Alkaloids pp 159-197 | Cite as

Production of Alkaloids in Plant Cell Culture

  • Margaret F. Roberts


The destruction of natural habitats and the exploitation of certain plants for drug production has created an interest in alternative sources for plant material. Over the last decade the potential of cultured plant cells as a means of producing important secondary metabolites has been a focus of investigation (Staba, 1985; Rokem and Goldberg, 1985; Fowler, 1986; Yamada and Fujita, 1986; Banthorpe, 1994).


Hairy Root Cell Suspension Culture Root Culture Hairy Root Culture Plant Cell Culture 
These keywords were added by machine and not by the authors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General Reviews

  1. Alfermann, A. W., and Reinhard, E., 1988, Biotransformation of synthetic and natural compounds by plant cell cultures, in: Plant Cell Biotechnology, NATO ASI Series, Vol H18 (M. S. S. Pais, F. Mavituna, and J. M. Novais, eds.), Springer-Verlag, Berlin, pp. 275–283.CrossRefGoogle Scholar
  2. Anderson, L. A., Phillipson, J. D., and Roberts, M. F., 1985, Biosynthesis of secondary products by cell cultures of higher plants, in: Advances in Biochemical Engineering/Biotechnology, Plant Cell Culture, Vol. 31 (A. Fiechter, ed.), Springer-Verlag, Berlin, pp. 1–36.CrossRefGoogle Scholar
  3. Anderson, L. A., Phillipson, J. D., and Roberts, M. F., 1987, Alkaloid production by plant cells, in: Plant and Animal Cell Cultures, Process Possibilities (C. Webb and F. Mavituna, eds.), Ellis Horwood, Chichester, pp. 172–192.Google Scholar
  4. Banthorpe, D. V., 1994, Secondary metabolism in plant tissue culture: Scope and limitations, J. Chem. Soc. Nat. Prod. Rep. 303–328.Google Scholar
  5. Brodelius, P., 1988, Stress induced secondary metabolism in plant cell cultures, in: Plant Cell Biotechnology, NATO ASI Series, H18 (M. S. S. Pais, F. Mavituna, and J. M. Novais, eds.), Springer-Verlag, Berlin, pp. 195–209.CrossRefGoogle Scholar
  6. Brodelius, P., and Mosbach, K., 1982, Immobilised plant cells in: Advances in Applied Microbiology, Vol. 28 (A. I. Laskin, ed.), Academic Press, New York, pp. 1–26.Google Scholar
  7. Curtin, M. E., 1983, Harvesting profitable products from plant cell culture, Biotechnology, 1:649–657.CrossRefGoogle Scholar
  8. Dix, P. J., 1990, Plant Cell Line Selection: Procedures and Applications, VCH, Weinheim.Google Scholar
  9. Ellis, B. E., 1984, Probing secondary metabolism in plant cell tissue cultures, Can. J. Bot. 62:2912–2917.CrossRefGoogle Scholar
  10. Evans, W. C., 1989, Cell and organ culture and clonal propagation as sources of drugs, in: Trease & Evans’ Pharmacognosy, 13th ed., Baillière-Tindell, London, pp. 68–78.Google Scholar
  11. Flores, H. E., 1986, Use of plant cells and organ culture in the production of biological chemicals, in: Applications of Biotechnology to Agricultural Chemistry (H. Lebaron, R. O. Mumma, R. C. Honeycutt, and J. H. Dresing, eds.), ACS Symp. Ser. 190, pp. 66–86.Google Scholar
  12. Fowler, M. W., 1986, Industrial applications of plant cell culture, in: Plant Cell Culture Technology Botanical Monograph, Vol. 23 (M. M. Yeoman, ed.), Blackwell, Oxford, pp. 202–227.Google Scholar
  13. Fowler, M. W., and Scragg, A. H., 1988, Natural products from higher plants and plant cell cultures, in: Plant Cell Biotechnology, NATO ASI Series, Vol. H18 (M. S. S. Pais, F. Mavituna, and J. M. Novais, eds.), Springer-Verlag, Berlin, pp. 166–177.Google Scholar
  14. Fowler, M., Cresswell, R. C., and Stafford, A. M., 1990, An economic and technical assessment of the use of plant cell cultures for natural product synthesis on an industrial scale, Ciba Found. Symp. 154:157–174.PubMedGoogle Scholar
  15. Gautheret, R. J., 1959, La Culture des Tissues Vegeteaux, Masson, Paris.Google Scholar
  16. Hamill, J. D., Parr, A. J., Rhodes, M. J. C., Robins, R. J., and Walton, N. J., 1987, New routes to plant secondary products, Biotechnology 5:800–804.CrossRefGoogle Scholar
  17. Hay, C. A., Anderson, L. A., Roberts, M. F., and Phillipson, J. D. 1988, Alkaloid production by plant cell cultures, in: Biotechnology in Agriculture (A. Misrahi and A. L. van Wezel, eds.), Liss, New York, pp. 97–140.Google Scholar
  18. Heble, M. R., 1985, Multiple shoot cultures: A viable alternative in vitro system for the production of known and new biologically active plant constituents, in: Primary and Secondary Metabolism of Plant Cell Cultures (K. H. Newmann, W. Barz, and E. Reinhard, eds.), Springer-Verlag, Berlin, pp. 281–289.CrossRefGoogle Scholar
  19. Heinstein, P. F., 1985, Future approaches to the formation of secondary natural products in plant cell suspension cultures, J. Nat. Prod. 48:1–9.CrossRefGoogle Scholar
  20. Hulst, A. C., and Tramper, J., 1989, Immobilised plant cells: A literature survey, Enzyme Microb. Technol. 11:546–558.CrossRefGoogle Scholar
  21. Kennedy, J. F., 1982, The future of immobilised cell technology, Nature 299:777–778.CrossRefGoogle Scholar
  22. Kurz, W. G. W., and Constabel, F., 1985, Aspects affecting biosynthesis and biotransformation of secondary metabolites in plant cell cultures, in: CRC Critical Reviews in Biotechnology, Vol. 2, Issue 2 (G. Stewart and I. Russell, eds.), CRC., Boca Raton, pp. 105–118.Google Scholar
  23. Lindsey, K., and Yeoman, M. M., 1983, Novel experimental systems for studying the production of secondary metabolites by plant tissue cultures, in: Plant Biotechnology (S. H. Manteli and H. Smith, eds.), Cambridge University Press, London, pp. 39–66.Google Scholar
  24. Lindsey, K., and Yeoman, M. M., 1985, Dynamic aspects of plant cell culture, in: Cell Culture and Somatic Cell Genetics of Plants: A Comprehensive Treatise (I. Vasil, ed.), Academic Press, New York, pp. 61–101.Google Scholar
  25. Manteli, S. H., and Smith, H., (eds.), 1983, Plant Biotechnology, Cambridge University Press, London.Google Scholar
  26. Meins, F., 1983, Heritable variation in plant cell culture, Annu. Rev. Plant Physiol. 34:327–346.CrossRefGoogle Scholar
  27. Payne, G., Bringi, V., Prince, C., and Shuler, M. L., (eds.), 1991, Plant Cell and Tissue Culture in Liquid Systems, Hanser, Munich.Google Scholar
  28. Reinert, J., and Yeoman, M., (eds.), 1982, Plant Cell and Tissue Culture, a Laboratory Manual, Springer-Verlag, Berlin.Google Scholar
  29. Reinhard, E., and Alfermann, A. W., 1980, Biotransformation by plant cells, in: Advances in Biochemical Engineering 16, Plant Cell Cultures I (A. Fiechter, ed.), Springer-Verlag, Berlin, pp. 49–83.Google Scholar
  30. Rhodes, M. J. C., 1986, Immobilised plant cells, in: Topics in Enzyme and Fermentation Biotechnology, Vol. 10 (A. Weisman, ed.), Ellis Horwood, Chichester, pp. 51–87.Google Scholar
  31. Roberts, M. F., 1988b, Medicinal products through plant biotechnology, in: Manipulating Secondary Metabolism in Culture (R. J. Robins and M. J. C. Rhodes, eds.), Cambridge University Press, London, pp. 201–216.Google Scholar
  32. Stafford, A., and Warren, G., 1991, Plant Cell and Tissue Culture, Open University Press, Biotechnology Series.Google Scholar
  33. Street, H., (ed.), 1977, Plant Tissue and Cell Culture, Blackwell, Oxford.Google Scholar
  34. Yamada, Y., and Fujita, Y., 1986, Production of useful compounds from culture, in: Handbook of Plant Cell Culture (D. A. Evans, W. R. Sharp, P. V. Ammirator, and Y. Yamada, eds.), Macmillan Co., New York, pp. 717–728.Google Scholar
  35. Yeoman, M. M., 1987a, Techniques, characteristics, properties and commercial potential of immobilised cell, in: Cell Culture and Somatic Genetics, Vol. 4: (F. Constabel and I. K. Vasil, eds.), Academic Press, San Diego, pp. 197–215.Google Scholar
  36. Yeoman, M. M., 1987b, Bypassing the plant, Ann. Bot. 60(Suppl.):157–174.Google Scholar
  37. Yeoman, M. M., Lindsey, K., Miedzybrodzka, H. B., and McLauchlan, W. R., 1980, Accumulation of secondary products as a facet of differentiation in plant cell cultures, in: Differentiation in Vitro (M. M. Yeoman and D. E. S. Truman, eds.), Cambridge University Press, London, pp. 65–82.Google Scholar
  38. Zenk, M. H., 1990, Plant cell cultures: A potential in food and biotechnology, Food Biotechnol. 4:461–470.CrossRefGoogle Scholar

Key References

  1. Bariaud-Fontanel, A., Julien, M., Coutos-Thevenot, P., Brown, S., Courtois, D., and Petiard, V., 1988, Cloning and cell sorter, in: Plant Cell Biotechnology, NATO ASI Series, Vol. H18 (M. S. M. Pais, F. Mavituna, and J. M. Novais, eds.), Springer-Verlag, Berlin, pp. 403–420.CrossRefGoogle Scholar
  2. Baumann, T. W., and Röhrig, L., 1989, Formation and intracellular accumulation of caffeine and chlorogenic acid in suspension cultures of Coffea arabica, Phytochemistry 28:2667–2669.CrossRefGoogle Scholar
  3. Benjamin, B. D., Roja, P. C., Heble, M. R., and Chadha, M. S., 1987, Multiple shoot cultures of Atropa belladonna: Effect of physicochemical factors on growth and alkaloid formation, J. Plant Physiol. 129:129–135.CrossRefGoogle Scholar
  4. Breuling, M., Alfermann, A. W., and Reinhard, E., 1985, Cultivation of cell cultures of Berberis wilsoniae in 20–1 airlift bioreactors, Plant Cell Rep. 4:220–223.CrossRefGoogle Scholar
  5. Brodelius, P., Deus, B., Mosbach, K., and Zenk, M. H., 1979, Immobilised plant cells in the production and transformation of natural products, FEBS Lett. 103:93–97.PubMedCrossRefGoogle Scholar
  6. Brodelius, P., Funk, C., and Shillito, R. D., 1988, Permeabilisation of cultivated plant cells by electroporation for the release of intracellularly stored secondary products, Plant Cell Rep. 7:186–188.CrossRefGoogle Scholar
  7. Brown, S., 1984, Analysis and sorting of plant material by flow-cytometry, Physiol. Weg. 22:341–345.Google Scholar
  8. Cheng, K.-D., Zhu, W.-H., Li, X.-L, Mang, C., Sun, Z.-M., and Yang, D.-H., 1987, Biotransformation of hyoscyamine by suspension cultures of Anisodus tanguticus, Planta Med. 53:212–213.Google Scholar
  9. Cheng, K.-D., Fang, H.-J., Zhu, W.-H., Mang, C., Yang, D.-H., and Li, L., 1989, The biotransformation of 6 hydroxyhyoscyamine to scopolamine by suspension and immobilised cells of Anisodus tanguticus, Planta Med. 55:391–392.CrossRefGoogle Scholar
  10. Christen, P., Roberts, M. F., Phillipson, J. D., and Evans, W. C., 1990, Alkaloids of hairy root cultures of a Datura Candida hybrid, Plant Cell Rep. 9:101–104.CrossRefGoogle Scholar
  11. Collin, H. A., 1987, Determinants of yield of secondary products in plant tissue cultures, Adv. Bot. Res. 113:146–187.Google Scholar
  12. Constabel, F., 1990, Medicinal plant biotechnology, Planta Med. 56:421–425.PubMedCrossRefGoogle Scholar
  13. Corchete, P., and Yeoman, M. M., 1989, Biotransformation of (-)-codeinone to (-)-codeine by Papaver somniferum cells immobilized in reticulate polyurethane foam, Plant Cell Rep. 8:128–131.CrossRefGoogle Scholar
  14. Courtois, D., and Guern, J., 1980, Temperature response of Catharanthus roseus cells cultivated in liquid medium, Plant Sci. Lett. 17:473–482.CrossRefGoogle Scholar
  15. Dagnino, D., Schripsema, J., and Verpoorte, R., 1994, Terpenoid indole alkaloid biotransformation capacity of Tabernaemontana divaricata, Phytochemistry 35:671–676.CrossRefGoogle Scholar
  16. Deus, B., and Zenk, M. H., 1982, Exploitation of plant cells for the production of natural compounds, Biotechol. Bioeng. 24:1965–1974.CrossRefGoogle Scholar
  17. DiCosmo, F., Quesnel, A., Misawa, M., and Tallevi, S. G., 1987, Increased synthesis of ajmalicine and catharanthine by cell suspension cultures of Catharanthus roseus in response to fungal culture-filtrates, Appl. Biochem. Biotechnol. 14:101–106.PubMedCrossRefGoogle Scholar
  18. Dos Santos, R. I., Schripsema, J., and Verpoorte, R., 1994, Ajmalicine metabolism in Catharanthus roseus cell cultures, Phytochemistry 35:677–681.CrossRefGoogle Scholar
  19. Eilert, U., and Constabel, F., 1985, Ultrastructure of Papaver somniferum cells cultured in vitro and treated with fungal homogenate eliciting alkaloid production, Protoplasma 128:38–42.CrossRefGoogle Scholar
  20. Eilert, U., Kurz, W. G. W., and Constabel, F., 1985, Stimulation of sanguinarine accumulation in Papaver somniferum cell cultures by fungal elicitors, J. Plant Physiol. 119:65–76.CrossRefGoogle Scholar
  21. Endo, T., and Yamada, Y., 1985, Alkaloid production in cultured roots of three species of Duboisia, Phytochemistry 24:1233–1236.CrossRefGoogle Scholar
  22. Endo, T., Goodbody, A., Vukovic, J., and Misawa, M., 1987, Biotransformation of anhydrovinblastine to vinblastine by a cell free extract of Catharanthus roseus cell suspension cultures, Phytochemistry 26:32–34.CrossRefGoogle Scholar
  23. Endo, T., Hamaguchi, H., Eriksson, T., and Yamada, Y., 1991, Alkaloid biosynthesis in somatic hybrids of Duboisia leichhardtii F. Muell., and Nicotiana tabacum L., Planta 183:505–510.CrossRefGoogle Scholar
  24. Facchini, P. J., and DiCosmo, F., 1991, Plant cell bioreactor for the production of protoberberine alkaloids from immobilised Thalictrum rugosum cultures, Biotechnol. Bioeng. 37:397–403.PubMedCrossRefGoogle Scholar
  25. Falkenhagen, H., Kuzovkina, I. N., Alterman, I. E., Nikolaeva, L. A., and Stöckigt, J., 1993, Alkaloid formation hairy roots and cell suspension cultures of Rauvolvia serpentina Benth., Nat. Prod. Lett. 3:107–112.CrossRefGoogle Scholar
  26. FettNeto, A. G., DiCosmo, F., Reynolds, W. E., and Sakata, K., 1992, Cell cultures of Taxus as a source of the antineoplastic drug taxol and related taxanes, Biotechnology 10:1572–1575.CrossRefGoogle Scholar
  27. Fujita, Y., 1988, Industrial production of shikonin and berberine, Ciba Found. Symp. 137:228–238.Google Scholar
  28. Funk, C., Giigler, K., and Brodelius, P. E., 1987, Increased secondary product formation in plant cell suspension cultures after treatment with a yeast carbohydrate preparation (elicitor), Phytochemistry 26:401–405.CrossRefGoogle Scholar
  29. Furuya, T., Ikuta, A., and Syono, K., 1972, Alkaloids from callus tissue of Papaver somniferum, Phytochemistry 11:3041–3044.CrossRefGoogle Scholar
  30. Furuya, T., Yoshikawa, T., and Taira, M., 1984, Biotransformation of codeinone to codeine by immobilised cells of Papaver somniferum, Phytochemistry 23:999–1001.CrossRefGoogle Scholar
  31. Furuya, T., Koge, K., and Orihara, Y., 1990, Long term culture and caffeine production of immobilised coffee (Cojfea arabica L.) cells in polyurethane foam, Plant Cell Rep. 9:125–128.CrossRefGoogle Scholar
  32. Furuya, T., Orihara, Y., and Koge, K., 1991, Biotransformation of theobromine and caffeine in suspension and polyurethane foam immobilised coffee (Cojfea arabica L.) cells, Plant Cell Rep. 9:659–662.CrossRefGoogle Scholar
  33. Goodbody, A. E., Endo, T., Vukovic, J., Kutney, J. P., Choi, L., and Misawa, M., 1988, Enzymic coupling of catharanthine and vindoline to form 3′-4′-anhydrovinblastine by horseradish peroxidase, Planta Med 52:136–140.CrossRefGoogle Scholar
  34. Gröger, D., and Baumert, A., 1984, Acridone alkaloid biosynthesis in tissue cultures of Ruta graveolens, in: Progress in Tryptophan and Serotonin Research, de Gruyter, Berlin, pp. 785–788.Google Scholar
  35. Hall, R. D., and Yeoman, M. M., 1986, Temporal and spatial heterogeneity in the accumulation of anthocyane in cell cultures of Catharanthus roseus (L.) G. Don., J. Exp. Bot. 37:48–60.CrossRefGoogle Scholar
  36. Hamill, J. D., Parr, A. J., Robins, R. J., and Rhodes, M. J. C., 1986, Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes, Plant Cell Rep. 5: 111–114.CrossRefGoogle Scholar
  37. Hamill, J. D., Robins, R. J., and Rhodes, M. C. J., 1989, Alkaloid production by transformed root cultures of Cinchona ledgeriana, Planta Med. 55:354–357.CrossRefGoogle Scholar
  38. Han, K.-H., Fleming, P., Walker, K., Loper, M., Chilton, W. S., Mocek, U., Gordon, M. P., and Floss, H., 1994, Genetic transformation of mature Taxus: An approach to genetically control the in vitro production of the anticancer drug taxol, Plant Sci. 95:187–196.CrossRefGoogle Scholar
  39. Harkins, K. R., and Galbraith, D. W., 1984, Flow sorting and the culture of plant protoplasts, Physiol. Plant. 60:43–52.CrossRefGoogle Scholar
  40. Hashimoto, T., Yukimune, Y., Yamada, Y., 1986, Tropane alkaloid production in Hyoscyamus root cultures, J. Plant Physiol. 124:61–75.CrossRefGoogle Scholar
  41. Hashimoto, T., Hayashi, A., Amano, Y., Kohno, J., Iwanari, H., Usuda, S., and Yamada, Y., 1991, Hyoscyamine 6β-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localised at the pericycle of the root, J. Biol. Chem. 266:4648–4653.PubMedGoogle Scholar
  42. Kirby, N. J., and Hunter, C. S., 1990, Repeated harvest of vacuole-located secondary product from in vitro grown plant cells using 1. 02 MHz ultrasound, Appl. Microbiol. Biotechnol. 33:448–451.Google Scholar
  43. Knobloch, K.-H., and Berlin, J., 1981, Phosphate mediated regulation of putrescine biosynthesis in cell suspension cultures of Nicotiana tabacum, Planta Med. 42:167–142.CrossRefGoogle Scholar
  44. Kreis, W., and Reinhard, E., 1989, The production of secondary metabolites by plant cells cultivated in bioreactors, Planta Med. 55:409–416.PubMedCrossRefGoogle Scholar
  45. Kutchan, T. M., 1989, Expression of enzymatically active cloned strictosidine synthase from the higher plant Rauvolfia serpentina in Escherichia coli, FEBS Lett. 257:127–130.CrossRefGoogle Scholar
  46. Kutchan, T. M., Dittrich, H., Bracher, D., and Zenk, M. H., 1991, Enzymology and molecular biology of alkaloid biosynthesis, Tetrahedron 47:5945–5954.CrossRefGoogle Scholar
  47. Lambe, C. A., Reading, A., Roe, S., and Rosvear, A., 1982, Production of alkaloids with immobilised cells of Catharanthus roseus, Enzyme Eng. 6:137–138.CrossRefGoogle Scholar
  48. Larkin, P. J., and Scowcroft, W. R. 1981, Somaclonal variation—A novel source of variability from plant cell culture for plant improvement, Theor., Appl. Genet. 60:197–214.CrossRefGoogle Scholar
  49. Lindsey, K., 1985, Manipulation by nutrient limitation, of the biosynthetic activity of immobilized cells of Capsicum frutescens, Mill. cv. annuum, Planta 165:126–133.CrossRefGoogle Scholar
  50. Ma, W. W., Park, G. L., Gomez, G. A., Nieder, M. H., Adams, T. L., Ansley, G. S., Sahai, O. P., Smith, R. J., Stalhut, R. W., Hylands, P. J., Bitsch, F., and Shackelton, C., 1994, New bioactive taxoids from cell cultures of Taxus baccata, J. Nat. Prod. 57:116–122.CrossRefGoogle Scholar
  51. Manceau, F., Fliniaux, M. A., and Dubreuil, A. J., 1989, Ability of Nicotiana plumbaginifolia cell suspension to demethylate nicotine to nornicotine, Phytochemistry 28:2671–2674.CrossRefGoogle Scholar
  52. Matsuda J., Okabe, S., Hashimoto, T., and Yamada, Y., 1991, Molecular cloning of hyoscyamine 6-hydroxylase a 2-oxoglutarate-dependent dioxygenase from cultured roots of Hyoscyamus niger, J. Biol. Chem. 266:9460–9464.Google Scholar
  53. Miura, Y., Hirata, K., and Kurano, N., 1987, Isolation of vinblastine in callus culture with differentiated roots of Catharanthus roseus (L.) G. Don., Agric. Biol. Chem. 51:611–614.CrossRefGoogle Scholar
  54. Miura, Y., Hirata, K., Kurano, N., Miyamoto, K., and Uchida, K., 1988, Formation of vinblastine in multiple shoot culture of Catharanthus roseus, Plant Med. 54:18–20.CrossRefGoogle Scholar
  55. Morris, P., and Fowler, M. W., 1981, A new method for the production of fine plant cell suspension cultures, Plant Cell Tissie Org. Cult. 1:15–24.CrossRefGoogle Scholar
  56. Muranaka, T., Ohkawa, H., and Yamada, Y., 1992, Scopolamine release into the media by Dubiosia leichhardtii hairy roots, Appl. Microbiol. Biotechnol. 37:554–559.CrossRefGoogle Scholar
  57. Murashige, T., and Skoog, F., 1962, A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant. 15:473–497.CrossRefGoogle Scholar
  58. Nakagawa, K., Fukui, H., and Tabata, M., 1986, Hormonal regulation of berberine production in cell suspension cultures of Thalictrum minus, Plant Cell Rep. 5:69–71.CrossRefGoogle Scholar
  59. Nef, C., Rio, B., and Chrestin, H., 1991, Induction of catharanthine synthesis and stimulation of major indole alkaloid production by Catharanthus roseus cells under non-growth-altering treatment with Pythium vexans extracts, Plant Cell Rep. 10:26–29.CrossRefGoogle Scholar
  60. Okada, N., Koizuma, N., Tanaka, T., Ohkubo, H., Nakanishi, S., and Yamada, Y., 1989, Isolation, sequence, and bacterial expression of a cDNA for (S)-tetrahydroberberine oxidase from cultured berberine-producing Coptis japonica cells, Proc. Natl. Acad. Sci. USA 86:534–538.PubMedCrossRefGoogle Scholar
  61. Payne, J., Hamill, J. D., Robins, R. J., and Rhodes, M. J. C., 1987a, Production of hyoscyamine by “hairy root” cultures of Datura stramonium. Planta Med. 53:474–478.CrossRefGoogle Scholar
  62. Payne, J., Rhodes, M. J. C., and Robins, R. J., 1987b, Quinoline alkaloid production by transformed cultures of Cinchona ledgeriana. Planta Med. 53:368–372.Google Scholar
  63. Rhodes, M. J. C., Hilton, M., Parr, A. J., Hamill, J. D., and Robins, R. J., 1986, Nicotine production by hairy root cultures of Nicotiana rustica. Fermentation and product recovery, Biotechnol. Lett. 8:415–420.CrossRefGoogle Scholar
  64. Roberts, M. F., 1988a, Isoquinolines (Papaver alkaloids), in: Cell Culture and Somatic Cell Genetics of Plants, Vol. 5, (F Constabel and I. K. Vasil, eds.), Academic Press, San Diego, pp. 315–330.Google Scholar
  65. Robins, R. J., Parr, A. J., Payne, J., Walton, N. J., and Rhodes, M. J. C., 1990. Factors regulating tropane alkaloid production in a transformed root culture of a Datura Candida X D. aurea hybrid, Planta 181:414–422.CrossRefGoogle Scholar
  66. Robins, R. J., Parr, A. J., Bent, E. G., and Rhodes, M. J. C., 1991a, Studies on the biosynthesis of tropane alkaloids in Datura stramonium L. transformed root cultures. 1. The kinetics of alkaloid production and the influence of feeding intermediate metabolites, Planta 183:185–195.CrossRefGoogle Scholar
  67. Robins, R. J., Parr, A. J., and Walton, N. J., 1991b, Studies on the biosynthesis of tropane alkaloids in Datura stramonium L. transformed root cultures. 2. On the relative contributions of L-arginine and L-ornithine to the formation of the tropane ring, Planta 183:196–201.CrossRefGoogle Scholar
  68. Rokem, J. S., and Goldberg, I., 1985, Secondary metabolites from plant cell suspension cultures. Methods for yield improvement, in: Advances in Biotechnological Processes, Vol. 4 (A. Mizrahi and A. L. van Wezel, eds.), Liss, New York, pp. 241–274.Google Scholar
  69. Rueffer, M., 1985, The production of isoquinoline alkaloids by plant cell cultures, in: The Chemistry and Biology of Isoquinoline Alkaloids (J. D. Phillipson, M. F. Roberts, and M. H. Zenk, eds.), Springer-Verlag, Berlin, pp. 265–280.CrossRefGoogle Scholar
  70. Ruyter, C. M., Akram, M., Illahi, I., and Stöckigt, J., 1991, Investigation of the alkaloid content of Rauvolfia serpentina roots from regenerated plants, Planta Med. 57:328–330.PubMedCrossRefGoogle Scholar
  71. Saito, K., Murakoshi, I., Inze, D., and Van Montagu, M., 1989, Biotransformation of nicotine alkaloids by tobacco shooty teratomas induced by a Ti plasmid mutant, Plant Cell Rep. 7:607–610.Google Scholar
  72. Sauerwein, M., and Shimomura, K., 1991, Alkaloid production in hairy roots of Hyoscyamus albus transformed with Agrobacterium rhizogenes, Phytochemistry 30:3277–3280.CrossRefGoogle Scholar
  73. Sauerwein, M., Ishimaru, K., and Shimomura, K., 1991, Indole alkaloids in hairy roots of Amsonia elliptica, Phytochemistry 30:1153–1155.CrossRefGoogle Scholar
  74. Siah, C. L., and Doran, P. M., 1991, Enhanced codeine and morphine production in suspended Papaver somniferum cultures after removal of exogenous hormones, Plant Cell Rep. 10:349–353.CrossRefGoogle Scholar
  75. Smith, J. I., Amouzou, E., Yamaguchi, A., McLean, S., and DiCosmo, F., 1988, Peroxidase from bioreactor cultivated Catharanthus roseus cell cultures mediates biosynthesis of α-3′4′-anhydrovinblastine, Biotechnol. Appl. Biochem. 10:568–574.Google Scholar
  76. Staba, E. J., 1985, Milestone in plant tissue culture systems for production of secondary products, J. Nat. Prod. 48:203–209.CrossRefGoogle Scholar
  77. Takayama, S., and Misawa, M., 1981, Mass propagation of Begonia and Hiemalis plantlets by shake cultures, Plant Cell Physiol. 22:461 – 467.Google Scholar
  78. Tyler, R. T., Eilert, U., Rijnders, C. O. M., Roewer, I. A., and Kurz, W. G. W., 1988, Semicontinuous production of sanguinarine and dihydrosanguinarine by Papaver somniferum L. cell suspension cultures treated with fungal homogenate, Plant Cell Rep. 7:410–413.Google Scholar
  79. Ushiyama, M., and Furuya, T., 1989, Biotransformation of (RS)-tropic acid in suspension cultures of Coffea arabica, Datura innoxia, Eucalyptus perriniana, and Nicotiana tabacum, Phytochemistry 28:2333–2339.CrossRefGoogle Scholar
  80. Veliky, I. A., and Jones, A., 1981, Bioconversion of gitoxigenin by immobilised plant cells in a column bioreactor, Biotechnol. Lett. 3:551–554.CrossRefGoogle Scholar
  81. von Neumann, D., and Müller, E., 1974, Beiträge zur Physiologie der Alkaloide IV. Alkaloidbildung in Kallus Kulturen von Macleaya, Biochem. Physiol. Pflanz. 165:271–282.Google Scholar
  82. Vukovic, J., Goodbody, A. E., Kutney, J. P., and Misawa, M., 1988, Production of 3′,4′-anhydro vinblastine: A unique chemical synthesis, Tetrahedron 44:325–331.CrossRefGoogle Scholar
  83. Weathers, P. J., Diiorio, A., Cheetham, R., and O’Leary, M., 1990, Recovery of secondary metabolites with minimal loss of cell viability, in: Current Plant Science and Biotechnology in Agriculture, Progress in Plant Cellular and Molecular Biology (H. J. J. Nijkamp, L. H. W. Van der Pias, and J. Van Aatrijk, eds.), Kluwer, Dordrecht, pp. 582–586.CrossRefGoogle Scholar
  84. Wink, M., Witte, L., Hartmann, T., Theuring, C., and Volz, V, 1983, Accumulation of quinolizidine alkaloids in plants and cell suspension cultures: Genera Lupinus, Cytisus, Baptisia, Genista, Laburnum, and Sophora, Planta Med. 48:253–257.CrossRefGoogle Scholar
  85. Yamamoto, O., and Yamada, Y., 1987, Selection of reserpine producing cell strain using UV light and optimisation of reserpine production in the selected cell strain, Plant Cell Tissue Org. Cult. 8:125–133.CrossRefGoogle Scholar
  86. Yamamoto, O., Suzuki, M., Suga, Y., Fukui, H., and Tabata, M., 1987, Participation of an active transport system in berberine secreting cells of Thalictrum minus, Plant Cell Rep. 6:356–359.CrossRefGoogle Scholar
  87. Yeoman, M. M., and Forche, E., 1980, Cell proliferation and growth in callus cultures, in: International Review of Cytology Suppl. 11A: 1–24.Google Scholar
  88. Yoshimatsu, K., and Shimomura, K., 1991, Efficient shoot formation on internodal segments and alkaloid formation in the regenerates of Cephaelis ipecacuanha A. Richard, Plant Cell Rep. 9:567–570.CrossRefGoogle Scholar
  89. Yun, D.-J., Hashimoto, T., and Yamada, Y., 1992, Metabolic engineering of medicinal plants: Transgenic Atropa belladonna with improved alkaloid composition, Proc. Natl. Acad. Sci. USA 89:11790–11803.CrossRefGoogle Scholar
  90. Zenk, M. H., El-Shagi, H., Arens, H., Stöckigt, J., Weiler, E. W., and Deus, B., 1977, Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus, in: Plant Tissue Culture and Its Biotechnological Application (W. Barz, E. Reinhard, and M. H. Zenk, eds.), Springer-Verlag, Berlin, pp. 27–43.CrossRefGoogle Scholar
  91. Zito, S. W., and Staba, E. J., 1982, Thebaine from root cultures of Papaver bracteatum, Planta Med. 45:53–54.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Margaret F. Roberts
    • 1
  1. 1.The Centre for Pharmacognosy, School of PharmacyUniversity of LondonLondonEngland

Personalised recommendations