Advertisement

The Role of Free Radical Mediation of Protein Oxidation in Aging and Disease

  • Earl R. Stadtman
Chapter
Part of the NATO ASI Series book series (NSSA, volume 296)

Abstract

A role of protein oxidation in aging is indicated by the following observations: The cellular level of oxidized protein increases with animal age. Age-related changes in enzyme activities can be mimicked by treatment of enzymes from young animals with reactive oxygen species (ROS) in vitro. Exposure of animals to conditions of oxidative stress leads to an increase in the intracellular level of oxidized protein. Factors that increase the life span of animals lead also to a decrease in the level of oxidized protein and vice versa. Many age-related diseases are associated with elevated levels of oxidized proteins. Some age-related changes in enzyme activities and cognitive functions can be reversed by exposing old animals to free radical spin traps. The age-related increase in oxidized proteins is a complex function of the balance between a multiplicity of prooxidants, antioxidants, and the activities of proteases that selectively degrade the oxidized forms of proteins.

Keywords

Glutamine Synthetase Protein Carbonyl Protein Oxidation Oxidative Modification Carbonyl Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S. and Sohal, R. S., 1993, Relationship between aging and susceptibility to protein oxidative damage, Biochem. Biophys. Res. Commun. 194, 1203–1206.CrossRefGoogle Scholar
  2. Ames, B. N., Shigenaga, M. K., and Hagen, T. M., 1993, Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA 90, 7915–7922.CrossRefGoogle Scholar
  3. Amici, A., Levine, R. L., Tsai, L., and Stadtman, E. R., 1989, Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed reactions, J. Biol. Chem. 264, 3341–3346.Google Scholar
  4. Amstad, P., Moret, R., and Cerotti, P., 1994, Glutathione peroxidase compensates for the hypersensitivity of Cu,Zn-superoxide dismutase overproducers to oxidant stress, J. Biol. Chem. 269, 1606–1609.Google Scholar
  5. Ando, Y., Nyhlin, N., Suhr, O., Holmgren, G., Uchida, K., Sahly, M. E., Yamashita, T., Terasaki, H., Nakamura, M., Uchino, M., and Ando, M., 1997, Oxidative stress is found in amyloid deposits in systemic amyloidosis, Biochem. Biophys. Res. Commun. 232, 497–502.CrossRefGoogle Scholar
  6. Ayene, I. S., Dodia, C., and Fisher, A. B., 1992, Role of oxygen in oxidation of lipid and protein during ischemia/reperfusion in isolated perfused rat lung, Arch. Biochem. Biophys. 296, 183–189.CrossRefGoogle Scholar
  7. Bandy, B. and Davison, A. J., 1990, Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging, Free Rad. Biol. Med. 8, 523–539.CrossRefGoogle Scholar
  8. Benzi, G. and Moretti, A., 1995, Age-and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system, Free Rad. Biol. Med. 19, 77–101.CrossRefGoogle Scholar
  9. Bowling, A. C., Schultz, J. B., Brown, Jr., R. H., and Beal, M. F., 1993, Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism I familial and sporadic amyotrophic lateral sclerosis, J. Neurochem. 61, 2322–2325.CrossRefGoogle Scholar
  10. Butterfield, D. A., Howard, B. J., Yatin, S., Allen, K. L., and Carney, J. M., 1997, Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-a-phenylnitrone, Proc. Natl. Acad. Sci. USA 94, 674–678.Google Scholar
  11. Carney, J. M., Smith, C. D., Carney, A. M., and Butterfield, D. A., 1994, Aging-and oxygen-induced modifications in brain biochemistry and behavior, in: Aging and Cellular Defense Mechanisms, Volume 63 ( Franceschi, C., Crepaldi, G., Cristofalo, V. J., and Vijg, J., eds.), pp. 110–119, New York Academy of Science, New York.Google Scholar
  12. Carney, J. M., Starke-Reed, R E., Oliver, C. N., Landum, R. W., Cheng, M. S., Wu, J. F., and Floyd, R.A., 1991, Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity loss and loss of temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-aphenylnitrone, Proc. Natl. Acad. Sci. USA 88, 3633–3636.CrossRefGoogle Scholar
  13. Chao, C.-C., Ma, Y.-S., and Stadtman, E. R., 1997, Modification of protein surface hydrophobicity and methionine oxidation by oxidative stress, Proc. Natl. Acad. Sci. USA 94, 2969–2974.CrossRefGoogle Scholar
  14. Chapman, M. L., Rubin, B. R., and Gracy, R. W., 1989, Increased carbonyl content of proteins in synovial fluid from patients with rheumatoid arthritis, J. Rheumatol. 16, 15–18.Google Scholar
  15. Chauhan, A., Chauhan, V. P. S., Brockerhoff, H., and Wisniewski, H. M., 1991, Action of amyloid -protein on protein kinase C activity, Life Sci. 49, 1555–1556.CrossRefGoogle Scholar
  16. Cordillo, E., Ayala, A., F.-Lobato, M., Bautista, J., and Machada, A., 1988, Possible involvement of histidine resi-dues in loss of enzymatic activity of rat liver malic enzyme during aging, J. Biol. Chem. 263, 8053–8057.Google Scholar
  17. Cross, C. E., Reznick, A. Z., Packer, L., Davis, P. A., Suzuki, Y. J., and Halliwell, B., 1992, Oxidative damage to human plasma proteins by ozone, Free Rad. Res. Commun. 15, 347–352.Google Scholar
  18. Davies, K. J. A., 1986, Intracellular proteolytic systems may function as secondary antioxidant defenses: A Hypothesis, J. Free Rad. Biol. Med. 2, 155–173.CrossRefGoogle Scholar
  19. Davies, K. J. A., 1986a, The role of intracellular proteolytic systems in antioxidant defense, In: Superoxide and superoxide dismutase in chemistry, biology, and medicine ( Rotilio, G., ed.), pp. 443–450, Elsevier Science Publishing, Amsterdam.Google Scholar
  20. Davies, K. J. A. and Goldberg, A. L., 1987, Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells, J. Biol. Chem. 262, 8227–8234.Google Scholar
  21. Davies, K. J. A. and Lin, S. W., 1988, Degradation of oxidatively denatured proteins in Escherichia coli, Free Rad. Biol. Med. 5, 215–223.CrossRefGoogle Scholar
  22. Davies, K. J. A. and Lin, S. W., 1988a, Oxidatively denatured proteins are degraded by an ATP-independent proteolytic pathway in Escherichia coli, Free Rad. Biol. Med. 5, 225–236.CrossRefGoogle Scholar
  23. Davies, K. J. A., Delsignore, M. E., and Lin, S. W., 1987, Protein damage by oxygen radicals. II. Modification of amino acids, J. Biol. Chem. 262, 9902–9907.Google Scholar
  24. Dreyfus, J. C., Kahn, A., and Schapira, F., 1978, Post translational modifications of enzymes, Curl: Top. Cell. Regul. 14, 243–297.Google Scholar
  25. Forster, M. J., Dubey, A., Dawson, K. M., Stutts, W. A., Lal, H., and Sohal, R. S., 1996, Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain, Proc. Natl. Acad. Sci. USA 93, 4765–4769.CrossRefGoogle Scholar
  26. Friguet, B., Stadtman, E. R., and Szweda, L., 1994, Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal, J. Biol. Chem. 269, 21639–21643.Google Scholar
  27. Friguet, B., Szweda, L., and Stadtman, E. R., 1994, Susceptibility of glucose-6-phosphate dehydrogenase modified by 4-hydroxy-2-nonenal and metal-catalyzed oxidation to proteolysis by the multicatalytic protease, Arch. Biochem. Biophys. 311, 168–173.CrossRefGoogle Scholar
  28. Fucci, L., Oliver, C. N., Coon, M. J., and Stadtman, E. R., 1983, Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implications in protein turnover and aging, Proc. Natl. Acad. Sci. USA 80, 1521–1525.CrossRefGoogle Scholar
  29. Fulks, R. M., 1977, Regulation of glutamine synthetase degradation in Klebsiella aerogenes, Fed. Proc. Am. Soc. Exptl. Biol. 36, 919 (abstr.).Google Scholar
  30. Garland, D., Russell, P., and Zigler, J. S., 1988, The oxidative modification of lens protein, In: Oxygen Radicals in Biology and Medicine (Simic, M. G., Taylor, K. S., Ward, J. F., and von Sontag, V., eds.), pp. 347–353, Plenum, New York.CrossRefGoogle Scholar
  31. Garrison, W. M., 1987, Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins, Chem. Rev. 87, 381–398.CrossRefGoogle Scholar
  32. Gerschman, R., Gilbert, D. I., and Caccamise, D., 1988, Effect of various substances on survival times of mice exposed to different high oxygen tension, Am. J. Physiol. 192, 563–571.Google Scholar
  33. Gladstone, I. M. and Levine, R. L., 1994, Oxidation of proteins in neonatal lungs, Pediatrics 93, 764–768.Google Scholar
  34. Goldstein, I. M., Kaplan, H. B., Edelson, H. S., and Weissmann, G., 1979, Ceruloplasmin. A scavenger of superoxide anion radicals, J. Biol. Chem. 254, 4040–4045.Google Scholar
  35. Grant, A. J., Jessup, W., and Dean, R. J., 1993, Inefficient degradation of oxidized regions of protein molecules, Free Rad. Res. Commun. 18, 259–267.CrossRefGoogle Scholar
  36. Grune, T., Reinheckel, T., and Davies, K. J. A., 1996, Degradation of oxidized proteins in K562 human hematopoietic cells by proteosome, J. Biol. Chem. 271, 15504–15509.CrossRefGoogle Scholar
  37. Grune, T., Reinheckel, T., Joshi, M., and Davies, K. J. A., 1995, Proteolysis in cultured liver epithelial cells during oxidative stress, J. Biol. Chem. 270, 2344–2351.CrossRefGoogle Scholar
  38. Harris, M., Hensley, K., Butterfield, D. A., Leedle, R. A., and Carney, J. M., 1995, Direct evidence of oxidative injury produced by Alzheimer’s -amyloid peptide (1–40) in cultured hippocampal neurons, Exp. Neurol. 131, 193–202.CrossRefGoogle Scholar
  39. Krsek-Staples, J. A. and Webster, R. 0., 1993, Ceruloplasmin inhibits carbonyl formation in endogenous cell proteins, Free Rad. Biol. Med. 14, 115–125.Google Scholar
  40. Kelley, F. J. and Birch, S., 1993, Ozone exposure inhibits cardiac protein synthesis in the mouse, Free Rad. Biol. Med. 14, 443–446.CrossRefGoogle Scholar
  41. Ku, H.-H. and Sohal, R. S., 1993, Comparison of mitochondrial pro-oxidant generation and antioxidant defenses between rat and pigeon: Possible basis of variation in longevity and metabolic potential, Mech. Ageing Develop. 72, 67–76.CrossRefGoogle Scholar
  42. Levine, R. L., 1983, Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue, J. Biol. Chem. 258, 11823–11827.Google Scholar
  43. Levine, R. L., 1983a, Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system, J. Biol. Chem. 258, 11828–11833.Google Scholar
  44. Levine, R. L., Williams, J. A., Stadtman, E. R., and Schacter, E., 1994, Carbonyl assays for determination of oxidatively modified proteins, Methods Enzymol. 233, 346–357.CrossRefGoogle Scholar
  45. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B.-W., Shaltiel, S., and Stadt-man, E. R., 1990, Determination of carbonyl groups in oxidatively modified proteins, Methods Enzymol. 186, 464–478.CrossRefGoogle Scholar
  46. Levine, R. L., Oliver, C. N., Fulks, R. M., and Stadtman, E. R., 1981, Turnover of bacterial glutamine synthetase: Oxidative inactivation precedes proteolysis, Proc. Natl. Acad. Sci. USA 78, 2120–2124.CrossRefGoogle Scholar
  47. Lin, F., Thomas, J. P., and Girotti, A. W., 1993, Hyperexpression of catalase in selenium-deprived murine L1210 cell, Arch. Biochem. Biophys. 305, 176–185.CrossRefGoogle Scholar
  48. Liu, Y., Rosenthal, R. E., Starke-Reed, P.E., and Fiskum, G., 1993, Inhibition of postcardiac arrest brain protein oxidation by acetyl-L-carnitine, Free Rad. Biol. Med. 15, 667–670.CrossRefGoogle Scholar
  49. Marcillat, O., Zhang, Y., Lin, S. W., and Davies, K. J. A., 1988, Mitochondria contain a proteolytic system which can recognize and degrade oxidatively denatured proteins, Biochem. J. 254, 677–683.Google Scholar
  50. Maria, C. S., Revilla, E., P. de la Cruz, C., and Machado, A., 1995, Cu,Zn-superoxide dismutase during aging, FEBS Lett. 347, 85–88.Google Scholar
  51. Matsuo, M., 1993, Age-related alterations in antioxidant defense, In: Free Radicals in Aging ( Yu, B.P., ed.), pp. 143–181, CRC Press, Ann Arbor.Google Scholar
  52. Mickel, H. S., Oliver, C. N., and Starke-Reed, P. E., 1990, Protein oxidation and myelinolysis occur in brain following rapid correction of hyponatremia, Biochem. Biophys. Res. Commun. 172, 92–97.CrossRefGoogle Scholar
  53. Mordente, A., Martorana, G. E., Miggiano, G. A. D., Meucci, E., Santini, S. A., and Castelli, A., 1988, Mixed function oxidation and enzymes: Kinetic and structural properties of oxidatively modified alkaline phosphatase, Arch. Biochem. Biophys. 264, 502–509.CrossRefGoogle Scholar
  54. Murakami, K., Jahnegn, J. H., Li, S. W., Davies, K. J. A., and Taylor, A., 1990, Lens proteosome shows enhanced rates of degradation of hydroxyl radical modified alpha-crystallin, Free Rad. Biol. Med. 8, 217–222.CrossRefGoogle Scholar
  55. Murphy, M. E. and Kherer, J. P., 1989, Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy, Biochem. J. 260, 359–364.Google Scholar
  56. Muscari, C., Frascaro, M., Guamieri, C., and Calderara, C. M., 1990, Mitochondrial function and superoxide gen-eration from submitochondrial particles of aged rat hearts, Biochem. Biophys. Acta 1015, 200–204.CrossRefGoogle Scholar
  57. Musci, G., Bonaccorsi di Patti, M. C., Fagiolo, U., and Calabrese, L., 1993, Age-related changes in human cern-loplasmin, J. Biol. Chem. 268, 13388–13395.Google Scholar
  58. Nohl, H., Breuninger, V., and Hegner, D., 1978, Influence of mitochondria) radical formation on energy-linked respiration, Eur. J. Biochem. 90, 385–390.CrossRefGoogle Scholar
  59. Oliver, C. N., 1987, Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils, Arch. Biochem. Biophys. 253, 62–72.CrossRefGoogle Scholar
  60. Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., and Floyd, R. A., 1990, Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia-reperfusion-induced injury to gerbil brain, Pmc. Natl. Acad. Sci. USA 87, 5144–5147.CrossRefGoogle Scholar
  61. Oliver, C. N., Ahn, B.-W., Moerman, E. J., Goldstein, S., and Stadtman, E. R., 1987, Age-related changes in oxidized proteins, J. Biol. Chem. 262, 5488–5491.Google Scholar
  62. Oliver, C. N., Ahn, B., Wittenberger, M. E., and Stadtman, E. R., 1985, Oxidative inactivation of enzymes: Implication in protein turnover and aging, In: Cellular Regulation and Malignant Growth ( Ebashi, S., ed.), pp. 320–331, Japan Sci. Soc. Press/Springer-Verlag, Berlin.Google Scholar
  63. Oliver, C. N., Ahn, B., Wittenberger, M. E., Levine, R. L., and Stadtman, E. R., 1985a, Age-related alterations of enzymes may involve mixed-function oxidation reactions, In: Modification of proteins during aging ( Adelman, R. C. and Dekker, E. E., eds.), pp. 39–52, Alan R. Liss, New York.Google Scholar
  64. Oliver, C. N., Fulks, R., Levine, R. L., Fucci, L., Rivett, A. J., Roseman, J. E., and Stadtman, E. R., 1984, Oxida-tive inactivation of key metabolic enzymes during aging, In: Molecular Basis of Aging ( Roy, A. K. and Chattetjee, B., eds.), pp. 235–262, Academic Press, New York.Google Scholar
  65. Oliver, C. N., Fucci, L., Levine, R. L., Wittenberger, M. E., and Stadtman, E. R., 1982, Inactivation of key metabolic enzymes by P450 linked mixed function oxidation systems, In: Cytochrome P-450, Biochemistry, Biophysics, and Environmental Implications ( Heitanen, E., Laitinen, M., and Hanninen, O., eds.), pp. 531–539, Elsevier Biomedical Press, Amsterdam.Google Scholar
  66. Oliver, C. N., Levine, R. L., and Stadtman, E. R., 1982, Regulation of glutamine synthetase degradation, In: Experience in Biochemical Perception ( Ornston, L. N. and Sligar, S. G., eds.), pp. 233–249, Academic Press, New York.Google Scholar
  67. Oliver, C. N., Levine, R. L., and Stadtman, E. R., 1981, Regulation of glutamine synthetase degradation, In: Metabolic interconversion of enzymes ( Holzer, H., ed.), pp. 259–268, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  68. Orr, W. C. and Sohal, R. S., 1994, Extension of life-span by over expression of superoxide dismutase and catalase in Drosophila melanogaster, Science 263, 1128–1130.CrossRefGoogle Scholar
  69. Osaki, S., 1966, Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin), J. Biol. Chem. 241, 5053–5059.Google Scholar
  70. P. de la Cruz, C.P., Revilla, E., Venero, J. L., Ayala, A., Cano, J., and Machado, A., 1996, Oxidative inactivation of tyrosine hydroxylase in Substantia nigra of aged rat, Free Rad. Biol. Med. 20, 53–61.CrossRefGoogle Scholar
  71. Pacifici, R. E., Salo, D. C., and Davies, K. J. A., 1989, Macroproteinase (M.O.P.): A 670 kDA proteinase complex that degrades oxidatively denatured proteins in red blood cells, Free Rad. Biol. Med. 7, 521–536.CrossRefGoogle Scholar
  72. Perez, R., Lopez, M., and Barja-De Quiroga, G., 1991, Aging and lung antioxidant enzymes, glutathione and lipid peroxidation in the rat, Free Rad. Biol. Med. 10, 35–39.CrossRefGoogle Scholar
  73. Poston, J. M. and Parenteau, G. L., 1992, Biochemical effects of ischemia on isolated perfused rat heart tissues, Arch. Biochem. Biophys. 295, 35–41.CrossRefGoogle Scholar
  74. Raddk, Z., Asano, K., Lee, K.-C., Ohno, H., Nakamura, A., Nakamoto, H., and Goto, S., 1997, High altitude training increases reactive carbonyl derivatives but not lipid peroxidation in skeletal muscle of rats, Free Rad. Biol. Med. 22, 1109–1114.CrossRefGoogle Scholar
  75. Reznick, A. Z., Cross, C. E., Hu, M.-L., Suzuki, Y. J., Khwaja, S., Safadi, A., Motchnik, P. A., Packer, L., and Halliwell, B., 1992, Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation, Biochem. J. 286, 607–611.Google Scholar
  76. Rivett, A. J., 1986, Regulation of intracellular protein turnover: Covalent modification as a mechanism of marking proteins for degradation, Curr. Top. Cell. Regul. 28, 291–337.Google Scholar
  77. Rivett, A. J., 1985, Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian protease, J. Biol. Chem. 260, 300–305.Google Scholar
  78. Rivett, A. J., 1985a, Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase, J. Biol. Chem. 260, 12600–12606.Google Scholar
  79. Rivett, A. J., Roseman, J. E., Oliver, C. N., Levine, R. L., and Stadtman, E. R., 1985, Covalent modification of proteins by mixed-function oxidation: Recognition by intracellular proteases, In: Intracellular Protein Catabolism ( Khairallan, E. A., Bond, J. S., and Bird, J. W. C., eds.), pp. 317–328, Alan R. Liss, Inc., New York.Google Scholar
  80. Roseman, J. E. and Levine, R. L., 1987, Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase, J. Biol.Chem. 262, 2101–2110.Google Scholar
  81. Rothstein, M., 1977, Recent developments in age-related alteration of enzymes. Mech. Aging and Dev. 6, 241–257.CrossRefGoogle Scholar
  82. Salo, D. C., Lin, S. W., Pacifici, R.E., and Davies, K. J. A., 1988, Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide, Free Rad. Biol. Med. 5, 335–339.CrossRefGoogle Scholar
  83. Samokyszyn, V. M., Miller, D. M., Reif, D. W., and Aust, S. D., 1989, Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin, J. Biol Chem. 264, 21–36.Google Scholar
  84. Sawada, M. and Carlson, J. C., 1987, Changes in superoxide radical and lipid peroxide formation in brain, heart, and liver during lifetime of the rat, Mech. Aging and Dev. 41, 125–137.CrossRefGoogle Scholar
  85. Shacter, E., Williams, J. A., and Levine, R. L., 1995, Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation, Free Rad. Biol. Med. 18, 815–821.CrossRefGoogle Scholar
  86. Shacter, E., Williams, J. A., Lim, M., and Levine, R. L., 1994, Differential susceptibility of plasma proteins to oxi- dative modification: Examination by Western blot immunoassay, Free Rad. Biol. Med. 17, 429–437.CrossRefGoogle Scholar
  87. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., and Floyd, R. A., 1991, Excess brain protein oxidation and enzyme dysfunction in normal and Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 88, 10540–10543.CrossRefGoogle Scholar
  88. Smith, M. A., Perry, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N., 1996, Oxidative damage in Alzheimer’s disease, Nature 382, 120–121.CrossRefGoogle Scholar
  89. Smith, M. A., Rudnicka-Nawrot, M., Richey, R. L., Praprotnik, D., Mulvihill, P., Miller, C. A., Sayre, C. A., and Perry, G., 1995, Carbonyl-related posttranslational modification of neurofilament protein in neurofibrillary pathology of Alzheimer’s disease, J. Neurochem. 64, 2660–2666.CrossRefGoogle Scholar
  90. Sohal, R. S., 1993, The free radical hypothesis of aging: An appraisal of the current status, Aging Clin. Exp. Res. 5, 3–17.Google Scholar
  91. Sohal, R. S. and Dubey, A., 1994, Mitochondrial oxidative damage, hydrogen peroxide release, and aging, Free Rad. Biol. Med. 16, 621–626.CrossRefGoogle Scholar
  92. Sohal, R. S., Agarwal, S., and Sohal, B. H., 1995, Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus), Mech. Aging and Development 81, 15–25.CrossRefGoogle Scholar
  93. Sohal, R. S., Ku, H.-H., Agarwal, S., Forster, M. J., and Lal, H., 1994, Mech. Aging and Dis. 79, 121–133.CrossRefGoogle Scholar
  94. Sohal, R. S., Agarwal, S., Dubey, A., and Orr, W. C., 1993, Protein oxidative damage is associated with life expectancy of houseflies, Proc. Natl. Acad. Sci. USA 90, 7255–7259.CrossRefGoogle Scholar
  95. Sohal, R. S., Ku, H.-H., and Agarwal, S., 1993, Biochemical correlates of longevity in two closely related rodent species, Biochem. Biophys. Res. Commun. 196, 7–11.CrossRefGoogle Scholar
  96. Sohal, R. S., Arnold, L. A., and Sohal, B. H., 1990, Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species, Free Rad. Biol. Med. 10, 495–500.CrossRefGoogle Scholar
  97. Spoerri, P. E., 1984, Mitochondrial alterations in aging mouse neuroblastoma cells in culture. Monogr. Dev. Biol. 17, 210–220.Google Scholar
  98. Stadtman, E. R., 1992, Protein oxidation and aging, Science 257, 1220–1224.CrossRefGoogle Scholar
  99. Stadtman, E. R., 1986, Oxidation of proteins by mixed-function oxidation systems: Implication in protein turnover, aging, and neutrophil function, Trends Biochem. Sci. 11, 11–12.CrossRefGoogle Scholar
  100. Stafford, R. E., Mak, T. M., Kramer, J. H., and Weglicki, W. B., 1993, Protein oxidation in magnesium deficient rat brains and kidneys, Biochem. Biophys. Res. Commun. 196, 596–600.CrossRefGoogle Scholar
  101. Starke, P. E., Oliver, C. N., and Stadtman, E. R., 1987, Modification of hepatic proteins in rats exposed to high oxygen concentration, FASEB J. 1, 36–39.Google Scholar
  102. Starke-Reed, P. E. and Oliver, C. N., 1989, Protein oxidation and proteolysis during aging and oxidative stress, Arch. Biochem. Biophys. 275, 559–567.CrossRefGoogle Scholar
  103. Szweda, L. I. and Stadtman, E. R., 1992, Iron-catalyzed oxidative modification of glucose-6-phosphate dehydrogenase from Leuconostoc. mesenteroides, J. Biol. Chem. 267, 3096–3100.Google Scholar
  104. Takahashi, R. and Goto, S., 1990, Alteration of aminoacyl-tRNA synthetase with age: Heat labilization of the enzyme by oxidative damage, Arch. Biochem. Biophys. 277, 228–233.CrossRefGoogle Scholar
  105. Takahashi, R., and Goto, S., 1987, Influence of dietary restriction on accumulation of heat-labile enzyme molecules in the liver and brain of mice, Arch. Biochem. Biophys. 257, 200–206.CrossRefGoogle Scholar
  106. Toyokuni, S. Uchida, K., Okamoto, K., Hattori-Nakakuki, Y., Hiai, H., and Stadtman, E. R., 1994, Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen ferric nitrilotriacetate, Proc. Natl. Acad. Sci. USA 91, 2616–2620.Google Scholar
  107. Uchida, K. and Stadtman, E. R., 1993, Covalent modification of 4-hydroxynonenal to glyceraldehyde-3-phosphate, J. Biol. Chem. 268, 6388–6393.Google Scholar
  108. Uchida, K., Toyokuni, S., Nishikawa, K., Kawakishi, S., Oda, H., Hiai, H., and Stadtman, E. R., 1994, Michael addition-type 4-hydroxy-2-nonenal adducts in modified low density lipoproteins: Markers for atherosclerosis, Biochemistry 33, 12487–12494.CrossRefGoogle Scholar
  109. Wieland, P. and Lauterburg. B. H., 1995, Oxidation of mitochondrial proteins, DNA following administration of ethanol, Biochem. Biophys. Res. Commun. 213, 815–819.CrossRefGoogle Scholar
  110. Winter, M. L. and Liehr, J. G., 1991, Free radical-induced carbonyl content in protein of estrogen-treated hamsters assayed by sodium boro[3H]hydride reduction, J. Biol. Chem. 266, 14446–14450.Google Scholar
  111. Witt, E. H., Reznick, A. Z., Viguie, C. A., Starke-Reed, P. E., and Packer, L. (1992) Exercise, oxidative damage, and effects of antioxidant manipulation, J. Nute 122, 766–773.Google Scholar
  112. Wolff, S. R and Dean, R. T., 1987, Glucose autooxidation and protein modification, Biochem. J. 245, 243–250.Google Scholar
  113. Wolff, S. P., Garner, A., and Dean, R. T., 1986, Free radicals, lipids, and protein degradation, Trends Biochem. Sci. 11, 27–31.CrossRefGoogle Scholar
  114. Youngman, L. D., Park, J.-Y. K., and Ames, B., 1992, Protein oxidation associated with aging is reduced by dietary restriction of protein calories, Proc. Natl. Acad. Sci. USA 89, 9112–9116.CrossRefGoogle Scholar
  115. Zhou, J. Q. and Gafni, A., 1991, Exposure of rat muscle phosphoglycerate kinase to a nonenzymatic MFO system generates the old form of enzyme, J. Gerontol. 46, B217 - B221.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Earl R. Stadtman
    • 1
  1. 1.National Heart, Lung, and Blood Institute National Institutes of HealthLaboratory of BiochemistryBethesdaUSA

Personalised recommendations