Alkaloids pp 199-218 | Cite as

The Biosynthesis of Alkaloids in Root Cultures

  • Richard J. Robins

Abstract

Alkaloid production by in vitro cultures has a long history. Root cultures of alkaloid-producing species were established more than 50 years ago (Butcher and Street, 1964) but it was not until the 1950s that alkaloid production was demonstrated in such systems (Mitra, 1972; Solt, 1957). Research was limited, however, because of the difficulty of establishing and maintaining root cultures. The advent of dispersed suspension cultures stimulated a period of intense activity and major advances were made in the biochemistry of some alkaloid classes, notably the indole and bisisoquinoline types (Zenk, 1989). These examples proved, unfortunately, to be exceptions rather than the rule and several other important classes, such as the tropanes, quinolines, and pyrrolizidines, were accumulated at only very low levels or not at all. Several groups in the early 1980s reexamined the possibility of using root cultures for alkaloid production and the establishment of cultures of Hyoscyamus niger (Hashimoto and Yamada, 1983) and Senecio vulgaris (Hartmann and Toppel, 1987; Toppel et al., 1987) were reported. In 1986, a further step forward was made when Hamill et al. (1986) reported the use of transformed root cultures for nicotine formation. Four years later, the same authors demonstrated that nicotine accumulation in Nicotiana rustica transformed roots could be increased by genetic engineering (Hamill et al., 1990). The advantage of transformation is that, by engineering the delivery system, genes can be inserted into the plant (Jones et al., 1992). Furthermore, transformed roots have no phytohormone requirement and show good stability in culture.

Keywords

Arginine Phenylalanine Phen Quinoline Isoleucine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Reviews

  1. Butcher, D. N., and Street, H. E., 1964, Excised root culture, Bot. Rev. 30:513–586.CrossRefGoogle Scholar
  2. Hamill, J. D., Parr, A. J., Rhodes, M. J. C., Robins, R. J., and Walton, N. J., 1987, New routes to secondary products, Bio/Technology 5:800–804.CrossRefGoogle Scholar
  3. Hartmann, T., 1994, Senecio species: Biochemistry of the formation of pyrrolizidine alkaloids in root cultures, in: Biotechnology in Agriculture and Forestry, Vol. 26 (Y. P. S. Bajaj, ed.), Springer-Verlag, Berlin, pp. 339–355.Google Scholar
  4. Hartmann, T., and Witte, L., 1995, Chemistry, biology and chemoecology of the pyrrolizidine alkaloids, in: Alkaloids: Chemical and Biological Perspectives, Vol. 9 (S. W. Pelletier, ed.), Pergamon Press, Oxford, pp. 155–233.Google Scholar
  5. Leete E., 1990, Recent developments in the biosynthesis of tropane alkaloids, Planta Med. 56:339–352.PubMedCrossRefGoogle Scholar
  6. Rhodes, M. J. C., Robins, R. J., Aird, E. L. H., Payne, J., Parr, A. J., and Walton, N. J., 1989, Regulation of secondary metabolism in transformed root cultures, in: Primary and Secondary Metabolism of Plant Cell Cultures II (W. G. W. Kurz, ed.), Springer-Verlag, Berlin, pp. 58–72.CrossRefGoogle Scholar
  7. Rhodes, M. J. C., Robins, R. J., Parr, A. J., and Walton, N. J., 1990, Secondary metabolism in transformed root cultures, in: Secondary Products from Plant Tissue Culture (B. V. Charlwood and M. J. C. Rhodes, eds.), Oxford University Press, Oxford, pp. 201–225.Google Scholar
  8. Robins, D. J., 1989, Biosynthesis of pyrrolizidine alkaloids, Chem. Soc. Rev. 18:375–408.CrossRefGoogle Scholar
  9. Robins, D. J., 1991, Stereochemistry of enzymic processes in the biosynthesis of pyrrolizidine alkaloids, Experientia 47:1118–1122.PubMedCrossRefGoogle Scholar
  10. Robins, R. J., and Walton, N. J., 1993, The biosynthesis of tropane alkaloids, in: The Alkaloids, Vol. 44 (G. A. Cordeil, ed.), Academic Press, San Diego, pp. 115–187.Google Scholar
  11. Zenk, M. H., 1989, Biosynthesis of alkaloids using plant cell cultures, Recent Adv. Phytochem. 23:429–457.Google Scholar

Key References

  1. Abraham, T. W., and Leete, E., 1995, New intermediate in the biosynthesis of tropane alkaloids in Datura innoxia. J. Amer. Chem. Soc. 117:8100–8105.CrossRefGoogle Scholar
  2. Ansarin, M., and Woolley, J. G., 1993, The obligatory role of phenyllactate in the biosynthesis of tropic acid, Phytochemistry 32:1183–1187.CrossRefGoogle Scholar
  3. Ansarin, M., and Woolley, J. G., 1994, The rearrangement of phenyllactic acid in the biosynthesis of tropic acid, Phytochemistry 35:935–939.CrossRefGoogle Scholar
  4. Böttcher, F., Adolph, R.-D., and Hartmann, T., 1993, Homospermidine synthase, the first pathway-specific enzyme in pyrrolizidine alkaloid biosynthesis, Phytochemistry 32:679–689.CrossRefGoogle Scholar
  5. Böttcher, F., Ober, D., and Hartmann, T., 1994, Biosynthesis of pyrrolizidine alkaloids: Putrescine and spermidine are essential substrates of enzymatic homospermidine formation, Can. J. Chem. 72:80–85.CrossRefGoogle Scholar
  6. Chesters, N. C. J. E., O’Hagan, D., and Robins, R. J., 1994, The biosynthesis of tropic acid in plants. Evidence for the direct rearrangement of phenyllactate to tropate, J. Chem. Soc. Perkin Trans. I 1159–1162.Google Scholar
  7. Chesters, N. C. J. E., O’Hagan, D., and Robins, R. J., 1995, The biosynthesis of tropic acid: The (R)-d-phenyllactyl moiety is processed by the mutase involved in hyoscyamine biosynthesis in Datura stramonium, J. Chem. Soc. Chem. Commun. 127–128.Google Scholar
  8. Dräger, B., and Schaal, A., 1994, Tropinone reduction in Atropa belladonna root cultures, Phytochemistry 35:1441–1447.CrossRefGoogle Scholar
  9. Dräger, B., Portsteffen, A., Schaal, A., McCabe, P. H., Peerless, A. C. J., and Robins, R. J., 1992, Levels of tropinone-reductase activities influence the spectrum of tropane esters found in transformed root cultures of Datura stramonium, Planta 188:581–586.Google Scholar
  10. Dräger, B., Funck, C., Höhler, A., Mrachatz, G., Portsteffen, A., Schaal, A., and Schmidt, R., 1994, Calystegines as a new group of tropane alkaloids in Solanaceae, Plant Cell Tissue Org. Cult. 38:235–240.CrossRefGoogle Scholar
  11. Fecker, L. F., Hillebrandt, S., Rügenhagen, C., Herminghaus, S., Landsmann, J., and Berlin, J., 1992, Metabolic effects of a bacterial lysine decarboxylase gene expressed in hairy root culture of Nicotiana glauca, Biotechnol Lett. 14:1035–1040.CrossRefGoogle Scholar
  12. Friesen, J. B., and Leete, E., 1990, Nicotine synthase—An enzyme from Nicotiana species which catalyses the formation of (S)-nicotine from nicotinic acid and 1-methyl-Δ’-pyrrolinium chloride, Tetrahedron Lett. 6295–6298.Google Scholar
  13. Goldmann, A., Milat, A.-L., Ducrot, P.-H., Lallemand, J.-Y., Maille, M., Lepingle, A., Charpin, I., and Tepfer, D., 1992, Tropane derivatives from Calystegia sepium. Phytochemistry 29:2125–2127.CrossRefGoogle Scholar
  14. Hamill, J. D., Parr, A. J., Robins, R. J., and Rhodes, M. J. C., 1986, Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes, Plant Cell Rep. 5:111–114.CrossRefGoogle Scholar
  15. Hamill, J. D., Robins, R. J., Parr, A. J., Evans, D. M., Furze, J. M., and Rhodes, M. J. C., 1990, Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine formation, Plant Mol. Biol. 15:27–38.PubMedCrossRefGoogle Scholar
  16. Hartmann, T., and Toppel, G., 1987, Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris, Phytochemistry 26:1639–1643.CrossRefGoogle Scholar
  17. Hartmann, T., Sander, H., Adolph, R., and Toppel, G., 1988, Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio species, Planta 175:82–90.CrossRefGoogle Scholar
  18. Hashimoto, T, and Yamada, Y., 1983, Scopolamine production in suspension cultures and redifferentiated roots of Hyoscyamus niger, Planta Med. 47:195–199.CrossRefGoogle Scholar
  19. Hashimoto, T., and Yamada, Y., 1987, Purification and characterization of hyoscyamine 6β-hydroxylase from root cultures of Hyoscyamus niger L.: Hydroxylase and epoxidase activities in the preparation, Eur. J. Biochem. 164:277–285.PubMedCrossRefGoogle Scholar
  20. Hashimoto, T., Yukimune, Y., and Yamada, Y., 1986, Tropane alkaloid production in Hyoscyamus root cultures, J. Plant Physiol. 124:61–75.CrossRefGoogle Scholar
  21. Hashimoto, T., Yukimune, Y., and Yamada, Y., 1989, Putrescine and putrescine N-methyltransferase in the biosynthesis of tropane alkaloids in cultured roots of Hyoscyamus albus, I. Biochemical studies, Planta 178:123–130.CrossRefGoogle Scholar
  22. Hashimoto, T., Mitani, A., and Yamada, Y., 1990, Diamine oxidase from cultured roots of Hyoscyamus niger, Plant Physiol 93:216–221.CrossRefGoogle Scholar
  23. Hashimoto, T., Nakajema, K., Ongena, G., and Yamada, Y., 1992, Two tropinone reductases with distinct stereospecificities from cultured roots of Hyoscyamus niger, Plant Physiol. 100:836–845.CrossRefGoogle Scholar
  24. Hashimoto, T., Yun, D.-J., and Yamada, Y., 1993, Production of tropane alkaloids in genetically engineered root cultures, Phytochemistry 32:713–718.CrossRefGoogle Scholar
  25. Hibi, N., Fujita, T., Hatano, M., Hashimoto, T., and Yamada, Y., 1992, Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus, Plant Physiol. 100:826–835.CrossRefGoogle Scholar
  26. Hibi, N., Higashiguchi, S., Hashimoto, T., and Yamada, Y., 1994, Gene expression in tobacco low-nicotine mutants, Plant Cell 6:723–735.PubMedGoogle Scholar
  27. Hilton M., and Rhodes, M. J. C., 1990, Growth and hyoscyamine production of’hairy root’ cultures of Datura stramonium in a modified stirred tank reactor, Appl. Microbiol. Biotechnol. 33:132–138.PubMedCrossRefGoogle Scholar
  28. Jones, J. D. G., Shlumukov, L., Carland, F., English, J., Scofield, S. R., Bishop, G. J., and Harrison, K., 1992, Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in plants, Transgenic Res. 1:285–297.PubMedCrossRefGoogle Scholar
  29. Leete, E., and McDonell, J. A., 1981, The incorporation of [1-13C,14C, methylamino-15N]-N-methylputrescine into nicotine and scopolamine established by means of carbon-13 nuclear magnetic resonance, J. Am. Chem Soc. 103:658–662.CrossRefGoogle Scholar
  30. Matsuda, J., Okabe, S., Hashimoto, T, and Yamada, Y., 1991, Molecular cloning of hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger, J. Biol. Chem. 266:9460–9464.Google Scholar
  31. McLauchlan, W. R., McKee, R. A., and Evans, D. M., 1993, The purification and immunocharacterisation of N-methylputrescine oxidase from transformed root cultures of Nicotiana tabacum L. cv SC58, Planta 191:440–445.CrossRefGoogle Scholar
  32. Mitra, G. C., 1972, Atropine production and growth of excised Belladonna root culture, Indian J. Exp. Biol. 10:217–218.PubMedGoogle Scholar
  33. Mizusaki, S., Tanabe, Y., Noguchi, M., and Tamaki, E., 1973, Changes in the activities of ornithine decarboxylase, putrescine N-methyltransferase and N-methylputrescine oxidase in tobacco roots in relation to nicotine biosynthesis, Plant Cell Physiol. 14:103–110.Google Scholar
  34. Nakajima, K., Hashimoto, T., and Yamada, Y., 1993, Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor, Proc. Natl. Acad. Sci. USA 90:9591–9595.PubMedCrossRefGoogle Scholar
  35. Ohta, S., and Yatazawa, M., 1980, Metabolic key step discriminating nicotine producing tobacco callus strain from ineffective one, Biochem. Physiol. Pflanz. 175:382–385.Google Scholar
  36. Payne, J., Hamill, J. D., Robins, R. J., and Rhodes, M. J. C., 1987, Production of hyoscyamine by’hairy root’ cultures of Datura stramonium, Planta Med. 53:474–478.CrossRefGoogle Scholar
  37. Portsteffen, A., Dräger, B., and Nahrstedt, A., 1992, Two tropinone reducing enzymes from Datura stramonium transformed root cultures, Phytochemistry 31:1135–1138.CrossRefGoogle Scholar
  38. Portsteffen, A., Dräger, B., and Nahrstedt, A., 1994, The reduction of tropinone in Datura stramonium root cultures by two specific reductases, Phytochemistry 37:391–400.PubMedCrossRefGoogle Scholar
  39. Rabot, S., Peerless, A. C. J., and Robins, R. J., 1995, Tigloyl-CoA:pseudotropine acyl transferase—a novel enzyme of tropane alkaloid biosynthesis, Phytochemistry 39:315–322.CrossRefGoogle Scholar
  40. Robins, R. J., Hamill, J. D., Parr, A. J., Smith, K., Walton, N. J., and Rhodes, M. J. C., 1987, Potential for use of nicotinic acid as a selective agent for isolation of high nicotine-producing lines of Nicotiana rustica hairy root cultures, Plant Cell Rep. 6:122–126.Google Scholar
  41. Robins, R. J., Parr, A. J., Payne, J., Walton, N. J., and Rhodes, M. J. C., 1990, Factors regulating tropane-alkaloid production in a transformed root culture of a Datura Candida X D. aurea hybrid, Planta 181:414–422.CrossRefGoogle Scholar
  42. Robins, R. J., Parr, A. J., Bent, E. G., and Rhodes, M. J. C., 1991a, Studies on the formation of tropane alkaloids in Datura stramonium L. transformed root cultures, 1. The kinetics of alkaloid production and the influence of feeding intermediate metabolites, Planta 183:185–195.CrossRefGoogle Scholar
  43. Robins R. J., Parr, A. J., and Walton, N. J., 1991b, Studies on the formation of tropane alkaloids in Datura stramonium L. transformed root cultures, 2. On the relative contributions of L-arginine and L-oraithine to the formation of the tropane ring, Planta 183:196–201.CrossRefGoogle Scholar
  44. Robins R. J., Bent, E. G., and Rhodes, M. J. C., 1991c, Studies on the formation of tropane alkaloids in Datura stramonium L. transformed root cultures, 3. The relationship between morphological integrity and alkaloid biosynthesis, Planta 185:385–390.CrossRefGoogle Scholar
  45. Robins, R. J., Bachmann, P., Robinson, T., Yamada, Y., and Rhodes, M. J. C., 1991d, The formation of 3α and 3β-acetoxytropanes by Datura stramonium transformed root cultures involves two acetyl-CoA-dependent acyltransferases, FEBS Lett. 292:293–297.CrossRefGoogle Scholar
  46. Robins, R. J., Woolley, J. G., Ansarin, M., Eagles, J., and Goodfellow, B. J., 1994a, Phenyllactic acid but not tropic acid is an intermediate in the biosynthesis of tropane alkaloids in Datura and Brugmansia transformed root cultures, Planta 194:86–94CrossRefGoogle Scholar
  47. Robins, R. J., Bachmann, P., and Woolley, J. G., 1994b, Biosynthesis of hyoscyamine involves an intramolecular rearrangement of littorine, J. Chem. Soc. Perkin Trans. I 615–619.Google Scholar
  48. Robins, R. J., Chesters, N. C. J. E., O’Hagan, D., Parr, A. J., Walton, N. J., and Woolley, J. G., 1995, The biosynthesis of hyoscyamine: The process by which littorine rearranges to hyoscyamine, J. Chem. Soc. Perkin Trans. I 481–485.CrossRefGoogle Scholar
  49. Robins, R. J., Abraham, T. W., Parr, A. J., Eagles, J., and Walton, N. J., 1997, The biosynthesis of tropane alkaloids in Datura stramonium: The identity of the intermediates between N-methylpyrrolinium salt and tropinone. J. Amer. Chem. Soc. (in press).Google Scholar
  50. Röper, W., Schulz, M., Chaouiche, E., and Meloh, K. A., 1985, Nicotine production by tissue cultures of tobacco as influenced by various culture parameters, J. Plant Physiol. 118:463–470.PubMedCrossRefGoogle Scholar
  51. Sander, H., and Hartmann, T., 1989, Site of synthesis, metabolism and translocation of senecionine N-oxide in cultured roots of Senecio erucifolius, Plant Cell Tissue Org. Cult. 18:19–31.CrossRefGoogle Scholar
  52. Solt, M. L., 1957, Nicotine production and growth of excised tobacco root culture, Plant Physiol. 32:480–484.PubMedCrossRefGoogle Scholar
  53. Spencer, A., Hamill, J. D., and Rhodes, M. J. C., 1993, In vitro biosynthesis of monoterpenes by Agrobacterium transformed shoot cultures of two Mentha species, Phytochemistry 32:911–919.CrossRefGoogle Scholar
  54. Tiburcio, A. F., and Galston, A. W., 1986, Arginine decarboxylase as the source of putrescine for tobacco alkaloids, Phytochemistry 25:107–110.PubMedCrossRefGoogle Scholar
  55. Toppel, G., Witte, L., Riebesehl, B., van Borstel, K., and Hartmann, T., 1987, Alkaloid patterns and biosynthetic capacity of root cultures of some pyrrolizidine alkaloid producing Senecio species, Plant Cell Rep. 6:466–469.Google Scholar
  56. Walton, N. J., and Belshaw, N. J., 1988. The effect of cadaverine on the formation of anabasine from lysine in hairy root cultures of Nicotiana hesperis, Plant Cell Rep. 7:115–118.CrossRefGoogle Scholar
  57. Walton, N. J., and McLauchlan, W. R., 1990, Diamine oxidation and alkaloid production in transformed root cultures of Nicotiana tabacum, Phytochemistry 29:1455–1457.CrossRefGoogle Scholar
  58. Walton, N. J., Robins, R. J., and Rhodes, M. J. C., 1988, Perturbation of alkaloid production by cadaverine in hairy root cultures of Nicotiana rustica, Plant Sci. 54:125–131.CrossRefGoogle Scholar
  59. Walton, N. J., Robins, R. J., and Peerless, A. C. J., 1990, Enzymes of N-methylputrescine biosynthesis in relation to hyoscyamine formation in transformed root cultures of Datura stramonium and Atropa belladonna, Planta 182:16–141.Google Scholar
  60. Walton, N. J., Peerless, A. C. J., Robins, R. J., Rhodes, M. J. C., Boswell, H. D., and Robins, D. J., 1994, Purification and properties of putrescine N-methyltransferase from transformed roots of Datura stramonium L, Planta 193:9–15.CrossRefGoogle Scholar
  61. Williams, R. D., and Ellis, B. E., 1993, Alkaloids from Agrobacterium rhizogenes-trannsformed Papaver somniferum cultures, Phytochemistry 32:719–723.CrossRefGoogle Scholar
  62. Yun, D.-J., Hashimoto, T., and Yamada, Y., 1992, Metabolic engineering of medicinal plants: Transgenic Atropa belladonna with improved alkaloid composition, Proc. Natl. Acad. Sci. USA 89:11799–11803.PubMedCrossRefGoogle Scholar
  63. Yun, D.-J., Hashimoto, T., and Yamada, Y., 1993, Expression of hyoscyamine 6β-hydroxylase gene in transgenic tobacco, Biosci. Biotechnol. Biochem. 57:502–503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Richard J. Robins
    • 1
  1. 1.Laboratoire d’ Analyse Isotopique et Électrochimique de Métabolismes, CNRS UPRES-A 6006University of NantesNantes Cedex 03France

Personalised recommendations