Vitamin D pp 163-173 | Cite as

Mechanism of Action of 1,25-Dihydroxyvitamin D3 on Intestinal Calcium Absorption and Renal Calcium Transport

  • Mihali Raval-Pandya
  • Angela R. Porta
  • Sylvia Christakos
Part of the Nutrition and Health book series (NH)


In mammals the plasma calcium concentration under normal conditions is maintained at 2.5 mM or 10 mg/dL. Ionized calcium represents approx 45% of the total plasma calcium. An equal portion of the plasma calcium is bound to proteins, and approx 10% is complexed with small anions. Vitamin D is a principle factor that maintains the plasma calcium level within the normal range, and the intestine, kidney, and bone are the three target organs of vitamin D action primarily responsible for maintaining calcium homeostasis (1). This chapter focuses on how vitamin D [and specifically the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)] acts at times of increased calcium demand to increase the efficiency of calcium absorption from the intestine and to enhance the tubular reabsorption of calcium from the kidney.


Basolateral Membrane Calcium Transport Distal Convoluted Tubule Distal Nephron Intestinal Calcium Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hurwitz S. Homeostatic control of plasma calcium concentration. Crit Rev Biochem Mol Biol 1996; 31: 41–100.PubMedCrossRefGoogle Scholar
  2. 2.
    Johnson JA, Kumar R. Renal and intestinal calcium transport: roles of vitamin D and vitamin D dependent calcium binding proteins. Semin Nephrol 1994; 14: 119–128.PubMedGoogle Scholar
  3. 3.
    Pansu D, Bellaton C, Bronner F. Effect of calcium intake on saturable and non-saturable components of duodenal calcium transport. Am J Physiol 1981; 240: G32–37.PubMedGoogle Scholar
  4. 4.
    Bronner F, Pansu D, Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Physiol 1986; 250: G561–569.PubMedGoogle Scholar
  5. 5.
    Wasserman RH, Fullmer CS. Vitamin D and intestinal calcium transport: facts, speculations and hypotheses. J Nutr 1995; 125: S1971–1979.Google Scholar
  6. 6.
    Karbach U. Paracellular calcium transport across the small intestine. J Nutr 1992; 122: 672–677.PubMedGoogle Scholar
  7. 7.
    Weinstein RS, Underwood JL, Hutson MS, DeLuca HF. Bone histomorphometry in vitamin D deficient rats infused with calcium and phosphorous. Am J Physiol 1984; 146: E499 - E505.Google Scholar
  8. 8.
    Chandra S, Fullmer CS, Smith CA, Wasserman RH, Morrison GH. Ion microscopic imaging of calcium transport in the intestinal tissue of vitamin-D deficient and vitamin-D replete chicks: a 44Ca stable isotope study. Proc Natl Acad Sci USA 1990; 87: 5715–5719.PubMedCrossRefGoogle Scholar
  9. 9.
    Bilde DD, Munson S, Christakos SC, Kumar R, Buckendahl P. Calmodulin binding to the intestinal brush-border membrane: comparison to other calcium binding proteins. Biochim Biophys Acta 1989; 1010: 122–127.CrossRefGoogle Scholar
  10. 10.
    Kaune R, Munson S, Bilde DD. Regulation of calmodulin binding to the ATP extractable 110 kDa protein (myosin I) from chicken duodenal brush border by 1,25(OH)2D3. Biochim Biophys Acta 1994; 1190: 329–336.PubMedCrossRefGoogle Scholar
  11. 11.
    Mooseker MS, Wolenski JS, Coleman TR, Hayden SM, Cheney RD, Espreafico, E, Heintzelman MB, Peterson MD. Structural and functional dissection of a membrane-bound mechanoenzyme: brush border myosin I. Curr Topics Membr 1991; 33: 31–55.CrossRefGoogle Scholar
  12. 12.
    Christakos S, Gabrielides C, Rhoten WB. Vitamin D-dependent calcium-binding proteins: chemistry, distribution, functional considerations and molecular biology. Endocr Rev 1989; 10: 3–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Christakos S. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations and molecular biology. Update 1995. Endocr Rev Monogr 1995; 4: 108–110.Google Scholar
  14. 14.
    Pansu D, Bellaton C, Roche C, Bronner F. Theophylline inhibits active Ca transport in rat intestine by inhibiting Ca binding by CaBP. Prog Clin Biol Res 1988; 252: 115–120.PubMedGoogle Scholar
  15. 15.
    Kretsinger RH, Mann JE, Simmonds JG. Model of facilitated diffusion of calcium by the intestinal calcium binding protein. In: Vitamin D, Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism. Norman AW, Schaefer K, von Herrath D, Grigoleit HG, eds. Berlin: de Gruyter, 1982; 233–248.Google Scholar
  16. 16.
    Feher JJ, Fullmer CS, Wasserman RH. The role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol 1992; 262: C517–526.PubMedGoogle Scholar
  17. 17.
    Feher JJ. Facilitated calcium diffusion by intestinal calcium binding protein. Am J Physiol 1983; 244: 303–307.Google Scholar
  18. 18.
    Glenney JR, Glenney P. Comparison of Ca++ regulated events in the intestinal brush border. J Cell Biol 1985; 100: 754–763.PubMedCrossRefGoogle Scholar
  19. 19.
    Zelinski JM, Sykes DE, Weiser MM. The effect of vitamin D on rat intestinal plasma membrane Ca-pump mRNA. Biochem Biophys Res Commun 1991; 179: 749–755.PubMedCrossRefGoogle Scholar
  20. 20.
    Wasserman RH, Smith CA, Brindak ME, DeTalamoni N, Fullmer CS, Penniston JT, Kumar R. Vitamin D and mineral deficiencies increase the plasma membrane calcium pump of chicken intestine. Gastroenterology 1992; 102: 886–894.PubMedGoogle Scholar
  21. 21.
    Cai Q, Chandler JS, Wasserman RH, Kumar R, Penniston JT. Vitamin D and adaptation to dietary calcium and phosphate deficiency increase intestinal plasma membrane calcium pump gene expression. Proc Natl Acad Sci USA 1993; 90: 1345–1249.PubMedCrossRefGoogle Scholar
  22. 22.
    Pannabecker TL, Chandler JS, Wasserman RH. Vitamin D dependent transcriptional regulation of the intestinal plasma membrane calcium pump. Biochem Biophys Res Commun 1995; 213: 499–505.PubMedCrossRefGoogle Scholar
  23. 23.
    Henry HL, Norman AW. Vitamin D: metabolism and biological actions. Annu Rev Nutr 1984; 4: 493–520.PubMedCrossRefGoogle Scholar
  24. 24.
    Ghijsen WEJM, DeJong MD, VanOs CH. Kinetic properties of Na2+/Ca2+ exchange in basolateral plasma membrane of rat small intestine. Biochim Biophys Acta 1983; 730: 85–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Nemere I, Norman AW. 1,25 Dihydroxyvitamin D3-mediated vesicular calcium transport in intestine: dose-response studies. Mol Cell Endocrinol 1989; 67: 47–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Nemere I. Vesicular calcium transport in chick intestine. J Nutr 1992; 122: 657–661.PubMedGoogle Scholar
  27. 27.
    Nemere I, Norman AW. Transcaltachia, vesicular calcium transport and microtubule associated calbindin-D28k: emerging views of 1,25dihydroxyvitamin D3 mediated intestinal calcium absorption. Miner Electrolyte Metab 1990; 16: 109–114.PubMedGoogle Scholar
  28. 28.
    Nemere I, Leathers V, Norman AW. 1,25 Dihydroxyvitamin D3 mediated calcium transport across the intestine biochemical identification of lysosomes containing calcium and calcium binding protein (calbindin-D 28k). J Biol Chem 1986; 261:16, 106–16, 114.Google Scholar
  29. 29.
    Nemere I, Leathers VL, Thompson BS, Luben BA, Norman AW. Distribution of calbindin-D28k in chick intestine in response to calcium transport. Endocrinology 1991; 129: 2972–2984.PubMedCrossRefGoogle Scholar
  30. 30.
    Nemere I. Dormanen MC, Hammond MW, Okamura WH, Norman AW. Identification of a specific binding protein for 1 a-25-dihydroxyvitamin D3 in basolateral membranes in chick intestinal epithelium and relationship to transcaltachia. J Biol Chem 1994; 269:23, 750–23, 756.Google Scholar
  31. 31.
    Favus M J. Intestinal absorption of calcium, magnesium and phosphorus In:. Disorders of Bone and Mineral Metabolism. Coe FL, Favus MJ, eds. New York, Raven Press, 1992; 51–81.Google Scholar
  32. 32.
    Lemann J. Intestinal absorption of calcium, magnesium and phosphorus In:. Primer on Metabolic Bone Diseases and Disorders of Mineral Metabolism, 2nd ed. Favus MJ, ed. New York, Raven Press, 1993; 46–50.Google Scholar
  33. 33.
    LeGrimellec C. Micropuncture study along the proximal convoluted tubule. Electrolyte reabsorption in first convolutions. Pfluegers Arch 1975; 354: 133–150.CrossRefGoogle Scholar
  34. 34.
    Lassiter WE, Gottschalk CW, Mylle, M. Micropuncture study of renal tubular reabsorption of calcium in normal rodents. Am J Physiol 1963; 204: 771–775.Google Scholar
  35. 35.
    Friedman PA, Gesek FA. Calcium transport in renal epithelial cells. Am J Physiol 1993; 264: F181 - F198.PubMedGoogle Scholar
  36. 36.
    Friedman PA, Gesek FA. Cellular calcium transport in renal epithelia: measurement, mechanisms and regulation. Physiol Rev 1995; 75: 429–471.PubMedGoogle Scholar
  37. 37.
    Winaver, J, Sylk DB, Robertson JS, Chen TC, Puschett JB. Micropuncture study of the acute renal effects of 25hydroxyvitamin D3 in the dog. Miner Electrolyte Metab 1980; 4: 178–188.Google Scholar
  38. 38.
    Friedman PA, Gesek FA. Vitamin D3 accelerates PTH-dependent calcium transport in distal convoluted tubule cells. Am J Physiol 1993; 265: F300 - F308.PubMedGoogle Scholar
  39. 39.
    Yamamoto M, Kawanobe Y, Takahashi H, Shimazawa E, Kimura S, Ogata E. Vitamin D-deficiency and renal calcium transport in the rat. J Clin Invest 1984; 74: 507–513.PubMedCrossRefGoogle Scholar
  40. 40.
    Bouhtiauy I, Lajeunesse D, Brunette MG. Effect of vitamin D depletion on calcium transport by the luminal and basolateral membranes of the proximal and distal nephrons. Endocrinology 1993; 132: 115–120.PubMedCrossRefGoogle Scholar
  41. 41.
    Bindels RJM, Hartog A, Timmermans J, Van Os CH. Active Ca++ transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am J Physiol 1991; 261: F799 - F807.PubMedGoogle Scholar
  42. 42.
    Sneddon WB, Gesek FA, Friedman PA. 1,25(OH)2 vitamin D3 up-regulates the expression of the parathyroid hormone receptor in distal convoluted tubule cells. J Am Soc Nephrol 1993; 4: 729.Google Scholar
  43. 43.
    Stumpf, WE, Sar M, Reid FA, Tanaka Y, DeLuca HF. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science 1979; 206: 1188–1190.PubMedCrossRefGoogle Scholar
  44. 44.
    Stumpf WE, Sar M, Narbaitz R, Reid FA, DeLuca HF, Tanaka Y. Cellular and subcellular localization of 1,25(OH)2D3 in rat kidney: comparison with localization of parathyroid hormone and estradiol. Proc Natl Acad Sci USA 1980; 77: 1149–1153.PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor AN, McIntosh JE, Bordeau JE. Immunocytochemical localization of vitamin D-dependent calcium binding protein in renal tubules of rabbit, rat, and chick. Kidney Int 1982; 21: 765–773.PubMedCrossRefGoogle Scholar
  46. 46.
    Rhoten WB, Christakos S. Immunocytochemical localization of vitamin D-dependent calcium binding protein in mammalian nephron. Endocrinology 1981; 109: 981–983.PubMedCrossRefGoogle Scholar
  47. 47.
    Roth J, Brown D, Norman AW, Orci L. Localization of the vitamin D-dependent calcium binding protein in mammalian kidney. Am J Physiol 1982; 243: F243 - F252.PubMedGoogle Scholar
  48. 48.
    Rhoten WB, Bruns ME, Christakos S. Presence and localization of two vitamin D-dependent calcium binding proteins in kidneys of higher vertebrates. Endocrinology 1985; 117: 674–683.PubMedCrossRefGoogle Scholar
  49. 49.
    Bouhtiauy I, Lajeunesse D, Christakos S, Brunette MG. Two vitamin D-dependent calcium binding proteins increase calcium reabsorption by different mechanisms. II. Effect of CaBP28k. Kidney Int 1994; 45: 461–468.PubMedCrossRefGoogle Scholar
  50. 50.
    Bouhtiauy I, Lajeunesse D, Christakos S, Brunette MG. Two vitamin D-dependent calcium binding proteins increase calcium reabsorption by different mechanisms. II. Effect of CaBP9k. Kidney Int 1994; 45: 469–474.PubMedCrossRefGoogle Scholar
  51. 51.
    Koster HPG, Hartog, A, VanOs CN, Bindels RJM. Calbindin-D28k facilitates cytosolic calcium diffusion without interfering with calcium signaling. Cell Calcium 1995; 18: 187–196.PubMedCrossRefGoogle Scholar
  52. 52.
    Borke, JL, Caride A, Verma AK, Penniston JT, Kumar R. Plasma membrane calcium pump and 28kDa calcium binding protein in cells of rat kidney distal tubules. Am J Physiol 1989; 257: F842 - F849.PubMedGoogle Scholar
  53. 53.
    Borke JL, Minami J, Verma AK, Penniston JT, Kumar R. Monoclonal antibodies to human erythrocyte membrane Ca2+-Mg2+ adenosine triphosphatase pump recognize an epitope in the basolateral membrane of human kidney distal tubule cells. J Clin Invest 1987; 80: 1225–1231.PubMedCrossRefGoogle Scholar
  54. 54.
    James P, Vorherr, T, Thulin E, Forsen S, Carafoli E. Identification and primary structure of a calbindin9k binding domain in the plasma membrane Cat+ pump. FEBS Lett 1991; 278: 155–159.PubMedCrossRefGoogle Scholar
  55. 55.
    Walters JR, Howard A, Charpin MV, Gniecko KC, Brodin P, Thulin E, Forsen S. Stimulation of intestinal bastolateral membrane calcium-pump activity by recombinant synthetic calbindin-D9k and specific mutants. Biochem Biophys Res Commun 1990; 170: 603–608.PubMedCrossRefGoogle Scholar
  56. 56.
    Yu ASL, Hebert SC, Lee S, Brenner BM, Lyttan J. Identification and localization of renal Na+-Ca+ exchanger by polymerase chain reaction. Am J Physiol 1992; 263: F680 - F685.PubMedGoogle Scholar
  57. 57.
    Bourdeau JE, Taylor AN, Iacopino AM Immunocytochemical localization of sodium calcium exchanger in canine nephron. J Am Soc Nephrol 1993; 4: 105–110.PubMedGoogle Scholar
  58. 58.
    Henry HL. Vitamin D hydroxylases. J Cell Biochem 1992; 49: 4–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Kumar R. Metabolism of 1,25-dihydroxyvitamin D3. Physiol Rev 1984; 64: 478–504.PubMedGoogle Scholar
  60. 60.
    Shinki T, Jin CH, Nishimura A, Nagai Y, Ohyama Y, Noshiro M, Okuda K, Suda T. Parathyroid hormone inhibits 25-hydroxyvitamin D3–24-hydroxylase mRNA expression stimulated by 1 a25- dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem 1992; 267:13, 757–13, 762.Google Scholar
  61. 61.
    Kawashima H, Torikai S, Kurokawa K. Localization of 25-hydroxyvitamin D3 lahydroxylase and 24hydroxylase along rat nephron. Proc Natl Acad Sci USA 1981; 78: 1199–1203.PubMedCrossRefGoogle Scholar
  62. 62.
    St.-Arnaud R, Moir M, Messerlain S, Glorieux FH. Molecular cloning and characterization of a cDNA for vitamin D 1ahydroxylase. J Bone Miner Res 1996; 11 (Suppl 1): 5124.Google Scholar
  63. 63.
    Ohyama Y, Noshiro M, Okuda K. Cloning and expression of cDNA encoding 25-hydroxyvitamin D3 24-hydroxylase. FEBS Lett 1991; 278: 195–198.PubMedCrossRefGoogle Scholar
  64. 64.
    Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA 1994; 91: 900–902.PubMedCrossRefGoogle Scholar
  65. 65.
    Ohyama Y, Ozono K, Uchida M, Shinki T, Kato S, Suda T, Yamamoto U, Noshiro M, Kato Y. Identification of a vitamin D-responsive element in the 5’ flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem 1994; 269:10, 545–10, 550.Google Scholar
  66. 66.
    Hahn CN, Kerry DM, Omdahl JL, May BK. Identification of a vitamin D responsive element in the promoter of the rat cytochrome P45024 gene. Nucleic Acids Res 1994; 22: 2410–2416.PubMedCrossRefGoogle Scholar
  67. 67.
    Chen K-S, DeLuca HF. Cloning of human 1 a25-hydroxyvitamin D3 24-hydroxylase gene promoter and identification of two vitamin D responsive elements. Biochim Biophys Acta 1995; 1263: 1–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Bonjour JP, Preston C, Fleisch H. Effect of 1,25-dihydroxyvitamin D3 on renal handling of Pi in thyroparathyroidectomized rats. J Clin Invest 1977; 60: 1419–1428.PubMedCrossRefGoogle Scholar
  69. 69.
    Liu L, Khastgir A, McCauley J, Dunn ST, Morrissey JH, Christakos S, Hughes MR, Bourdeau JE. RTPCR microlocalization of mRNAs for calbindin-D28k and vitamin D receptor in murine nephron. Am J Physiol 1996; 270: F677 - F681.PubMedGoogle Scholar
  70. 70.
    Bindels RJM. Calcium handling by the mammalian kidney. J Exp Biol 1993; 184: 89–104.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Mihali Raval-Pandya
  • Angela R. Porta
  • Sylvia Christakos

There are no affiliations available

Personalised recommendations