Vitamin D pp 307-316 | Cite as

Inherited Defects of Vitamin D Metabolism

  • Marie Demay
Part of the Nutrition and Health book series (NH)


The absence of biologic effects of vitamin D, resulting from deficient synthesis, dietary intake, or lack of activation of vitamin D (or to resistance to the biologic effects of the active metabolite), presents primarily with signs and symptoms that reflect impaired intestinal calcium absorption. These include signs and symptoms of neuromuscular irritability, including tetany and seizures, which are a direct result of the hypocalcemia. Long-standing deficiency of, or resistance to vitamin D metabolites leads to impaired bone mineralization as a result of calcium and phosphate deficiency. In the growing skeleton, growth plate abnormalities known as rickets are also observed (see Chapter 18). Secondary hyperparathyroidism is also observed, due to the hypocalcemia and the lack of antiproliferative and antitranscriptional effects of 1,25-dihydroxyvitamin D on the parathyroid glands (see Chapter 13).


Secondary Hyperparathyroidism Intestinal Calcium Absorption Calcium Infusion Impaired Bone Mineralization Autosomal Recessive Fashion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Casella SJ, Reiner BJ, Chen TC, Holick MF, Harrison HE. A possible genetic defect in 25-hydroxylation as a cause of rickets. J Pediatr 1994; 124: 929–932.PubMedCrossRefGoogle Scholar
  2. 2.
    Nützenadel W, Mehls O, Klaus G. A new defect in vitamin D metabolism. J Pediatr 1995; 126: 676, 677.Google Scholar
  3. 3.
    Barbour GL, Coburn JW, Slatopolsky E, Norman AW, Horst RL. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of dihydroxyvitamin D N Engl J Med 1981; 305: 440–443.Google Scholar
  4. 4.
    Weisman Y, Harell A, David M, Golander A. 1a,25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature 1979; 281: 317–319.PubMedCrossRefGoogle Scholar
  5. 5.
    Fu GK, Lin D, Zhang MYH, et al. Cloning of human 25-hydroxyvitamin D 1-alpha-hydroxylase and mutations causing vitamin D-dependent rickets type I. Mol Endocrinol 1997; 11: 1961–1970.PubMedCrossRefGoogle Scholar
  6. 6.
    DeBraekeleer M, Larochelle J. Population genetics of vitamin D-dependent rickets in Northeastern Quebec. Ann Hum Genet 1991; 55: 283–290.CrossRefGoogle Scholar
  7. 7.
    Labuda M, Fujiwara TM, Ross MV, et al. Two hereditary defects related to vitamin D metabolism map to the same region of human chromosome 12813–14. J Bone Miner Res 1992; 7: 1447–1453.PubMedCrossRefGoogle Scholar
  8. 8.
    St-Arnaud R, Messerliann S, Moir JM, Omdahl JL. The 25-hydroxyvitamin D 1-alpha hydroxylase gene maps to the pseudovitamin D-deficiency rickets (PDDR) disease locus. J Bone Miner Res 1997; 12: 1552–1559.PubMedCrossRefGoogle Scholar
  9. 9.
    Shinki T, Shimada H, Wakino S, et al.. Cloning and expression of rat 25-hydroxyvitamin D3 1-alphahydroxylase cDNA. Proc Natl Acad Sci USA 1997; 94:12, 920–12, 925.Google Scholar
  10. 10.
    Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-hydroxyvitamin D3 1-alphahydroxylase and vitamin D synthesis. Science 1997; 277: 1827–1830.PubMedCrossRefGoogle Scholar
  11. 11.
    Arnaud C, Maijer R, Reade T, Scriver CR, Whelan DT. Vitamin D dependency: an inherited postnatal syndrome with secondary hyperparathyroidism. Pediatrics 1970; 46: 871–880.PubMedGoogle Scholar
  12. 12.
    Fraser D, Kooh SW, Kind HP, Holick MF, Tanaka Y, DeLuca HF. Pathogenesis of hereditary vitaminD-dependent rickets: an inborn error of vitamin D metabolism involving defective conversion of 25hydroxyvitamin D to 1a,dihydroxyvitamin D. N Engl J Med 1973; 289: 817–822.PubMedCrossRefGoogle Scholar
  13. 13.
    Scriver CR, Reade TM, DeLuca HF, Hamstra AJ. Serum 1,25-dihydroxyvitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med 1978; 299: 976–979.PubMedCrossRefGoogle Scholar
  14. 14.
    Delvin EE, Glorieux FH, Marie PJ, Pettifor JM. Vitamin D dependency: replacement therapy with calcitriol. J Pediatr 1981; 99: 26–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Reade TM, Scriver CR, Glorieux FH, et al. Response to crystalline la-hydroxyvitamin D3 in vitamin D dependency. Pediatr Res 1975; 9: 593–599.PubMedCrossRefGoogle Scholar
  16. 16.
    Glorieux FH, Arabian A, Delvin EE. Pseudo-vitamin D deficiency: absence of 25-hydroxyvitamin D la-hydroxylase activity in human placenta decidual cells. J Clin Endocrinol Metab 1995; 80: 2255–2258.PubMedCrossRefGoogle Scholar
  17. 17.
    Baker AR, McDonnell DP, Hughes M, et al. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 1988; 85: 3294–3298.PubMedCrossRefGoogle Scholar
  18. 18.
    Hewison M, Rut AR, Kristjansson K, et al. Tissue resistance to dihydroxyvitamin D without a mutation of the vitamin D receptor gene. Clin Endocrinol 1993; 39: 663–670.CrossRefGoogle Scholar
  19. 19.
    Giraldo A, Pino W, Garcia-Ramirez LF, Pineda M, Iglesias A. Vitamin D dependent rickets type II and normal vitamin D receptor cDNA sequence. A cluster in a rural area of Cauca, Colombia, with more than 200 affected children. Clin Genet 1995; 48: 57–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Marx SJ, Liberman UA, Eil C, Gamblin GT, DeGrange DA, Balsan S. Hereditary resistance to 1,25dihydroxyvitamin D. Recent Prog Horm Res 1984; 40: 589–615.PubMedGoogle Scholar
  21. 21.
    Bell NH. Vitamin D-dependent rickets type II. Calcif Tissue Int 1980; 31: 89–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Brooks MH, Bell NH, Love L, et al. Vitamin D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D N Engl J Med 1978; 298: 996–999.Google Scholar
  23. 23.
    Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF. Target cells for dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science 1979; 206: 1188–1190.PubMedCrossRefGoogle Scholar
  24. 24.
    Marx SJ, Bliziotes MM, Nanes M. Analysis of the relation between alopecia and resistance to 1,25dihydroxyvitamin D Clin Endocrinol 1986; 25: 373–381.Google Scholar
  25. 25.
    Takeda E, Yokota I, Kawakami I, Hashimoto T, Kuroda Y, Arase S. Two siblings with vitamin-Ddependent rickets type II: no recurrence of rickets for 14 years after cessation of therapy. Eur J Pediatr 1989; 149: 54–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Fraher LJ, Karmali R, Hinde FRJ, et al. Vitamin D-dependent rickets type II: extreme end organ resistance to dihydroxyvitamin D3 in a patient without alopecia. Eur J Pediatr 1986; 145: 389–395.PubMedCrossRefGoogle Scholar
  27. 27.
    Liberman UA, Eil C, Marx SJ. Clinical features of hereditary resistance to dihydroxyvitamin D: hereditary hypocalcemic vitamin D resistant rickets type II. Adv Exp Med Biol 1986; 196: 391–406.PubMedCrossRefGoogle Scholar
  28. 28.
    Rosen JF, Fleischman AR, Finberg L, Hamstra A, DeLuca HF. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatr 1979; 94: 729–735.PubMedCrossRefGoogle Scholar
  29. 29.
    Beer S, Tieder M, Kohelet D, et al. Vitamin D resistant rickets with alopecia: a form of end organ resistance to 1,25 dihydroxy vitamin D. Clin Endocrinol 1981; 14: 395–402.CrossRefGoogle Scholar
  30. 30.
    Balsan S, Garabedian M, Larchet M, et al. Long-term nocturnal calcium infusions can cure rickets and promote normal mineralization in hereditary resistance to dihydroxyvitamin D. J Clin Invest 1986; 77: 1661–1667.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsuchiya Y, Matsuo N, Cho H, et al. An unusual form of vitamin D-dependent rickets in a child: alopecia and marked end-organ hyposensitivity to biologically active vitamin D. J Clin Endocrinol Metab 1980; 51: 685–690.PubMedCrossRefGoogle Scholar
  32. 32.
    Weisman Y, Bab I, Gazit D, Spirer Z, Jaffe M, Hochberg Z. Long-term intracaval calcium infusion therapy in end-organ resistance to 1,25-dihydroxyvitamin D. Am J Med 1987; 83: 984–990.PubMedCrossRefGoogle Scholar
  33. 33.
    Bliziotes M, Yergey AL, Nanes MS, et al. Absent intestinal response to calciferols in hereditary resistance to 1,25-dihydroxyvitamin D: documentation and effective therapy with high dose intravenous calcium infusions. J Clin Endocrinol Metab 1988; 66: 294–300.PubMedCrossRefGoogle Scholar
  34. 34.
    Walka MM, Däumling S, Hadorn HB, Kruse K, Belohradsky BH. Vitamin D dependent rickets type II with myelofibrosis and immune dysfunction. Eur J Pediatr 1991; 150: 665–668.PubMedCrossRefGoogle Scholar
  35. 35.
    Liberman UA, Halabe A, Samuel R, et al. End-organ resistance to dihydroxycholecalciferol. Lancet 1980; 1: 504–506.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen TL, Hirst MA, Cone CM, Hochberg Z, Tietze H-U, Feldman D. dihydroxyvitamin D resistance, rickets, and alopecia: analysis of receptors and bioresponse in cultured fibroblasts from patients and parents. J Clin Endocrinol Metab 1984; 59: 383–388.PubMedCrossRefGoogle Scholar
  37. 37.
    Eil C, Liberman UA, Marx SJ. The molecular basis for resistance to dihydroxyvitamin D: studies in cells cultured from patients with hereditary hypocalcemic I,25(OH)2D3-resistant rickets. Adv Exp Med Biol 1986; 196: 407–422.PubMedCrossRefGoogle Scholar
  38. 38.
    Al-Aqeel A, Ozand P, Sobki S, Sewairi W, Marx S. The combined use of intravenous and oral calcium for the treatment of vitamin D dependent rickets type II (VDDRII). Clin Endocrinol 1993; 39: 229–237.CrossRefGoogle Scholar
  39. 39.
    Weisman Y, Jaccard N, Legum C, et al. Prenatal diagnosis of vitamin D-dependent rickets, type II: response to 1,25-dihydroxyvitamin D in amniotic fluid cells and fetal tissues. J Clin Endocrinol Metab 1990; 71: 937–943.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Marie Demay

There are no affiliations available

Personalised recommendations