Connections between Semi-Infinite and Semidefinite Programming

  • Lieven Vandenberghe
  • Stephen Boyd
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 25)


Some interesting semi-infinite optimization problems can be reduced to semidefinite optimization problems, and hence solved efficiently using recent interior-point methods. In this paper we discuss semidefinite optimization from this perspective and illustrate the connections between semidefinite optimization and semi-infinite programming with examples and applications from computational geometry, statistics, and systems and control.


Linear Matrix Inequality Test Vector Semidefinite Program Volume Ellipsoid Ellipsoidal Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. C. Atkinson and A. N. Donev. Optimum Experiment Designs. Oxford Statistical Science Series. Oxford University Press, 1992.Google Scholar
  2. [2]
    F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, February 1995.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    B. Anderson and S. Vongpanitlerd. Network Analysis and Synthesis: A Modern Systems Theory Approach. Prentice-Hall, 1973.Google Scholar
  4. [4]
    E. R. Barnes. An algorithm for separating patterns by ellipsoids. IBM Journal of Research and Development, 26:759–764, 1982.MATHCrossRefGoogle Scholar
  5. [5]
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory, volume 15 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, June 1994.CrossRefGoogle Scholar
  6. [6]
    D. Bertsimas. The achievable region method in the optimal control of queuing systems; formulations, bounds and policies. Queueing Systems, 21:337–389, 1995.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis. Optimization of multiclass queueing networks:polyhedral and nonlinear characterizations of achievable performance. Ann. Appl. Prob., 4(l):43–75, 1994.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    F. L. Chernousko. State Estimation for Dynamic Systems. CRC Press, Boca Raton, Florida, 1994.Google Scholar
  9. [9]
    G. Dahlquist, S. C. Eisenstat, and G. H. Golub. Bounds for the error of linear systems of equations using the theory of moments. Journal of Mathematical Analysis and Applications, 37:151–166, 1972.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    L. Danzer, B. Grunbaum, and V. Klee. Helly’s theorem and its relatives. In V. L. Klee, editor, Convexity, volume 7 of Proceedings of Symposia in Pure Mathematics, pages 101–180. American Mathematical Society, 1963.CrossRefGoogle Scholar
  11. [11]
    V. V. Fedorov. Theory of Optimal Experiments. Academic Press, 1971.MATHGoogle Scholar
  12. [12]
    M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, 1988.MATHCrossRefGoogle Scholar
  13. [13]
    F. John. Extremum problems with inequalities as subsidiary conditions. In J. Moser, editor, Fritz John, Collected Papers, pages 543–560. Birkhauser, Boston, Massachussetts, 1985.CrossRefGoogle Scholar
  14. [14]
    M. G. Krein and A. A. Nudelman. The Markov Moment Problem and Extremal Problems, volume 50 of Translations of Mathematical Monographs. American Mathematical Society, Providence, Rhode Island, 1977.Google Scholar
  15. [15]
    S. Karlin and W. J. Studden. Tchebycheff Systems: With Applications in Analysis and Statistics. Wiley-Interscience, 1966.MATHGoogle Scholar
  16. [16]
    J. B. Lasserre. Linear programming with positive semi-definite matrices. Technical Report LAAS-94099, Laboratoire d’Analyse et d’Architecture des Systèmes du CNRS, 1995.Google Scholar
  17. [17]
    A. S. Lewis and M. L. Overton. Eigenvalue optimization. Acta Numerica, pages 149–190, 1996.Google Scholar
  18. [18]
    Yu. Nesterov and A. Nemirovsky. Interior-Point Polynomial Methods in Convex Programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, 1994.CrossRefGoogle Scholar
  19. [19]
    G. Pataki. Cone-LP’s and semi-definite programs: facial structure, basic solutions, and the simplex method. Technical report, GSIA, Carnegie-Mellon University, 1995.Google Scholar
  20. [20]
    F. Pukelsheim. Optimal Design of Experiments. Wiley, 1993.MATHGoogle Scholar
  21. [21]
    L. Pronzato and E. Walter. Minimum-volume ellipsoids containing compact sets: Application to parameter bounding. Automatica, 30(11):1731–1739, 1994.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    E. Rimon and S. Boyd. Obstacle collision detection using best ellipsoid fit. Journal of Intelligent and Robotic Systems, pages 1–22, December 1996.Google Scholar
  23. [23]
    P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. Wiley, 1987.MATHCrossRefGoogle Scholar
  24. [24]
    R. T. Rockafellar. Convex Analysis. Princeton Univ. Press, Princeton, second edition, 1970.MATHGoogle Scholar
  25. [25]
    J. B. Rosen. Pattern separation by convex programming. Journal of Mathematical Analysis and Applications, 10:123–134, 1965.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    E. Schwerer. A Linear Programming Approach to the Steady-State Analysis of Markov Processes. PhD thesis, Graduate School of Business, Stanford University, 1996. Draft.Google Scholar
  27. [27]
    D. M. Titterington. Optimal design: some geometric aspects of D-optimality. Biometrika, 62:313–320, 1975.MathSciNetMATHGoogle Scholar
  28. [28]
    L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, March 1996.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear matrix inequality constraints. SIAM J. on Matrix Analysis and Applications, April 1998. To appear.Google Scholar
  30. [30]
    S.-P. Wu and S. Boyd. SDPSOL: A Parser/Solver for Semidefinite Programming and Determinant Maximization Problems with Matrix Structure. User’s Guide, Version Beta. Stanford University, June 1996.Google Scholar
  31. [31]
    S.-P. Wu, S. Boyd, and L. Vandenberghe. FIR filter design via semidefinite programming and spectral factorization. In Proc. IEEE Conf. on Decision and Control, pages 271–276, 1996.Google Scholar
  32. [32]
    S.-P. Wu, S. Boyd, and L. Vandenberghe. Magnitude filter design via spectral factorization and convex optimization. Applied and Computational Control, Signals and Circuits, 1997. To appear.Google Scholar
  33. [33]
    S.-P. Wu, L. Vandenberghe, and S. Boyd. Maxdet: Software for Determinant Maximization Problems. User’s Guide, Alpha Version. Stanford University, April 1996.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Lieven Vandenberghe
    • 1
  • Stephen Boyd
    • 2
  1. 1.Electrical Engineering DepartmentUniversity of California at Los AngelesLos AngelesUSA
  2. 2.Information Systems Laboratory, Electrical Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations