Iron in Free Radical Reactions and Antioxidant Protection

  • John M. C. Gutteridge
Part of the NATO ASI Series book series (NSSA, volume 296)


Iron is the fourth most abundant element in the Earth’s crust and the second most abundant metal (after aluminium). It is the metallic iron at the Earth’s centre which accounts for its magnetic field as well as for its overall mass density. This metallic iron was exploited many centuries ago for navigation purposes with the pioneering development of the magnetic compass.


Free Radical Reaction Antioxidant Protection Cellular Iron Iron Regulatory Protein Ferroxidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, B.N., Shigenaga, M.K. and Hagen. T.M. 1993. Oxidants, antioxidants, and the degenerative disease of aging. Proc. Natl. Acad. Sci. USA 90: 7915–7922.CrossRefGoogle Scholar
  2. Balentine, J. 1982. Pathology of Oxygen Toxicity. Academic Press, New York.Google Scholar
  3. Barja, G. 1993. Oxygen radicals, a failure or a success of evolution? Free Rad. Res Commun. 18: 63–70.CrossRefGoogle Scholar
  4. Block, G, Patterson, B. and Subar, A. 1992. Fruit, Vegetables and cancer prevention —a review of the epidemiological evidence. Nutr Cancer 18: 1–29.CrossRefGoogle Scholar
  5. Bolann, B.J. and Ulvik, R.J. 1987. Release of iron from ferritin by xanthine oxidase. Role of the superoxide radical. J. Biochem. 243: 55–59Google Scholar
  6. Bolann, B.J. and Ulvik, R.J. 1990. On the limited ability of superoxide to release iron from ferritin. Eur J Biochem. 193: 899–904.CrossRefGoogle Scholar
  7. Breuer, W. Epsztein, S. and Cabantchik, Z.I. 1996 Dynamics of the cytosolic chelatable iron pool of K562 cells. FEBS Lett. 384: 304–308Google Scholar
  8. Burden, R.H. 1994. Superoxide and H202 in relation to mammalian cell proliferation. Free Rad. Biol. Med. 18: 775–794.CrossRefGoogle Scholar
  9. Cabantchik, Z.I., Glickstein, H., Milgram, P. and Breuer, W. 1996. A Fluorescence assay for assessing chelation of intra cellular iron in a membrane model system and mammalian cells. Anal. Biochem. 233: 221–227.CrossRefGoogle Scholar
  10. Caspary, W.J., Lanzo, D.A., Niziak, C., Friedman, R. and Bachur, N.R. 1979. Bleomycin AZ: a ferrous oxidase. Mol. Pharmacol. 16: 256–290.Google Scholar
  11. Chubatsu, L.S. and Meneghini, R. 1993. Methallothionein protects DNA from oxidative damage. Biochem. J. 291: 193–198.Google Scholar
  12. Crichton, R.R. and Charloteaux-Wauters, M. 1987. Iron transport and storage. Eur. J. Biochem. 164: 485–506.CrossRefGoogle Scholar
  13. Demple, B. and Harrison, L. 1994. Repairs of oxidative damage to DNA. Enzymology and Biology. Ann. Rev. Biochem. 63: 915–948.CrossRefGoogle Scholar
  14. DeSilva, D.M., Askwith, C.C. and Kaplan, J. 1996. Molecular mechanisms of iron uptake in Eukaryotes. Physiol. Rev. 76: 31–47.Google Scholar
  15. Ehrenwald, E., Chisolm, G.M. and Fox, P.L. 1994. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J. Clin. Invest. 93: 1493–1501.CrossRefGoogle Scholar
  16. Ehrenwald, E. and Fox, P.L. 1996. Role of endogenous ceruloplasmin in low density lipoprotein oxdiation by human U937 monocytic cells. J. Clin. Invest. 97: 884–890.CrossRefGoogle Scholar
  17. Ernster, E. and Dallner, G. 1995. Biochemical, physiological and medical aspects of ubiquinone function. Biochem. Biophys. Acta. 1271: 195–204.CrossRefGoogle Scholar
  18. Esterbauer, H., Schaur, R.J., and Zollner; H. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad. Biol. Med. 11: 81–128.CrossRefGoogle Scholar
  19. Esterbauer, H., Zollner, J. and Schaur, R.J. 1988. Hydroxyl alkenals: cytotoxic products of lipid peroxidation. ISI Atlas of Sci. 1: 311–317.Google Scholar
  20. Frei, B. (ed.) 1994. Natural Antioxidants in Human Health and Disease. Academic Press, San Diego.Google Scholar
  21. Fridovich, I. 1989. Superoxide Dismutase. An adaption to a paramagnetic gas. J. Biol. Chem. 264: 7761–7764.Google Scholar
  22. Gey, F. 1995. Ten-year retrospective on the antioxidant hypothesis of arteriosclerosis-threshold plasma levels of antioxidant micronutrients related to minimum cardiovascular risk. J. Nutr. Biochem. 6: 206–236.CrossRefGoogle Scholar
  23. Goodwin, JF. and Whitten, CF. 1965. Chelation of ferrous sulphate solutions by desferrioxamine B. Nature 205: 281–283.CrossRefGoogle Scholar
  24. Green, C.J., Gaver, J.D., Healing, G., Cotterill, La., Fuller, B.J., Simpkin, S. 1989. The importance of iron, calcium and free radicals in reperfusion injury: an overview of studies in ischaemic rabbit kidney. Free Rad. Res. Commun. 7: 255–264.CrossRefGoogle Scholar
  25. Grootveld, M., Bell, J.D., Halliwell, B., Aruoma, 0.1., Bomford, A. and Sadler P.J. 1989. Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. J. Biol. Chem. 264: 4417–4422.Google Scholar
  26. Gurgueira, S.A. and Meneghini, R. 1996. An ATP-dependent iron transport system in isolated rat liver nuclei. J. Biol. Chem. 271: 13616–13620.CrossRefGoogle Scholar
  27. Gutteridge, J.M.C. 1977. The membrane effects of vitamin E, cholesterol and their acetates on peroxidative susceptibility. Res. Commun. Chem. Path. Pharmacol. 77: 379–386.Google Scholar
  28. Gutteridge, J.M.C. 1978. Ceruloplasmin: A plasma protein, enzyme and antioxidant. Annals Clin. Biochem. 15: 293–296.Google Scholar
  29. Gutteridge, J.M.C. 1986. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 201: 291–925.CrossRefGoogle Scholar
  30. Gutteridge, J.M.C. 1987a. A method for removal of trace iron contamination from biological buffers. FEBS Lett. 214: 362–364.CrossRefGoogle Scholar
  31. Gutteridge, J.M.C. 1987b. The antioxidant activity of haptoglobin towards haemoglobin stimulated lipid peroxidation. Biochim. Biophys. Acta 917: 219–223.CrossRefGoogle Scholar
  32. Gutteridge, J.M.C. 199la. Plasma ascorbate levels and inhibition of the antioxidant activity of caeruloplasmin. Clin. Sci. 81: 313–317.Google Scholar
  33. Gutteridge, J.M.C. 1991b. Ferrous ions detected in cerebrospinal fluid by using bleomycin and DNA damage. Clin. Sci. 82: 315–320.Google Scholar
  34. Gutteridge, J.M.C. 1995. Signal messenger and trigger molecules from free radical reactions, and their control by antioxidants in: Signalling Mechanisms–from Transcription Factors to Oxidative Stress. (L. Packer, K. Wirtz, eds.) Springer-Verlag, Berlin, pp. 157–164.CrossRefGoogle Scholar
  35. Gutteridge, J.M.C. and Halliwell B. 1988. The antioxidant proteins of extracellular fluids. In Cellular Antioxidant Defence Mechanisms ( Chow, CK. ed.) CRC Press, Boca Raton. pp. 1–23.Google Scholar
  36. Gutteridge, J.M.C. and Halliwell, B. 1994. Antioxidants in Nutrition, Health and Disease. Oxford University Press: Oxford. pp 1–143.Google Scholar
  37. Gutteridge, JMC. and Hou, YY. 1986. Iron complexes and their reactivity in the bleomycin assay for radical promoting loosely bound iron. Free Rad. Res.Commun. 2: 143–151.CrossRefGoogle Scholar
  38. Gutteridge, J.M.C., Mumby, S., Koizumi, M., Taniguchi, N. 1996. “Free” iron in neonatal plasma activates aconitase: Evidence for biologically reactive iron. Biochem. Biophys. Res. Commun. 229: 806–809.Google Scholar
  39. Gutteridge, J.M.C. and Quinlan, G.J. 1996. Reactive oxygen species, antioxidant protection and lung injury, in Acute Respiratory Distress Syndrome in Adults. ( Evans, TW and Haslett, C. eds). Chapman and Hall, London. pp 167–196.Google Scholar
  40. Gutteridge, J.M.C., Richmond, R. and Halliwell, B. 1980. Oxygen free radicals and lipid peroxidation: Inhibition by the protein caeruloplasmin. FEBS Lett. 112: 269–272.CrossRefGoogle Scholar
  41. Gutteridge, J.M.C., Rowley, D.A. and Halliwell, B. 1981. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of “free” iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem. J. 199: 263–265.Google Scholar
  42. Gutteridge, J.M.C. and Smith, A. 1986. Antioxidant protection by hemopexin of haem stimulated lipid peroxidation. Biochem. J. 256: 861–865.Google Scholar
  43. Gutteridge, J.M.C. and Stocks, J. 1976. Peroxidation of cell lipids. J. Med. Lab. Sci. 53: 281–285.Google Scholar
  44. Gutteridge, J.M.C. and Stocks, J. 1981. Caeruloplasmin: physiological and pathological perspectives. CRC Crit. Rev. Clin. Lab. Sci. 14: 257–329.CrossRefGoogle Scholar
  45. Gutteridge, J.M.C., Winyard, P., Blake, D.R., Lunec, J., Brailsford, S. and Halliwell, B. 1985. The behaviour of caeruloplasmin in stored human extracellular fluids in relation to ferroxidase II activity, lipid peroxidation and phenanthroline-detectable copper. Biochem. J. 230: 517–523.Google Scholar
  46. Haile, D.J., Rouault, T.A., Harford, J.B., Kennedy, M.C., Blondin, G.A., Beinert, G.A. and Klausner, R.D. 1992a. Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high affinity RNA binding. Proc. Natl. Acad. Sci. USA 89: 11735–11739.CrossRefGoogle Scholar
  47. Haile, D.J., Rouault, T.A., Tang, C.K., Chin, J., Harford, J.B, and Klausner, R.D. 1992b. Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc. Natl. Acad. Sci. 89: 7536–7540.CrossRefGoogle Scholar
  48. Halliwell, B. and Gutteridge, J.M.C. 1984. Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet. 1: 1396–1397.CrossRefGoogle Scholar
  49. Halliwell, B. and Gutteridge, J.M.C. 1986. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246: 501–514.CrossRefGoogle Scholar
  50. Halliwell, B. and Gutteridge, J.M.C. 1989. Free radicals in Biology and Medicine. Oxford University Press; Oxford.Google Scholar
  51. Harris, D.C. and Aisen, P. 1973. Facilitation of Fey“) autoxidation by Fe l complexing agents. Biochim. Biophys. Acta. 329: 156–158.CrossRefGoogle Scholar
  52. Herold, M. and Spiteller, G. 1996. Enzymic production of hydroperoxides of unsaturated fatty acids by injury of mammalian cells. Chem. Phys. Lipids 79: 113–121.CrossRefGoogle Scholar
  53. Klausner, R.D., Rouault, T.A. and Harford, J.B. 1993. Regulating the fate of mRNA: The control of cellular iron metabolism. Cell 72: 19–28.CrossRefGoogle Scholar
  54. Kennedy, M.N., Mende-Mueller, L., Blondin, G.A. and Beinert, H. 1992. Purification and characterisation of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein (IRE-BP). Proc. Natl. Acad. Sci. USA 89: 11730–11734.CrossRefGoogle Scholar
  55. Kojiman, N. and Bates, G.W. 1981. The Formation of Fe3.-Transferrin-CO2-/3 via the Binding and Oxidation of Fe2’. J. Biol. Chem. 256: 12034–12039.Google Scholar
  56. Kriegor-Brauer, H.I. and Kather, H. 1995. The stimulus-sensitive H202-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines. Biochem. J. 307: 543–548.Google Scholar
  57. Lykins, L.F., Akey, C.W., Christian, E.G., Duval, G.W. and Topham, R.W. 1977. Dissociation and reconstitution of human ferroxidase II. Biochemistry. 16: 693–698.CrossRefGoogle Scholar
  58. Marklund, S.L., Holme, E. and Hellner, L. 1982. Superoxide dismutase in extracellular fluids. Clin. Chim. Acta. 126: 41–51.CrossRefGoogle Scholar
  59. McArthur, K.M. and Davies, M.J. 1993. Detection and reactions of the globin radical in haemoglobin. Biochim. Biophys. Acta. 1202: 172–181.CrossRefGoogle Scholar
  60. McConkey, D.J., Orrenius, S. Jondal, M. 1996. The regulation of apoptosis in thymocytes. Biochem. Soc. Trans. 22: 606–610.Google Scholar
  61. Netto, L.E.S., Chae, H.Z., Kang, S.W., Rhee, S.G. and Stadtman, E.R. 1996. Removal of H2O2 by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA prossesses thiol peroxidase activity. J. Biol. Chem. 271: 727–731.Google Scholar
  62. O’Connell, M., Halliwell, B., Moorhouse, C.P., Aruoma, O.I., Baum, H. and Peters, T.J. 1986. Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Biochem. J. 234: 727–731.Google Scholar
  63. Orr, W.C. and Sohal, R.S. 1994. Extension of life span by over expression of superoxide dismutase and catalase in drosophila melanogaster. Science 263: 1128–1130.CrossRefGoogle Scholar
  64. Osaki, S., Johnson, D.A. and Frieden, E. 1996. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem. 241: 2746–2751.Google Scholar
  65. Rouault, R.A. and Klausner, R.O. 1996. Iron-sulfur clusters as biosensors of oxidants and iron. TIBS 21: 174–177.Google Scholar
  66. Sarafian, T.A. and Bredesen, D.E. 1994. Is apoptosis mediated by reactive oxygen species? Free Rad. Res. 21: 1–8.CrossRefGoogle Scholar
  67. Saran, M. and Bors, W. 1989. Oxygen radicals acting as chemical messengers: A hypothesis. Free Rad. Res. Commun. 7: 213 220.Google Scholar
  68. Schreck, R.A., Albermann, K. and Baeuerle, P.A. 1992. Nuclear factor kappa B: an oxidative stress-responsible transcription factor of eukaryotic cells (a review). Free Rad. Res. Commun. 17: 221–237.CrossRefGoogle Scholar
  69. Sies, H. ed. 1991. Oxidative Stress, Oxidants and Antioxidants. Academic Press. New York.Google Scholar
  70. Smith, A. and Morgan, W.T. 1979. Haem transport to the liver by haemopexin: Receptor-mediated uptake with re-cling of the protein. Biochem. J. 182: 47–54.Google Scholar
  71. Stocker, R. 1990. Induction of haemoxygenase as a defense against oxidative stress. Free Rad. Res. Commun. 9: 101–112.CrossRefGoogle Scholar
  72. Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irtani, K. and Fintrel, T. 1995. Requirement for generation of H2O2 for PDGF signal transduction. Science 270: 296–299.CrossRefGoogle Scholar
  73. Tan, C.M., Xenoyannis, Y. and Feldman, R.D. 1995. Oxidant stress enhances adenylyl cyclase activation. Cire. Res. 77: 710–717.CrossRefGoogle Scholar
  74. Treffry, A., Gelvan, D., Konijn, A.M. and Harrison, P.M. 1995. Ferritin does not accumulate iron oxidized by caeruloplasmin. J. Biochem. 305: 21–23.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • John M. C. Gutteridge
    • 1
  1. 1.Oxygen Chemistry LaboratoryUnit of Critical Care Department of Anaesthesia and Adult Intensive Care Royal Brompton HospitalLondonUK

Personalised recommendations