H.J., and Cadenas, E. (eds.), 1997, Oxidative Stress and Signal Transduction, Chapman and Hall, New York.Google Scholar
  24. Forsmark, P., Aberg, F., Norling, B., Nordenbrand, K., Dallner, G., and Ernster, L., 1991, Vitamin E and ubiquinol as inhibitors of lipid peroxidation in biological membranes. FEBS Lett. 285: 39–43.Google Scholar
  25. Giulivi, C., and Cadenas, E., 1994, Ferrylmyoglobin: Formation and chemical reactivity toward electron-donating compounds. Meth. Enzymol. 233: 189–202.CrossRefGoogle Scholar
  26. Haennen, G.R.M.M., and Bast, A., 1991, Scavenging of hypochlorous acid by lipoic acid. Biochem. Pharmacol. 42: 2244–2246.CrossRefGoogle Scholar
  27. Halliwell, B., 1997, Uric acid: An example of antioxidant evaluation, In Handbook of Antioxidants ( Cadenas, E., and Packer, L., eds.), pp. 243–258, Marcel Dekker Inc., New York.Google Scholar
  28. Hensley, K., Carney, J.M., Stewart, C.A., Tabatabaie, T., Pye, Q., and Floyd, R.A., 1997, Nitrone-based free radical traps as neuroprotective agents in cerebral ischaemia and other pathologies. Int. Rev. Neurobiol. 40: 299–317.CrossRefGoogle Scholar
  29. Imlay, J.A., and Fridovich, I., 1991, Assay of metabolic superoxide production in Escherichia Coli. J. Biol. Chem. 266: 6957–6965.Google Scholar
  30. Ingold, K.U., Bowry, V.S., Stocker, R., and Wallilng, C., 1993, Autoxidation of lipids and antioxidation by a-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: Unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein, Proc. Natl. Acad. Sci. USA 90: 45–49.CrossRefGoogle Scholar
  31. Kittridge, K., and Willson, R.L., 1984, Uric acid substantially enhances the free radical inactivation of alcohol dehydrogenase. FEBS Leu. 170: 162–164.CrossRefGoogle Scholar
  32. Liebler, D.C., Kaysen, K.L., and Kennedy, T.A.S., 1989, Redox cycles of vitamin E: Hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxyl)tocopherones. Biochemistry 28: 9772–9777.CrossRefGoogle Scholar
  33. Maiorino, M., Roveri, A., Coassin, M., and Ursini, F. (1988), Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51). Biochem. Pharmacol. 37: 2267–2271.CrossRefGoogle Scholar
  34. Maples, K.R., and Mason, R.P., 1988, Free radical metabolite of uric acid. J. Biol. Chem. 263: 1709–1712.Google Scholar
  35. Masumoto, H., and Sies, H., 1996, The reaction of ebselen with peroxynitrite. Chem. Res. Toxicol. 9: 262–267.CrossRefGoogle Scholar
  36. Mehlhorn, R.J., and Swanson, C.E., 1992, Nitroxide-stimulated H202 decomposition by peroxidases and pseudo-peroxidases. Free Radic. Res. Comms. 17: 157–175.CrossRefGoogle Scholar
  37. Mehlhorn, R.J., and Gomez, J., 1993, Hydroxyl and alkoxyl radical production by oxidation products of metmyoglobin. Free Radic. Res. Comms. 18: 29–41.CrossRefGoogle Scholar
  38. Noguchi, N., and Niki, E., 1997, Antioxidant properties of Ebselen, In Handbook of Synthetic Antioxidants ( Packer, L., and Cadenas, E., eds.), pp. 285–304, Marcel Dekker Inc., New York.Google Scholar
  39. Ordoflez, I.D., and Cadenas, E., 1992, Thiol oxidation coupled to DT-diaphorase-catalyzed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase. Biochem. J. 286: 481–490.Google Scholar
  40. Packer, L., and Cadenas, E. (eds.), 1997, Handbook of Synthetic Antioxidants, Marcel Dekker Inc., New York Packer, L., Witt, E.H., and Tritschler, H.J., 1997, Antioxidant properties and clinical applications of alpha-lipoic acid and dihydrolipoic acid. In Handbook of Antioxidants (Cadenas, E., and Packer, L., eds.), pp. 545–591, Marcel Dekker Inc., New York.Google Scholar
  41. Peinado, J., Sies, H., and Akerboom, T.P.M., 1989, Hepatic lipoate uptake. Arch. Biochem. Biophys. 273:389–395. Rice-Evans, C.A., and Diplock, A.T., 1993, Current status of antioxidant therapy. Free Radical Biol. Med. 15: 77–96.Google Scholar
  42. Roussyn, I., Briviba, K., Masumoto, H., and Sies, H., 1996, Selenium-containing compounds protect DNA from damage caused by peroxynitrite. Arch. Biochem. Biophys. 330: 216–218.CrossRefGoogle Scholar
  43. Samuni, A., and Krishna, M.C., 1997, Antioxidant properties of nitroxides and nitroxide SOD mimics, In Handbook of Synthetic Antioxidants ( Packer, L., and Cadenas, E., eds.), pp. 351–373, Marcel Dekker Inc., New York.Google Scholar
  44. Schöneich, C., Narayanaswami, V., Asmus, K.-D., and Sies, H., 1990, Reactivity of ebselen and related selenoorganic compounds with 1,2-dichloroethane radical cations and halogenated peroxyl radicals. Arch. Biochem. Biophys. 282: 18–25.CrossRefGoogle Scholar
  45. Scurlock, R., Rougee, M., Bensasson, R.V., Evers, M., and Dereu, N., 1991, Deactivation of singlet molecular oxygen by organ-selenium compounds exhibiting glutathione peroxidase activity and by sulfur-containing homologs. Photochem. Photobiol. 54: 733–736.CrossRefGoogle Scholar
  46. Sies, H. (ed.), 1985, Oxidative Stress, Academic Press, London.Google Scholar
  47. Sies, H., 1993, Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Rad. Biol. Med. 14: 313–323.CrossRefGoogle Scholar
  48. Sies, H. (ed.), 1997, Antioxidants in Disease Mechanisms and Therapy, Academic Press, San Diego.Google Scholar
  49. Sies, H., and Masumoto, H., 1997, Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite, In Antioxidants in Disease Mechanisms and Therapy ( Sies, H., ed.), pp. 229–246, Academic Press, London.Google Scholar
  50. Simic, M.G., and Jovanovic, S.V., 1989, Antioxidation mechanisms of uric acid. J. Am. Chem. Soc. 111: 5778–5782.CrossRefGoogle Scholar
  51. Surdhar, P.S., and Armstrong, D.A., 1986, Redox potential of some sulfur-containing radicals, J. Phys. Chem. 90: 5915–5917.CrossRefGoogle Scholar
  52. Tabatabaie, T., and Floyd, R.A., 1994, Susceptibility of glutathione peroxidase and glutathione reductase to oxida- tive damage and the protective effect of spin trapping agents. Arch. Biochem. Biophys. 314: 112–119.CrossRefGoogle Scholar
  53. Tabatabaie, T., Kotake, Y., Wallis, G., Jacob, J.M., and Floyd, R.A., 1997, Spin trapping agent phenyl N-tert-butylnitrone protects against the onset of drug-induced insulin-dependent diabetes mellitus. FEBS Lett. 407: 148–152.CrossRefGoogle Scholar
  54. Tabatabaie, T., Stewart, C., Pye, Q., Kotake, Y., and Floyd, R.A., 1996, In vivo trapping of nitric oxide in the brain of neonatal rats treated with the HIV-1 envelope protein gp120: Protective effectgs of a-phenyl-tert-butylnitrone. Biochem. Biophys. Res. Commun. 221: 386–390.Google Scholar
  55. von Sonntag, C., 1987, The Chemical Basis of Radiation Biology, Taylor and Francis, London.Google Scholar
  56. Wardman, P., 1988, Conjugation and oxidation of glutathione via thiyl free radicals. In Glutathione Conjugation, Mechanisms, and Biological Significance ( Sies, H., and Ketterer, B., eds.), pp. 44–72, Academic Press, London.Google Scholar
  57. Wardman, P., 1990, Thiol reactivity towards towards drugs and radicals: Some implications in the radiotherapy and chemotherapy of cancer. In Sulfur-centered Reactive Intermediates in Chemistry and Biology (Chatgilialoglu, C., and Asmus, K.-D., eds.), pp. 415–427, Plenum Press, New York.Google Scholar
  58. Wilson, I., Wardman, P., Cohen, G.M., and D’Arcy-Doherty, M., 1986, Reductive role of glutathione in the redox cycling of oxidizable drugs. Biochem. Pharmacol. 35: 21–22.CrossRefGoogle Scholar
  59. Willson, R.L., Dunster, C.A., Forni, L.G., Gee, C.A., and Kittridge, K.J., 1985, Organic free radicals and proteins in biochemical injury: Electron-or hydrogen-transfer reactions? Phil. Trans. R. Soc. Lond. B 311: 545–563.CrossRefGoogle Scholar
  60. Winterbourn, C.C., and Munday, R., 1990, Concerted action of reduced glutathione and superoxide dismutase in preventing redox cycling of dihydropyrimidines, and their role in atnioxidant defence, Free Rad. Res. Commun. 8: 287–293.CrossRefGoogle Scholar
  61. Young, H.K., Floyd, R.A., Maidt, M.L., and Dynlacht, J.R., 1996, Evaluation of nitrone spin-trapping as radioprotectors. Radiat. Res. 146: 227–231.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Enrique Cadenas
    • 1
  1. 1.Department of Molecular Pharmacology and Toxicology School of PharmacyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations