Advertisement

Alkaloids pp 147-157 | Cite as

Genes in Alkaloid Metabolism

  • Kazuki Saito
  • Isamu Murakoshi

Abstract

A number of studies in classical genetics suggest the participation of specific genes in alkaloid metabolism in plants (Böhm, 1985; Waller and Nowacki, 1978). Extensive breeding studies, e.g., screening of mutants and cross-pollination, along with phytochemical investigations on alkaloid-rich (“bitter”) and alkaloid-poor (“sweet”) forms of Lupinus plants revealed several mutant alleles concerned with alkaloid contents in Lupinus plants (Saito et al., 1993a; Hondelmann, 1984; Williams and Harrison, 1983; Williams et al., 1984). However, it has been in just the last 5 years that the genes responsible for alkaloid metabolism were isolated as defined DNA fragments of nucleotide sequences. This progress in the molecular biology of alkaloid metabolism has been promoted by recent developments in recombinant DNA technology in higher plants. This technology provides the tools to clarify the regulatory mechanism governing alkaloid metabolism at a molecular level and to express cloned genes in heterologous cells, for mechanistic investigation as well as for biotechnological application.

Keywords

Indole Alkaloid Tropane Alkaloid Differential Screening Alkaloid Biosynthesis Antibody Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Reviews

  1. Böhm, H., 1985, The biochemical genetics of alkaloids, in: Biochemistry of Alkaloids (K. Mothes, H. R. Schütte, and M. Luckner, eds.), VCH, Weinheim, pp. 25–36.Google Scholar
  2. Hashimoto, T., and Yamada, Y., 1994, Alkaloid biogenesis: Molecular aspects, Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:257–285.CrossRefGoogle Scholar
  3. Kutchan, T. M., 1993, Strictosidine: From alkaloids to enzyme to gene, Phytochemistry 32:493–506.PubMedCrossRefGoogle Scholar
  4. Saito, K., Yamazaki, M., and Murakoshi, I., 1992, Transgenic medicinal plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites, J. Nat. Prod. 55:149–162.PubMedCrossRefGoogle Scholar
  5. Waller, G. R., and Nowacki, E. K., 1978, Alkaloid Biology and Metabolism in Plants, Plenum Press, New York.CrossRefGoogle Scholar

Key References

  1. Berlin, J., Rügenhagen, C., Dietze, P., Fecker, L. F., Goddijn, O. J. M., and Hoge, H. C., 1993, Increased production of serotonin by suspension and root cultures of Peganum harmala transformed with a tryptophan decarboxylase cDNA clone from Catharanthus roseus. Transgenic Res. 2:336–344.CrossRefGoogle Scholar
  2. Bracher, D., and Kutchan, T. M, 1992a, Strictosidine synthase from Rauvolfia serpentina: Analysis of a gene involved in indole alkaloid biosynthesis, Arch. Biochem. Biophys. 294:717–723.PubMedCrossRefGoogle Scholar
  3. Bracher, D., and Kutchan, T. M., 1992b, Polymerase chain reaction comparison of the gene for strictosidine synthase from ten Rauvolfia species, Plant Cell Rep. 11:179–182.CrossRefGoogle Scholar
  4. De Luca, V., Marineau, C., and Brisson, N., 1989, Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: Comparison with animal dopa decarboxylases, Proc. Natl. Acad. Sci. USA 86:2582–2586.PubMedCrossRefGoogle Scholar
  5. DeScenzo, R. A., and Minocha, S., 1993, Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA, Plant Mol. Biol. 22:113–127.PubMedCrossRefGoogle Scholar
  6. Dittrich, H., and Kutchan, T. M., 1991, Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack, Proc. Natl. Acad. Sci. USA 88:9969–9973.PubMedCrossRefGoogle Scholar
  7. Dooner, H. K., and Robbins, T. P., 1991, Genetic and developmental control of anthocyanin biosynthesis, Annu. Rev. Genet. 25:173–199.PubMedCrossRefGoogle Scholar
  8. Fecker, L. F., Hillebrandt, S., Rügenhagen, C., Herminghaus, S., Landsmann, J., and Berlin, J., 1992, Metabolic effects of a bacterial lysine decarboxylase gene expressed in a hairy root culture of Nicotiana glauca, Biotech. Lett. 14:1035–1040.CrossRefGoogle Scholar
  9. Goddijn, O. J. M., de Kam, R. J., Zanetti, A., Schilperoort, R. A., and Hoge, J. H. C., 1992, Auxin rapidly down-regulates transcription of the tryptophan decarboxylase gene from Catharanthus roseusPlant Mol. Biol. 18:1113–1120PubMedCrossRefGoogle Scholar
  10. Hamill, J. D., Robins, R. J., Parr, A. J., Evans, D. M., Furze, J. M., and Rhodes, M. J. C., 1990, Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation, Plant Mol. Biol. 15:27–38.PubMedCrossRefGoogle Scholar
  11. Hashimoto, T., Hayashi, A., Amano, Y., Kohno, J., Iwanari, H., Usuda, S., and Yamada, Y., 1991, Hyoscyamine 6β-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root, J. Biol. Chem. 266:4648–4653.PubMedGoogle Scholar
  12. Hashimoto, T., Matsuda, J., and Yamada, Y., 1993a, Two-step epoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6β-hydroxylase, FEBS Lett. 329:35–39.PubMedCrossRefGoogle Scholar
  13. Hashimoto, T., Yun, D.-J., and Yamada, Y., 1993b, Production of tropane alkaloids in genetically engineered root cultures, Phytochemistry 32:713–718.CrossRefGoogle Scholar
  14. Herminghaus, S., Schreier, P. H., McCarthy, J. E. G., Landsmann, J., Botterman, J., and Berlin, J., 1991, Expression of a bacterial lysine decarboxylase gene and transport of the protein into chloroplasts of transgenic tobacco, Plant Mol Biol. 17:475–486.PubMedCrossRefGoogle Scholar
  15. Hibi, N., Higashiguchi, S., Hashimoto, T., and Yamada, Y., 1994, Gene expression in tobacco low-nicotine mutants, Plant Cell 6:723–735.PubMedGoogle Scholar
  16. Hondelmann, W., 1984, The lupin-Ancient and modern crop plant, Theor. Appl. Genet. 68:1–9.CrossRefGoogle Scholar
  17. Kanegae, T., Kajiya, H., Amano, Y., Hashimoto, T., and Yamada, Y., 1994, Species-dependent expression of the hyoscyamine 6β-hydroxylase gene in the pericycle, Plant Physiol. 105:483–490.PubMedCrossRefGoogle Scholar
  18. Kass, E., and Wink, M., 1995, Molecular phylogeny of the Papilionoideae (family Leguminosae): rbcL gene sequence versus chemical taxonomy, Bot. Acta 108:149–162.Google Scholar
  19. Kraus, P. F. X., and Kutchan, T. M., 1995, Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase, a C-O phenol-coupling cytochrome P450 from the higher plant Berberis stoloniferaProc. Natl. Acad. Sci. USA 92:2071–2075.PubMedCrossRefGoogle Scholar
  20. Kutchan, T. M., 1989, Expression of enzymatically active cloned strictosidine synthase from the higher plant Rauvolfia serpentina in Escherichia coli, FEBS Lett. 257:127–130.CrossRefGoogle Scholar
  21. Kutchan, T. M., 1996, Heterologous expression of alkaloid biosynthetic genes—a review, Gene 179:73–81.PubMedCrossRefGoogle Scholar
  22. Kutchan, T. M., Hampp, N., Lottspeich, F., Beyreuther, K., and Zenk, M. H., 1988, The cDNA clone for strictosidine synthase from Rauvolfia serpentinaFEBS Lett. 237:40–44.PubMedCrossRefGoogle Scholar
  23. Kutchan, T. M., Dittrich, H., Bracher, D., and Zenk, M. H., 1991, Enzymology and molecular biology of alkaloid biosynthesis, Tetrahedron 47:5945–5954.CrossRefGoogle Scholar
  24. Kutchan, T. M., Bock, A., and Dittrich, H., 1994, Heterologous expression of the plant proteins strictosidine synthase and berberine bridge enzyme in insect cell culture, Phytochemistry 35:353–360.PubMedCrossRefGoogle Scholar
  25. McKnight, T. D., Roessner, C. A., Devagupta, R., Scott, A. I., and Nessler, C. L., 1990, Nucleotide sequence of a cDNA encoding the vascular protein strictosidine synthase from Catharanthus roseus, Nucleic Acids Res. 18:4939.PubMedCrossRefGoogle Scholar
  26. McKnight, T. D., Bergey, D. R., Burnett, R. J., and Nessler, C. L., 1991, Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants, Planta 185:148–152.CrossRefGoogle Scholar
  27. Matsuda, J., Okabe, S., Hashimoto, T., and Yamada, Y., 1991, Molecular cloning of hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger, J. Biol. Chem. 266:9460–9464.PubMedGoogle Scholar
  28. Meijer, A. H., Cardoso, M. I. L., Voskuilen, J. T., de Waal, A., Verpoorte, R., and Hoge, J. H. C., 1993a, Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH:cytochrome P450 reductase, an enzyme essential for reactions catalyzed by cytochrome P450 mono-oxygenases in plants, Plant J. 4:47–60.PubMedCrossRefGoogle Scholar
  29. Meijer, A. H., Souer, E., Verpoorte, R., and Hoge, J. H. C., 1993b, Isolation of cytochrome P450 cDNA clones from the higher plant Catharanthus roseus by a PCR strategy, Plant Mol. Biol. 22:379–383.PubMedCrossRefGoogle Scholar
  30. Nakajima, K., Hashimoto, T., and Yamada, Y., 1993a, Two tropinone reductases with different stereospecificities are short-chain dehydrogenase evolved from a common ancestor, Proc. Natl. Acad. Sci. USA 90:9591–9595.PubMedCrossRefGoogle Scholar
  31. Nakajima, K., Hashimoto, T. and Yamada, Y., 1993b, cDNA encoding tropinone reductase-II from Hyoscyamus niger, Plant Physiol. 103:1465–1466.PubMedCrossRefGoogle Scholar
  32. Nakajima, K., Hashimoto, T., and Yamada, Y., 1994, Opposite stereospecificity of two tropinone reductases is conferred by the substrate-binding sites, J. Biol. Chem. 269:11695–11698.PubMedGoogle Scholar
  33. Noji, M., Murakoshi, I., and Saito, K., 1993, Evidence for identity of β-pyrazolealanine synthase with cysteine synthase in watermelon: Formation of β-pyrazolealanine by cloned cysteine synthase in vitro and in vivoBiochem. Biophys. Res. Commun. 197:1111–1117.PubMedCrossRefGoogle Scholar
  34. Noji, M., Murakoshi, I., and Saito, K., 1994, Molecular cloning of a cysteine synthase cDNA from Citrullus vulgaris (watermelon) by genetic complementation in an Escherichia coli Cys- auxotroph, Mol. Gen. Genet. 244:57–66.PubMedCrossRefGoogle Scholar
  35. Pasquali, G., Goddijn, O. J. M., de Waal, A., Verpoorte, R., Schilperoort, R. A., Hoge, J. H. C., and Memelink, J., 1992, Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors, Plant Mol. Biol 18:1121–1131.PubMedCrossRefGoogle Scholar
  36. Saito, K., Noji, M., Ohmori, S., Imai, Y., and Murakoshi, I., 1991a, Integration and expression of a rabbit liver cytochrome P450 gene in transgenic Nicotiana tabacumProc. Natl. Acad. Sci. USA 88:7041–7045.PubMedCrossRefGoogle Scholar
  37. Saito, K., Yamazaki, M., Kawaguchi, A., and Murakoshi, I., 1991b, Metabolism of solanaceous alkaloids in transgenic plant teratomas integrated with genetically engineered genes, Tetrahedron 47:5955–5968.CrossRefGoogle Scholar
  38. Saito, K., Koike, Y., Suzuki, H., and Murakoshi, I., 1993a, Biogenetic implication of lupin alkaloid biosynthesis in bitter and sweet forms of Lupinus luteus and L. albusPhytochemistry 34:1041–1044.CrossRefGoogle Scholar
  39. Saito, K., Suzuki, H., Takamatsu, S., and Murakoshi, I., 1993b, Acyltransferases for lupin alkaloids in Lupinus hirsutusPhytochemistry 32:87–91.CrossRefGoogle Scholar
  40. Songstad, D. D., De Luca, V., Brisson, N., Kurz, W. G. W., and Nessler, C. L., 1990, High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase, Plant Physiol. 94:1410–1413.PubMedCrossRefGoogle Scholar
  41. Suzuki, H., Murakoshi, I., and Saito, K., 1994, A novel O-tigloyltransferase for alkaloid biosynthesis in plants: Purification, characterization, and distribution in Lupinus plants, J. Biol. Chem. 269:15853–15860.PubMedGoogle Scholar
  42. Takeshita, N., Fujisawa, H., Miura, H., Fitchen, J. H., Yamada, Y., and Sato, F., 1995, Molecular cloning and characterization of S-adenosyl-L-methionine:scoulerine-9-O-methyltransferase from cultured Coptis japonica cells, Plant Cell Physiol. 36:29–36.PubMedGoogle Scholar
  43. Vetter, H.-P., Mangold, U., Schröder, G., Marner, F.-J., Werck-Reichhart, D., and Schröder, J., 1992, Molecular analysis and heterologous expression of an inducible cytochrome P450 protein from periwinkle (Catharanthus roseus L.), Plant Physiol. 100:998–1007.PubMedCrossRefGoogle Scholar
  44. Weising, K., Schell, J., and Kahl, G., 1988, Foreign genes in plants: Transfer, structure, expression, and application, Annu. Rev. Genet. 22:421–477.PubMedCrossRefGoogle Scholar
  45. Williams, W., and Harrison, J. E. M., 1983, Alkaloid concentration during development in three Lupinus species and the expression of genes for alkaloid biosynthesis in seedlings, Phytochemistry 22:85–90.CrossRefGoogle Scholar
  46. Williams, W., Harrison, J. E. M., and Jayasekera, S., 1984, Genetical control of alkaloid production in Lupinus mutabilis and the effect of a mutant alle mutai isolated following chemical mutagenesis, Euphytica 33:811–817.CrossRefGoogle Scholar
  47. Wink, M., and Witte, L., 1983, Evidence for a wide-spread occurrence of the genes of quinolizidine alkaloid biosynthesis, FEBS Lett. 159:196–200.CrossRefGoogle Scholar
  48. Yamazaki, M., Sato, A., Saito, K., and Murakoshi, I., 1993, Molecular phylogeny based on RFLP and its relation with alkaloid patterns in Lupinus plants, Biol. Pharm. Bull. 16:1182–1184.PubMedCrossRefGoogle Scholar
  49. Yun, D.-J., Hashimoto, T., and Yamada, Y., 1992, Metabolic engineering of medicinal plants: Transgenic Atropa belladonna with an improved alkaloid composition, Proc. Natl. Acad. Sci. USA 89:11799–11803.PubMedCrossRefGoogle Scholar
  50. Yun, D.-J., Hashimoto, T., and Yamada, Y., 1993, Transgenic plants with two consecutive oxidation reactions catalyzed by hyoscyamine 6β-hydroxylase, Biosci. Biotech. Biochem. 57:502–503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Kazuki Saito
    • 1
  • Isamu Murakoshi
    • 1
  1. 1.Faculty of Pharmaceutical Sciences, Laboratory of Molecular Biology and Biotechnology, Research Center of Medicinal ResourcesChiba UniversityInage-ku, Chiba 263Japan

Personalised recommendations