Advertisement

The Role of Free Radicals in Ischemic Injury and the Precondition Status

  • J. F. Koster
  • W. Sluiter
Chapter
Part of the NATO ASI Series book series (NSSA, volume 296)

Abstract

This chapter is focused on the role of iron in the mechanism of ischemic injury and the possible involvement of free radicals in preconditioning. Various hypotheses have been proposed for the mechanism of preconditioning.

Keywords

Ischemic Precondition Ischemic Insult Ischemic Period Cytosolic Calcium Concentration Reperfusion Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogoyevitch, M.A., Gillesie-Brown, J., Ketterman, A.J., Fuller, S.J. Ben-Levy, R., Ashworth, A., Marshall, C.J., and Sugden, P.H., 1996, Stimulation of the stress activated mitogen activated protein kinase subfamilies in perfused heart, Circ. Res. 79: 162–173.CrossRefGoogle Scholar
  2. Bolli, R., Zughaib, M., Li, X-Y., Tang, X-L., Sun, J.Z., Triana, J.F., and McCay, P.B., 1995, Recurrent ischemia in the canine heart causes recurrent burst of free radical production that have a cumulative effect on contractile functions, J. Clin. Invest. 96: 1066–1084.CrossRefGoogle Scholar
  3. Bossam, D.A., Hanson, A.K., Bose, S.K., and McCord, J.M., 1991, Ischemic preconditioning is not mediated by free radicals in the isolated rabbit heart, Free Rad. Biol. Med. 11: 517–520.CrossRefGoogle Scholar
  4. Cano, E., and Mahadevan, L.C., 1995, Parallel signal processing among mammalian MAPKs, Trends Biochem, Sci. 20: 117–122.Google Scholar
  5. Culcasi, M., Pietri, S., and Cazzone, P.J., 1989, Use of 3,3,5,5-tetramethyl-l-pyrroline-1-oxide spin trap for the continuous flow ESR monitoring of hydroxyl radical concentration in the ischemic and reperfused myocardium, Biochem. Biophys. Res. Commun. 164: 1274–1280.CrossRefGoogle Scholar
  6. Daum, G., Eisenmann-Tappe, I., Fries, H.-W., Troppmair, J., and Rapp, U.R., 1994, The ins and outs of Ref kinases, Trends Biochem. Sci. 19: 474–480.CrossRefGoogle Scholar
  7. Davis, R.J., 1994, MAPKS: new JNK expands the group, Trends Biochem. Sci. 19: 470–473.CrossRefGoogle Scholar
  8. Fliss, H., and Gattinger, D., 1996, Apoptosis in ischemic reperfused rat myocardium, Circ. Res. 79: 949–956.CrossRefGoogle Scholar
  9. Gorlick, P.B., Davies, M.J., Hearse, D.J., and Slater, T.F., 1987, Direct detection of free radicals in the reperfused rat heart using electron spin resonance, Circ. Res. 61: 757–760.CrossRefGoogle Scholar
  10. Gottlieb, R.A., Gruel, D.L., Zhu, J.Y., and Engler, B., 1996, Preconditioning in rabbit cardiomyocytes, J. Clin. Invest. 97: 2391–2398.CrossRefGoogle Scholar
  11. Inamoto, T., Miura, T., Aduski, T., Nolo, T., Ogawa, T., Tsuchida, A., and Iimura, O. 1991, Myocardial infarct size limiting effect of ischemic preconditioning was not alternated by oxygen free radical scavengers in the rabbit, Circulation 83: 1015–1022.CrossRefGoogle Scholar
  12. Knight, R.J., and Buxton, D.B., 1996, Stimulation of c-gen kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart, Biochem. Biophys. Res. Commun. 218: 83–88.Google Scholar
  13. Lagerstrom, C.F., Walker, W.E., and Taegtmeyer, H., 1988, Failure of glycogen depletion to improve left ventricular function of the rabbit heart after hypothermic ischemic arrest, Circ. Res. 63: 81–86.CrossRefGoogle Scholar
  14. Lanson, C.S., and Downy, J.M., 1993, Preconditioning: state of the art myocardial protection, Cardiovasc. Res. 27: 542–550.CrossRefGoogle Scholar
  15. Lim, Y., Ythrehus, K., and Downey, J.M., 1994, Evidence that translocation of protein kinase C play a key event during ischemic preconditioning of rabbit myocardium, J. Mol. Cell. Cardiol. 26: 661–668.CrossRefGoogle Scholar
  16. Murry, C.E., Jennings, R.B., and Reimer, K.A., 1986, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation 74: 1124–1136.CrossRefGoogle Scholar
  17. Murry, C.E., Richard, V.J., Jennings, R.B., and Reimer, K.A., 1988, Precondition with ischemia: Is the productive effect mediated by free radical induced myocardial stunning? (Abstract) Circulation 78 (Suppl. 11): 77.Google Scholar
  18. Neely, J.R., and Grotyohan, L.W., 1984, Role of glycolytic products in damage to the ischemic tissue, Circ. Res. 55: 816–824.CrossRefGoogle Scholar
  19. Nohl, H., Stolze, K., Napetochnig, S., and Ishikawa, T., 1991, Is oxidative stress primarily involved in reperfusion injury of the ischemic heart? Free Rad. Biol. Med. 11: 581–588.CrossRefGoogle Scholar
  20. Osada, M., Takeda, S., Sato, T., Komori, S., and Tamura, K., 1994, The protective effect of preconditioning on reperfusion arrhythmias is lost by treatment with superoxide dismutase, Jpn. Cir. J. 58: 259–263.CrossRefGoogle Scholar
  21. Pietri, S., Culcasi, M., and Cozzone, P.J., 1989, Real-time continuous flow spin trapping of hydroxyl free radical in the ischemic and postischemic myocardium, Eur. J. Biochem. 186: 163–173.CrossRefGoogle Scholar
  22. Prasad, M.A., Lim, X., Ronson, J.A., Engelman, R.M., Jones, R., George, A., and Das, K.A., 1992, Reduced free radical generation during reperfusion of hypothermically arrested hearts, Mol. Cell. Biochem. 111: 97–102.CrossRefGoogle Scholar
  23. Richard, V., Tron, C., and Thiullez, C., 1993, Ischaemic preconditioning is not mediated by oxygen free radicals in rats, Cardiovasc. Res. 27: 2016–2021.Google Scholar
  24. Schneider, C.A., Nguyen, V.T.B., and Taegtmeyer, H., 1991, Feeding and fastging determing postischemic glucose utilization in isolated working rat hearts, Am. J. Physiol. 260: H542 - H548.Google Scholar
  25. Schneider, C.A., and Taegtmeyer, H., 1991, Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the isolatged working rat heart, Circ. Res. 68: 1045–1050.CrossRefGoogle Scholar
  26. Smith, J.K., Gordon, D.L. Grisham, M.B., Granger, D.N., and Korthuis, R.J., 1989, Role of iron in post ischemic microvascular injury, Am. J. Physiol. 256: H1472 - H1477.Google Scholar
  27. Steenbergen, C., Fralix, T.A., and Murphy, E., 1993, Role of increased cytosolic free calcium concentrations in myocardial ischemic injury, Basic Res. Cardiol. 88: 456–470.CrossRefGoogle Scholar
  28. Steenbergen, C., Perlman, M.E., London, R.E., and Murphy, E., 1993, Mechanism of preconditioning. Ionic alterations, Circ. Res. 72: 112–125.CrossRefGoogle Scholar
  29. Tanaka, M., Fujiwara, H., Yomasaki, K., Sasayama, S., 1994, Superoxide dismutase and N-2 mercaptopropionylglycine alternate infarction size limitation effect of ischaemia preconditioning in the rabbit, Cardiovasc. Res. 28: 980–986.CrossRefGoogle Scholar
  30. Toni, M., and Neely, J.R., 1990, Na+ accumulation increases calcium overload and impairs function of an anoxic rat heart, J. Mol. Cell. Cardiol. 22: 57–72.CrossRefGoogle Scholar
  31. Van der Kraaij, A.A.M., Van Eijk, H.G., and Koster, J.F., 1989, Prevention of post-ischemic cardiac injury by the orally active chelator 1,2-dimethyl-3-hydroxy-4-pyridone (LI) and the antioxidant (+)-cyanidant 3, Circulation 80: 158–164.CrossRefGoogle Scholar
  32. Van der Kraaij, A.A.M., Mostert, L.J., Van Eijk, H.G., and Koster, J.F., 1988, Iron load increases the susceptitility of rat hearts towards reperfusion damage. Protoection by the anti-oxidant (+)-cyanidanol-3 and desferal. Circulation 78: 442–449.CrossRefGoogle Scholar
  33. Voogd, A., Sluiter, W., Van Eijk, H.G. and Koster, J.F., 1992, Low molecular weight iron and the oxygen paradox in isolated rat hearts, J. Clin. Invest. 90: 2050–2055.CrossRefGoogle Scholar
  34. Wolfe, C.L., Sievers, R.E., Visseron, F.L.J., and Donnely, T.J., 1993, Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment, Circulation 87: 881–892.CrossRefGoogle Scholar
  35. Wyatt, D.H., Edmonds, M.C., Rubio, R., Berne, R.M., Lasley, R.D., and Mentzner, R.M., 1989, Adenosine stimulated glycolytic flux in isolated perfused rat hearts by A1-adenosine receptors, Am. J. Physiol. 257: H1952 - H1957.Google Scholar
  36. Xuehun, L., Prasad, R., Engelman, R., Jones, R.M., and Das, D.K., 1991, Role of iron in membrane phospholipid breakdown in ischemic perfused rat hearts, Am. J. Physiol. 259: H1101–HI107.Google Scholar
  37. Zweier, J.L., 1988, Measurements of superoxide free radicals in perfused heart, J. Biol. Chem. 263: 1353–1357.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J. F. Koster
    • 1
  • W. Sluiter
    • 1
  1. 1.Department of Biochemistry Cardiovascular Research Institute COEUR School of Medicine and Health SciencesErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations