Biotic Influences

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


Symbiosis is the “living together” of two or more organisms. In its widest sense, symbiotic associations include parasitic and commensal as well as mutually beneficial partnerships. As is common in the ecophysiological literature, however, we use the term symbiosis in a narrow sense and only refer to mutually beneficial associations between higher plants and microorganisms. Mutual benefits may not always be easy to determine, and certainly not for the microsymbiont. In this chapter benefits for the macrosymbiont (“host”) are often expressed in terms of biomass. In an ecological context, benefits in terms of “fitness” may be more relevant, but this is rarely done. In the mutually beneficial associations discussed in this chapter nutrients or specific products of the partners are shared between two or three partners: the macrosymbiont and the microsymbiont(s).


Mycorrhizal Fungus Specific Leaf Area Arbuscular Mycorrhiza Mycorrhizal Plant Carnivorous Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Allen, E.B. & Allen, M.F. (1984) Competition betweer plants of different successional stages: Mycorrhizae as regulators. Can J. Bot. 62:2625–2629.CrossRefGoogle Scholar
  2. Allen, E.B. & Allen, M.F. (1986) Water relations of xeric grasses in the field: Interactions of mycorrhizas and competition. New Phytol. 104:559–571CrossRefGoogle Scholar
  3. Baas, R., Van der Werf, A., & Lambers, H. (1989) Root respiration and growth in Plantago major as affected by vesicular-arbuscular mycorrhizal infection. Plani Physiol. 91:227–232.CrossRefGoogle Scholar
  4. Bacon, C.W. & De Battista, J. (1991) Endophytic fungi of grasses. In: Handbook of applied mycology. Vol. 1: Soil and plants, D.K. Arora, B. Rai, K.G. Mukerji, & G.R. Knudsen (eds). Marcel Dekker, New York, pp. 231–256.Google Scholar
  5. Bergersen, F.J., Brockwell, J., Gault, R.R., Morthorpe, L., Peoples, M.B., & Turner, G.L. (1989) Effects of available soil nitrogen and rates of inoculation on nitrogen fixation by irrigated soybeans and evaluation of the δ15N methods for measurements. Aust. J. Agric. Res. 40:763–780.CrossRefGoogle Scholar
  6. Berry, A.M. (1994) Recent developments in the actinorhizal symbioses. Plant Soil 161:135–145.CrossRefGoogle Scholar
  7. Bethlenfalvay, G.J., Pacovsky, R.S., Bayne, H.G., & Stafford, A.E. (1982) Interactions between nitrogen fixation, mycorrhizal colonization, and host-plant growth in the Phaseolus-Rhizobium-Glomus symbiosis. Plant Physiol. 70:446–450.PubMedCrossRefGoogle Scholar
  8. Bethlenfalvay, G.J., Reyes-Solis, M.G., Camel, S.B., & Ferrera-Cerrato, R. (1991) Nutrient transfer between the root zones of soybean and maize plants connected by common mycorrhizal mycelium. Physiol. Plant. 82:423–432.CrossRefGoogle Scholar
  9. Blee, K.A. & Anderson, A.J. (1996) Defense-related transcript accumulation in Phaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith. Plant Physiol. 110:675–688.PubMedGoogle Scholar
  10. Bobbink, R. (1991) Effects of nutrient enrichment in dutch grassland. J. Appl. Ecol. 28:28–41.CrossRefGoogle Scholar
  11. Bohlool, B.B., Ladha, J.K., Garrity, D.P., & George, T. (1992) Biological nitrogen fixation for sustainable agriculture. Plant Soil 141:1–11.CrossRefGoogle Scholar
  12. Bolan, N.S. (1992) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134: 189–207CrossRefGoogle Scholar
  13. Bolan, N.S., Robson, A.D., & Barrow, N.J. (1987) Effect of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99:401–410.CrossRefGoogle Scholar
  14. Boller, B.C. & Nösberger, J. (1987) Symbiotically fixed nitrogen from field-grown white and red clover mixed with ryegrass at low levels of 15N-fertilization. Plant Soil 104:219–226.CrossRefGoogle Scholar
  15. Brown, S.M., Oparka, K.J., Sprent, J.I., & Walsh, K.N.B. (1995) Symplasmic transport in soybean root nodules. Soil Biol. Biochem. 27:387–399.CrossRefGoogle Scholar
  16. Cavalcante, V.A. & Döbereiner, J. (1988) A new acidtolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108:23–31.CrossRefGoogle Scholar
  17. Chiarello, N., Huckman, J.C., & Mooney, H.A. (1982) Endomycorrhizal role for interspecific transport of phosphorus in a community of annual plants. Science 217:941–943.CrossRefGoogle Scholar
  18. Christiansen-Weniger, C., Groneman, A.F., & Van Veen, J.A. (1992) Associative N2 fixation and root exudation of organic acids from wheat cultivars of different aluminium tolerance. Plant Soil 139:167–174.CrossRefGoogle Scholar
  19. Clay, K. (1988) Fungal endophytes of grasses: A defensive mutualism between plants and fungi. Ecology 69:10–16.CrossRefGoogle Scholar
  20. Clay, K., Marks, S., & Cheplick, G.P. (1993) Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74: 1767–1777.CrossRefGoogle Scholar
  21. Cohen, E., Okon, Y., Kigel, J., Nur, I., & Henis, Y. (1980) Increase in dry weight and total nitrogen content in Zea mays and Setaria italica associated with nitrogen-fixing Azospirillum. Plant Physiol. 66:746–749.PubMedCrossRefGoogle Scholar
  22. Coronado, C., Zuanazzi, J.A.S., Sallaud, C., Quirion, J.-C., Esnault, R., Husson, H.-P., Kondorosi, A., & Ratet, P. (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol. 108:533–542.PubMedGoogle Scholar
  23. Day, D.A. & Copeland, L. (1991) Carbon metabolism and compartmentation in nitrogen-fixing legume nodules. Plant Physiol. Biochem. 29:185–201.Google Scholar
  24. Dewan, M.M. & Sivasithamparam, K. (1988) A plantgrowth-promoting sterile fungus from wheat and ryegrass roots with potential for suppressing take-all. New Phytol. 91:687–692.Google Scholar
  25. Diaz, C.L., Melchers, L.S., Hooykaas, P.J.J., Lugtenberg, B.J.J., & Kijne, J.W. (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338:579–581.CrossRefGoogle Scholar
  26. Dixon, K.W., Pate, J.S., & Kuo, J. (1987) The Western Australian fully subterranean orchid Rhizanthella gardneri. In: Orchid biology. Reviews and perspectives, T. Arddiffi (ed) Timber Press Portland pp. 37–62Google Scholar
  27. Dong, Z., Canny, M.J., McCulley, M.E., Roboredo, M.R., Cabadilla, C.F., Ortega, E., & Rodes, R. (1994) A nitrogen-fixing endophyte of sugarcane stems. A new role for the apoplast. Plant Physiol. 105:1139–1147.PubMedGoogle Scholar
  28. Douds, D.D., Johnson, C.R., & Koch, K.E. (1988) Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol. 86:491–496.PubMedCrossRefGoogle Scholar
  29. Downie, J.A. (1994) Signalling strategies for nodulation of legumes by rhizobia. Trends Microbiol. 9:318–324.CrossRefGoogle Scholar
  30. Duc, G., Trouvelot, A., Gianinazzi-Pearson, V., & Gianinazzi, S. (1989) First report of non-mycorrhizal plant mutants (Myc) obtained in pea (Pisum sativum) and fababean (Vicia faba L.). Plant Sci. 60:215–222.CrossRefGoogle Scholar
  31. Eissenstat, D.M. (1990) A comparison of phosphorus and nitrogen transfer between plants of different phosphorus status. Oecologia 82:342–347.CrossRefGoogle Scholar
  32. Eissenstat, D.M., Graham, J.H., Syvertsen, J.P., & Drouillard, D.L. (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann. Bot. 71:1–10.CrossRefGoogle Scholar
  33. Ezawa, T., Saito, M., & Yoshida, T. (1995) Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigasppora spp. Plant Soil 176:57–63.CrossRefGoogle Scholar
  34. Fischer Walter, L.E., Hartnett, D.C., Hetrick, B.A.D., & Schwab, A.P. (1996) Interspecific nutrient transfer in a tallgrass prairie plant community. Am. J. Bot. 83:180–184.CrossRefGoogle Scholar
  35. Francis, R. & Read, D.J. (1994) The contribution of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159:11–25.Google Scholar
  36. Fredeen, A.L. & Terry, N. (1988) Influence of vesiculararbuscular mycorrhizal infection and soil phosphorus level on growth and carbon metabolism of soybean. Can. J. Bot. 66:2311–2316.Google Scholar
  37. Gault, R.R., Peoples, M.B., Turner, G.L., Lilley, D.M., Brockwell, J., & Bergersen, F.J. (1995) Nitrogen fixation by irrigated lucerne during the first three years after establishment. Aust. J. Agric. Res. 56:1401–1425.CrossRefGoogle Scholar
  38. Graham, J.H. & Eissenstat, D.M. (1994) Host genotype and the formation of VA mycorrhizae. Plant Soil 159:179–185.Google Scholar
  39. Graham, J.H., Eissenstat, D.M., & Drouillard, D.L. (1991) On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct. Ecol. 5:773–779.CrossRefGoogle Scholar
  40. Haahtela, K., Laakso, T., Nurmiaho-Lassila, E.-L., & Korhonen, T.K. (1988) Effects of inoculation of Poa pratensis and Triticum aestivum with root-associated, N2- fixing Klebsiella, Enterobacter and Azospirillum. Plant Soil 106:239–248.CrossRefGoogle Scholar
  41. Handley, L.L. & Raven, J.A. (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ. 15:965–985.CrossRefGoogle Scholar
  42. Handley, L.L., Daft, M.J., Wilson, J., Scrimgeour, C.M., Ingelby, K., & Sattar, M.A. (1993) Effects of the ectoand VA-mycorrhizal fungi Hydnagium carneum and Glomus clarum on the δ15N and δ13C values of Eucalyptus globulus and Ricinus communis. Plant Cell Environ. 16: 375–382.CrossRefGoogle Scholar
  43. Harrison, M.J. (1997) The arbuscular mycorrhizal symbiosis: An underground association. Trends Plant Sci. 2:54–60CrossRefGoogle Scholar
  44. Hartwig, U.A., Maxwell, C.A., Joseph, C.M., & Phillips, D.A. (1990) Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol. 92:116–122.PubMedCrossRefGoogle Scholar
  45. Heap, A.J. & Newman, E.I. (1980) Links between roots by hyphae of vesicular-arbuscular mycorrhizas. New Phytol. 85:169–171.CrossRefGoogle Scholar
  46. Hetrick, B.A.D., Wilson, G.W., & Hartnett, D.C. (1989) Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie species. Can J. Bot. 67:2608–2615.CrossRefGoogle Scholar
  47. Högberg, P. (1990) 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol. 115:483–486.CrossRefGoogle Scholar
  48. Högberg, P. & Alexander, I.J. (1995) Roles of root symbioses in African woodland and forest: Evidence from 15N abundance and foliar analysis. J. Ecol. 83:217–224.CrossRefGoogle Scholar
  49. Hunt, S. & Layzell, D.B. (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:483–511.CrossRefGoogle Scholar
  50. Hutton, B.J., Dixon, K.W., & Sivasithamparam, K. (1994) Ericoid endophytes of Western Australian heaths (Epacridaceae). New Phytol. 127:557–655.CrossRefGoogle Scholar
  51. Hutton, B.J., Sivasithamparam, K., Dixon, K.W., & Pate, J.S. (1996) Pectic zymograms and water stress tolerance of endophytic fungi isolated from Western Australian heaths (Epacridaceae). Ann. Bot. 77:399–404.CrossRefGoogle Scholar
  52. Israel, D.W. (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol. 84:835–840.PubMedCrossRefGoogle Scholar
  53. Jakobsen, I. & Rosendahl, L. (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phvtol. 115:77–83.CrossRefGoogle Scholar
  54. Jakobsen, I., Joner, E.J., & Larsen, J. (1994) Hyphal phosphorus transport, a keystone to mycorrhizal enhancement of plant growth. In: Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems, S. Gianinazzi & H. Schuepp (eds). Birkhäuser Verlag, Basel, pp. 133–146.CrossRefGoogle Scholar
  55. James, E.K., Reis, V.M., Olivars, F.L., Baldani, J.I., & Döbereiner, J. (1994). Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicum. T. Exp. Bot. 45:757–766.CrossRefGoogle Scholar
  56. Johansen, A., Jakobsen, I., & Jensen, E.S. (1994) Hyphal N transport by a vesicular-arbuscular fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160:1–9.CrossRefGoogle Scholar
  57. Joner, E.J. & Jakobsen, I. (1995) Uptake of 32P from labelled organic matter by mycorrhizal and nonmycorrhizal subterranean clover (Trifolium subterraneum L.) Plant Soil 172:221–227.CrossRefGoogle Scholar
  58. Kaiser, B.N., Layzell, D.B., & Shelp, B.J. (1997) Role of oxygen limitation and nitrate metabolism in the nitrate inhibition of nitrogen fixation by pea. Physiol. Plant. 101:45–50.CrossRefGoogle Scholar
  59. Kapulnik, Y. (1991) Non-symbiotic nitrogen fixing microorganisms. In: Plant roots: The hidden half, Y. Waisel, A. Eshel & U. Kafkaki (eds). Marcel Dekker, New York, pp. 703–716.Google Scholar
  60. Kearns, A., Whelan, J., Young, S., Elthon, T.E., & Day, D.A. 1992. Tissue-specific expression of the alternative oxidase in soybean and siratro. Plant Physiol. 99:712–717.PubMedCrossRefGoogle Scholar
  61. Kennedy, I.R. & Tchan, Y.-T. (1992) Biological nitrogen fixation in non-leguminous field crops: Recent advances. Plant Soil 141:93–118.CrossRefGoogle Scholar
  62. Koch, K.E. & Johnson, C.R. (1984) Photosynthetic partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiol. 75:26–30.PubMedCrossRefGoogle Scholar
  63. Koide, R.T. & Schreiner, R.P. (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:557–581.CrossRefGoogle Scholar
  64. Koide, R.T., Huenneke, L.F., Hamburg, S.P., & Mooney, H.A. (1988) Effects of applications of fungicide, phosphorus and nitrogen on the structure and productivity of an annual serpentine plant community. Funct. Ecol. 2:335–344.CrossRefGoogle Scholar
  65. Krikun, J. (1991) Mycorrhizae in agricultural crops. In: Plant roots: The hidden half, Y. Waisel, A. Eshel & U. Kafkaki (eds). Marcel Dekker, New York, pp. 767–786.Google Scholar
  66. Kwon, D.-K. & Beevers, H. (1992) Growth of Sesbania rostrata (Brem) with stem nodules under controlled conditions. Plant Cell Environ. 15:939–945.CrossRefGoogle Scholar
  67. Lambers, H., Atkin, O.K., & Scheurwater, I. (1996) Respiratory patterns in roots in relation to their functioning. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, New York, pp. 323–362.Google Scholar
  68. Leake, J.R. (1994) The biology of myco-heterotrophic “saprophytic” plants. New Phytol. 127:171–216.CrossRefGoogle Scholar
  69. Lindblad, P., Atkins, C.A., & Pate, J.S. (1991) N2- fixation by freshly isolated Nostoc from coralloid roots of the cycad Macrozamia riedlei (Fisch. ex Gaud.) Gardn. Plant Physiol. 95:753–759.PubMedCrossRefGoogle Scholar
  70. Marschner, H. (1995) Mineral nutrition of higher plants. Second edition. Academic Press, London.Google Scholar
  71. Marschner, H. & Dell, B. (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102.Google Scholar
  72. Maxwell, C.A., Hartwig, U.A., Joseph, C.M., & Phillips, D.A. (1989) A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol. 91:842–847.PubMedCrossRefGoogle Scholar
  73. Mellor, R.B. & Collinge, D.B. (1995) A simple model based on known plant defence reactions is sufficient to explain most aspects of nodulation. J. Exp. Bot. 46: 1–18.CrossRefGoogle Scholar
  74. Mylona, P., Pawlowski, K., & Bisseling, T. (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885.PubMedGoogle Scholar
  75. Nadelhoffer, K., Shaver, G., Fry, B., Giblin, A., Johnson, L., & McKane, R. (1996) 15N natural abundances and N use by tundra plants. Oecologia 107:386–394.CrossRefGoogle Scholar
  76. Newman, E.I., Eason, W.R., Eissenstat, D.M., & Ramos, M.I.F.R. (1992) Interactions between plants: The role of mycorrhizae. Mycorrhiza 1:47–53.CrossRefGoogle Scholar
  77. Ocampo, J.A., Martin, J., & Hayman, D.S. (1980) Influence of plant interactions on vesicular-arbuscular mycorrhizal infections. I. Host and non-host plants grown together. New Phytol. 84:27–35.CrossRefGoogle Scholar
  78. Osborne, B.A. (1989) Comparison of photosynthesis and productivity of Gunnera tinctora Molina (Mirbel) with and without the phycobiont Nostoc punctiforme L. Plant Cell Environ. 12:941–946.CrossRefGoogle Scholar
  79. Palus, J.A., Borneman, J., Ludden, P.W., & Triplett, E.W. (1996) A diazotrophic bacterial endophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil 186:135–142.CrossRefGoogle Scholar
  80. Pate, J.S. (1980) Transport and partitioning of nitrogenous solute. Annu. Rev. Plant Physiol. 31:313–340.CrossRefGoogle Scholar
  81. Pate, J.S., Lindblad, P., & Atkins, C.A. (1988) Pathway of assimilation and transfer of fixed nitrogen in coralloid roots of cycad-Nostoc symbioses. Planta 176:461–471.CrossRefGoogle Scholar
  82. Penas, J.I., Sanchez-Diaz, M., Aguirreola, J., & Becana, M. (1988) Increased stress tolerance of nodule activity in Medicago-Rhizobium-Glomus symbiosis under drought. J. Plant Physiol. 79:79–83.CrossRefGoogle Scholar
  83. Peng, S., Eissenstat, D.M., Graham, J.H., Williams, K., & Hodge, N.C. (1993) Growth depression in mycorrhizal citrus at high-phosphorus supply. Analysis of carbon costs. Plant Physiol. 101:1063–1071.PubMedGoogle Scholar
  84. Peoples, M.B., Palmer, B., Lilley, D.M., Duc, L.M., & Herridge, D.F. (1996) Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage. Plant Soil 182:125–137.CrossRefGoogle Scholar
  85. Peterson, C.A. & Enstone, D.E. (1996) Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plant. 97:592–598.CrossRefGoogle Scholar
  86. Peterson, R.L. & Bonfante, P. (1994) Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil 159:79–88.Google Scholar
  87. Phillips, D.A., Dakora, F.D., Sande, E., Joseph, C.M., & Zon, J. (1994) Synthesis, release, and transmission of alfalfa signal to rhizobial symbionts. Plant Soil. 161:69–80.CrossRefGoogle Scholar
  88. Ratnayake, M., Leonard, R.T., & Menge, J.A. (1978) Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phy SinlGoogle Scholar
  89. Read, D.J. (1991) Mycorrhizas in ecosystems. Experientia 47:376–391.CrossRefGoogle Scholar
  90. Richardson, A.E., Djordjevic, M.A., Rolfe, B.G., & Simpson, R.J. (1988) Effects of pH, Ca and Al on the exudation from clover seedlings of compounds that induce the expression of nodulation genes in Rhizobium trifolii. Plant Soil 109:37–47.CrossRefGoogle Scholar
  91. Rolfe, B.G. & Gresshoff, P.M. (1988) Genetic analysis of legume nodule initiation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:297–319.Google Scholar
  92. Rousseau, J.V.D. & Reid, C.P.P. (1991) Effects of phosphorus fertilization and mycorrhizal development on phosphorus nutrition and carbon balance of loblolly pine. New Phytol. 92:75–87.Google Scholar
  93. Ruiz-Lozana, J.M. & Azcón, R. (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol. Plant. 95:472–478.CrossRefGoogle Scholar
  94. Ryle, G.J.A., Powell, C.E., & Gordon, A.J. (1985) Shortterm changes in CO2-evolution associated with nitrogenase activity in white clover in response to defoliation and photosynthesis. J. Exp. Bot. 36:634–643.CrossRefGoogle Scholar
  95. Sanchez-Diaz, M. & Honrubia, M. (1994) Water relations and alleviation of drought stress in mycorrhizal plants. In: Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems, S. Gianinazzi & H. Schupp (eds). Birkhäuser Verlag, Basel, pp. 167–178.CrossRefGoogle Scholar
  96. Sanchez-Diaz, M., Pardo, M., Antolin, M., Pena, J., & Aguirreola, J. (1990) Effect of water stress on photosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant Sci. 71:215–221.CrossRefGoogle Scholar
  97. Sanders, I.R. & Koide, R.T. (1994) Nutrient acquisition and community structure in co-occurring mycotrophic and non-mycotrophic oldfield annuals. Funct. Ecol. 80;77–84CrossRefGoogle Scholar
  98. Schulze, E.-D., Chapin III, F.S., & Gebauer, G. (1995) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100:406–412.CrossRefGoogle Scholar
  99. Smith, S.E. & Gianinazzi-Pearson, V. (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Mol. Biol. 39:221–244.CrossRefGoogle Scholar
  100. Smith, S.E. & Read, D.J. (1997) Mycorrhizal symbiosis. Academic Press, London.Google Scholar
  101. Smith, S.E., Gianinazzi-Pearson, V., Koide, R., & Cairney, J.W.G. (1994) Nutrient transport in mycorrhizas: Structure, physiology and consequences for efficiency of the symbiosis. Plant Soil 159:103–113.CrossRefGoogle Scholar
  102. Smith, S.E., Robson, A.D., & Abbott, L.K. (1992) The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant Soil 146:169–179.CrossRefGoogle Scholar
  103. Snellgrove, R.C., Splittstoesser, W.E., Stribley, D.P., & Tinker, P.B. (1982) The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol. 92:75–87.CrossRefGoogle Scholar
  104. Spaink, H.P. (1995) The molecular basis of infection and nodulation by rhizobia: The ins and outs of sympathogenesis. Annu. Rev. Phytopathol. 33:345–368.PubMedCrossRefGoogle Scholar
  105. Sprent, J.I., Geoghegan, I.E., Whitty, P.W., & James, E.K. (1996) Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil. Oecologia 105:440–446.CrossRefGoogle Scholar
  106. Sturz, A.V. (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 172:257–263.CrossRefGoogle Scholar
  107. Ta, T.C. & Faris, M.A. (1988) Effects of environmental conditions on the fixation and transfer of nitrogen from alfalfa to associated timothy. Plant Soil 107:25–30.CrossRefGoogle Scholar
  108. Tester, M., Smith, S.E., & Smith, F.A. (1987) The phenomenon of “nonmycorrhizal” plants. Can. J. Bot. 65:419–431.CrossRefGoogle Scholar
  109. Thompson, B.D., Robson, A.D., & Abbott, L.K. (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol. 103:751–765.CrossRefGoogle Scholar
  110. Tisdall, J.M. (1994) Possible role of soil microorganisms in aggregation in soils. Plant Soil 159:115–121.Google Scholar
  111. Tobar, R., Azcón, R., & Barea, J.-M. (1994) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under waterstressed conditions. New Phytol. 126:119–122.CrossRefGoogle Scholar
  112. Trappe, J.M. (1987) Phyllogenetic and ecological aspects of mycotrophy in angiosperms from an evolutionary standpoint. In: Ecophysiology of VA mycorrhizas, G.R. Safir (ed). CRC Press, Boca Raton, pp. 5–25.Google Scholar
  113. Triplett, E.W. (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38.CrossRefGoogle Scholar
  114. Turnbull, M.H., Goodall, R., & Stewart, G.R. (1995) The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook. Plant Cell Environ. 18:1386–1394.CrossRefGoogle Scholar
  115. Udvardi, M.K. & Day, D.A. (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:493–523.PubMedCrossRefGoogle Scholar
  116. Vance, C.P. (1995) Root-bacteria interactions. Symbiotic nitrogen fixation. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, New York, pp. 723–755.Google Scholar
  117. Vance, C.P., Egli, M.A., Griffith, S.M., & Miller, S.S. (1988) Plant regulated aspects of nodulation and N2 fixation. Plant Cell Environ. 11:413–427.CrossRefGoogle Scholar
  118. Van Rhijn, P. & Vanderleyden, J. (1995) The Rhizobiumplant symbiosis. Microbiol. Rev. 59:124–142.PubMedGoogle Scholar
  119. Vierheilig, H., Iseli, B., Alt, M., Raikhel, N., Wiemken, A., & Boller, T. (1996) Resistance of Urtica dioica to mycorrhizal colonization: A possible involvement of Urtica dioica agglutinin. Plant Soil 183:131–136.CrossRefGoogle Scholar
  120. Volpin, H., Elkind, Y., Okon, Y., & Kapulnik, Y. (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradices) induces a defense response in alfalfa roots. Plant Physiol. 104:683–689.PubMedGoogle Scholar
  121. Whitehead, L.F. & Day, D.A. (1997) The peribacteroid membrane. Physiol. Plant. 100:30–44.CrossRefGoogle Scholar
  122. Whitehead, L.F., Tyerman, S.D., Salom, C.L., & Day, D.A. (1995) Transport of fixed nitrogen across symbiotic membranes of legume nodules. Symbiosis 19:141–154.Google Scholar
  123. Wilcox, H.E. (1991) Mycorrhizae. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, New York, pp. 731–765.Google Scholar
  124. Wilson, D. (1993) Fungal endophytes: Out of sight but should not be out of mind. Oikos 68:279–384.Google Scholar
  125. Yoneyama, T., Muraoka, T., Kim, T.H., Decanay, E.V., & Nakanishi, Y. (1997) The natural 15N abundance of sugarcane and neigbouring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189:239–244.CrossRefGoogle Scholar
  126. Zaat, S.A.J., Wijfelman, C.A., Mulders, I.H.M., Van Brussel, A.A.N., & Lugtenberg, B.J.J. (1988) Root exudates of various host plants of Rhizobium leguminosarum contain different sets of inducers of Rhizobium nodulation genes. Plant Physiol. 88:1298–1303.CrossRefGoogle Scholar
  127. Ayres, M.P., Clausen T.P., MacLean, S.F., Redman, A.M., & Reichardt, P.B. (1997) Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.CrossRefGoogle Scholar
  128. Bergelson, J. & Purrington, C.B. (1996) Surveying patterns in the cost of resistance in plants. Am. Nat. 148:536–558.CrossRefGoogle Scholar
  129. Bloom, A.J., Chapin III, F.S., & Mooney, H.A. (1985) Resource limitation in plants-an economic analogy. Annu. Rev. Ecol. Syst. 16:363–392.Google Scholar
  130. Bruin, J., Sabelis, M.W., & Dicke, M. (1995) Do plants tap SOS signals from their infested neighbours. Trends Ecol. Evol. 10:167–170.PubMedCrossRefGoogle Scholar
  131. Bryant, J.P. & Kuropat, P.J. (1980) Selection of winter forage by subarctic browsing vertebrates: The role of plant chemistry. Annu. Rev. Ecol. Syst. 11:261–285.CrossRefGoogle Scholar
  132. Bryant, J.P., Chapin III, F.S., & Klein, D.R. (1983) Carbon/ nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.CrossRefGoogle Scholar
  133. Bryant, J.P., Chapin III F.S., Reichardt, P., & Clausen, T. (1985) Adaptation to resource availability as a determinant of chemical defense strategies in woody plants. In: Chemically mediated interactions plants and other organisms, G.A. Cooper-Driver, T. Swain, & E.E. Conn (eds). Plenum Press, New York, pp. 219–237.Google Scholar
  134. Bryant, J.P., Tahvanainen, J., Sulkinoja, M., Julkunen-Titto, R., Reichardt, P., & Green, T. (1989) Biogeographic evidence for the evolution of chemical defense by boreal birch and willow against mammalian browsing. Am. Nat. 134:20–34.CrossRefGoogle Scholar
  135. Bryant, J.P., Heitkonig, I., Kuropat, P., & Owen-Smith, N. (1991) Effects of severe defoliation on the long-term resistance to insect attack and on leaf chemistry in six woody species of the southern African savanna. Am. Nat. 137:50–63.CrossRefGoogle Scholar
  136. Bryant, J.P., Reichardt, P.B., Clausen, T.P., Provenza, F.D., & Kuropat, P.J. (1992) woody plant-mammal interactions. In: Herbivores: their interactions with secondary plant metabolites. Vol II, Ecological and evolutionary processes, 2nd edition, G.A. Rosenthal (ed). Academic Press, San Diego, pp. 343–370.CrossRefGoogle Scholar
  137. Cates, R.G. & Orians, G.H. (1975) Successional status and the palatability of plants to generalized herbivores. Ecology 56:410–418.CrossRefGoogle Scholar
  138. Chou, C.-H. & Kuo, Y.-L. (1986) Allelopathic research of subtropical vegetation in Taiwan. III. Allelopathic exclusion of understory by Leucaena leucophylla (Lam.) de Wit. J. Chem. Ecology 12:1431–1448.CrossRefGoogle Scholar
  139. Chrispeels, M.J. & Raikhel, N.V. (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3:1–9.PubMedGoogle Scholar
  140. Clausen, T.P., Reichardt, P.B., Bryant, J.P., Werner, R.A., Post, K., & Frisby, K. (1989) A chemical model for shortterm induction in quaking aspen (Populus tremuloides) foliage against herbivores. J. Chem. Ecol. 15:2335–2346.CrossRefGoogle Scholar
  141. Coley, P.D. (1986) Costs and benefits of defense by tannins in a neotropical tree. Oecologia 70:238–241.CrossRefGoogle Scholar
  142. Coley, P.D., Bryant, J.P., & Chapin III F.S. (1985) Resource availability and plant anti-herbivore defense. Science 230:895–899.PubMedCrossRefGoogle Scholar
  143. De Jong, T. (1995) Why fast-growing plants do not bother about defence. Oikos 74:545–548.CrossRefGoogle Scholar
  144. Dicke, M. & Sabelis, M.W. (1989) Does it pay to advertize for body guards? In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds). SPB Academic Publishing, The Hague, pp. 341–358.Google Scholar
  145. Ernst, W.H.O. (1990) Ecological aspects of sulfur metabolism. In: Sulfur nutrition and sulfur assimilation in higher plants, H. Rennenberg, C. Brunold, L.J. De Kok, & I. Stulen (eds). SPB Academic Publishing, The Hague, pp. 131–144.Google Scholar
  146. Ersek, T. & Kiiraly, Z. (1986) Phytoalexins: Warding-off compounds in plants? Physiol. Plant. 68:343–346.CrossRefGoogle Scholar
  147. Etzler, M.E. (1985) Plant lectins: Molecular and biological aspects. Annu. Rev. Plant Physiol. 36:209–234.CrossRefGoogle Scholar
  148. Feng, Z. & Hartel, P.G. (1996) Factors affecting production of COS and CS2 in Leucaena and Mimosa species. Plant Soil 178:215–222.CrossRefGoogle Scholar
  149. Gershenzon, J. (1984) Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Phytochemical adaptations to stress, B.N. Timmermann, C. Steelink, & F.A. Leowus (eds). Plenum Press, New York, pp. 273–320.Google Scholar
  150. Greenwood, J.S., Stinissen, H.M., Peumans, W.J., & Chrispeels, M.J. (1986) Sambucus nigra agglutinin is located in protein bodies in the phloem parenchyma of the bark. Planta 167:275–278.CrossRefGoogle Scholar
  151. Hahn, M.G., Bonhoff, A., & Griesenbach, H. (1985) Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophtora megasperma f. sp. glycinea. Plant Physiol. 77:591–601.PubMedCrossRefGoogle Scholar
  152. Harborne, J.B. (1988) Introduction to Ecological Biochemistry. Academic Press, New York.Google Scholar
  153. Hartley, M.R., Chaddock, J.A., & Bonness, M.S. (1996) The structure and function of ribosome-inactivating proteins. Trends Plant Sci. 1:254–260.CrossRefGoogle Scholar
  154. Hartmann, T., Ehmke, A., Eilert, U., von Bortsel, K., & Theurig, C. (1989) Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L. Planta 177:98–107.CrossRefGoogle Scholar
  155. Hashimoto, T. & Yamada, Y. (1994) Alkaloid biogenesis: molecular aspects. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:257–285.CrossRefGoogle Scholar
  156. Haukioja, E. (1980) On the role of plant defenses in the fluctuations of herbivore populations. Oikos 35:202–213.CrossRefGoogle Scholar
  157. Haukioja, E. & Neuvonen, S. (1985) Induced long-term resistance of birch foliage against defoliators: Defensive or incidental. Ecology 66:1303–1308.CrossRefGoogle Scholar
  158. Heinstein, P.F. & Chang, C.-J. (1994) Taxol. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:663–674.CrossRefGoogle Scholar
  159. Herms, D.A. & Mattson, W.J. (1992) The dilemma of plants: To grow or defend. Quart. Rev. Biol. 67:283–325.CrossRefGoogle Scholar
  160. Howe, H.F. & Westley, L.C. (1988) Ecological relationships of plants and animals. Oxford University Press, New York.Google Scholar
  161. Hughes, S. (1990) Antelope activate the acacia’s alarm system. New Scientist 127:19.Google Scholar
  162. Ishimoto, M. & Chrispeels, M.J. (1996) Protective mechanism of the Mexican bean weevil against high levels of a-amylase inhibitor in the common bean. Plant Physiol. 111:393–401.PubMedCrossRefGoogle Scholar
  163. Keller, H., Blein, J.-P., Bonnet, P., & Ricci, P. (1996) Physiological and molecular characteristics of elicitininduced systemic acquired resistance in tobacco. Plant Physiol. 110:365–376.PubMedGoogle Scholar
  164. Kimmerer, T.W. & Potter, D.A. (1987) Nutritional quality of specific leaf tissues and selective feeding by a specialist leafminer. Oecologia 71:548–551.CrossRefGoogle Scholar
  165. Koch, K.E. (1996) Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:509–540.PubMedCrossRefGoogle Scholar
  166. Lambers, H. & Poorter, H. (1992) Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 21:187–261.CrossRefGoogle Scholar
  167. Leung, T.-W. C., Williams, D.H., Barna, J.C.J., Foti, S., & Oelrichs, P.B. (1986) Structural studies on the peptide moroidin from Laporta moroides. Tetrahedron 42:3333–3348.CrossRefGoogle Scholar
  168. Lieberei, R., Biehl, B., Giesemann, A., & Junqueira, N.T.V. (1989) Cyanogenesis inhibits active defense reactions in plants. Plant Physiol. 90:33–36.PubMedCrossRefGoogle Scholar
  169. Loomis, W.E. (1932) Growth-differentiation balance vs. carbohydrate-nitrogen ratio. Proc. Am. Soc. Hortic. Sci. 29:240–245.Google Scholar
  170. Lord, J.M. & Roberts, L.M. (1996) The intracellular transport of ricin: Why mammalian cells are killed and how Ricinus cells survive. Plant Physiol. Biochem. 34:253–261.Google Scholar
  171. Lorio, P.L., Jr. (1986) Growth-differentiation balance: A basis for understanding southern pine beetle-tree interactions. For. Ecol. Manage. 14:259–273.CrossRefGoogle Scholar
  172. Mattiacci, L., Dicke, M., & Posthumus, M.A. (1995) (βgalactosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA 92:2036–2040.PubMedCrossRefGoogle Scholar
  173. McKey, D., Waterman, P.G., Mbi, C.N., Gartlan, J.S., & Struhsaker, T.T. (1978) Phenolic content of vegetation in two African rain forests: Ecological implications. Science 202:61–63.Google Scholar
  174. McMahon, J.M., White, W.L.B., & Sayre, R.T. (1995) Cyanogenesis in cassava (Mannihot esculenta Crantz. J. Exp. Bot. 46:731–741.CrossRefGoogle Scholar
  175. Northup, R.R., Yu, Z., Dahlgren, R.A., & Vogt, K.A. (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229.CrossRefGoogle Scholar
  176. Peumans, W.J. & Van Damme, E.J.M. (1995) Lectins as plant defense proteins. Plant Physiol. 109:347–352.PubMedCrossRefGoogle Scholar
  177. Plollard, A.J. & Briggs, D. (1984) Genecological studies of Urtica dioica L. III Stinging hairs and plant-herbivore interactions. New Phytol. 97:507–522CrossRefGoogle Scholar
  178. Poorter, H. & Bergkotte, M. (1992) Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15:221–229.CrossRefGoogle Scholar
  179. Poulton, J.E. (1990) Cyanogenesis in plants. Plant Physiol. 94:401–405.PubMedCrossRefGoogle Scholar
  180. Pueyo, J.J. & Delgado-Salinas, A. (1997) Presence of aamylase inhibitor in some members of the subtribe Phaselinae (Phaseoleae: Fabaceae). Am. J. Bot. 84:79–84.Google Scholar
  181. Putnam, A. & Tang, C.-S. (eds) The science of allelopathy. John Wiley & Sons, New York.Google Scholar
  182. Raikhel, N.V., Lee, H.-I., & Broekaert, W.G. (1993) Structure and function of chitin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:591–615.CrossRefGoogle Scholar
  183. Rasmussen, J.A., Hejl, A.M., Einhellig, F.A., & Thomas, J.A. (1992) Sorgoleone from root exudate inhibits mitochondrial functions. J. Chem. Ecol. 18:197–207.CrossRefGoogle Scholar
  184. Rhoades, D.F. (1985a) Offensive-defensive interactions between herbivores and plants: Their relevance in herbivore population dynamics and ecological theory. Am. Nat. 125:205–238.CrossRefGoogle Scholar
  185. Rhoades, D.F. (1985b) Pheromonal communication between plants. In: Chemically mediated interactions between plants and other organisms, G.A. CooperDriver, T. Swain, & E.E. Conn (eds). Plenum Publishing Corporation, New York, pp. 195–218.Google Scholar
  186. Rice, E.L. (1974) Allelopathy. Academic Press, New York.Google Scholar
  187. Roberts, T.H., Rasmusson, A.G., & Moller, I.M. (1996) Platanetin and 7-iodo-acridone-4-carboxylic acid are not specific inhibitors of respiratory NAD(P)H dehydrogenases in potato tuber mitochondria. Physiol. Plant. 96:263–267.CrossRefGoogle Scholar
  188. Röse, U.S.R., Manukian, A., Heath, R.R., & Tumlinson, J.H. (1996) Volatile semiochemicals released from undamaged cotton leaves. A systemic response of living plants to caterpillar damage. Plant Physiol. 111:487–495.PubMedGoogle Scholar
  189. Schroeder, H.E., Gollasch, S., Moore, A., Tabe, L.M., Craig, S., Hardie, D.C., Chrispeels, M.J., Spences, D., & Higgins, T.J.V. (1995) Bean a-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol. 107:1233–1239.PubMedGoogle Scholar
  190. Schuler, M.A. (1996) The role of cytochrome P450 monooxygenase in plant-insect interactions. Plant Physiol. 112:1411–1419.PubMedCrossRefGoogle Scholar
  191. Selmar, D., Liebererei, R., & Biehl, B. (1988) Mobilization and utilization of cyanogenic glycosides. Plant Physiol. 86:711–716.PubMedCrossRefGoogle Scholar
  192. Selmar, D., Grocholewski, S., & Seigler, D.S. (1990) Cyanogenic lipids. Utilization during seedling development of Ungnadia speciosa. Plant Physiol. 93:631–636.PubMedCrossRefGoogle Scholar
  193. Stock, W.D., Le Roux, D., & Van der Heyden, F. (1993) Regrowth and tannin production in woody and succulent karoo shrubs in response to simulated browsing. Oecologia 96:562–568.CrossRefGoogle Scholar
  194. Tahvanainen, J., Julkumen-Tiitto, R., & Kettunen, J. (1985) Phenolic glycosides govern the food selection pattern of willow feeding beetles. Oecologia 67:52–56.CrossRefGoogle Scholar
  195. Takabayashi, J. & Dicke, M. (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1:109–113.CrossRefGoogle Scholar
  196. Tuomi, J., Niemela, P., Haukioja, E., & Neuvonen, S. (1984) Nutrient stress: an explanation for plant anti-herbivore responses to defoliation. Oecologia 61:208–210.CrossRefGoogle Scholar
  197. Van Hoven, W. (1991) Mortalities in kudu (Tragelaphus strepciceros) populations related to chemical defence in trees. J. Afr. Zool. 105:141–145.Google Scholar
  198. Vrieling, K. (1991) Costs and benefits of alkaloids of Senecio jacobaea L. PhD Thesis, University of Leiden.Google Scholar
  199. Waring, R.H. & Pitman, G.B. (1985) Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 66:889–897.CrossRefGoogle Scholar
  200. Waring, R.H., McDonald, A.J.S., Larsson, S., Ericsson, T., Wiren, A., Arwidsson, E., Ericsson, A., & Lohammar, T. (1985) Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia 66:157–160.CrossRefGoogle Scholar
  201. Yip, W.-K. & Yang, S.F. (1988) Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiol. 88:473–476.PubMedCrossRefGoogle Scholar
  202. Bell, A.A. (1981) Biochemical mechanisms of disease resistance. Annu. Rev. Plant Physiol. 32:21–81.CrossRefGoogle Scholar
  203. Benhamou, N., Kloepper, J.W., Quadt-Hallman, A., & Tuzun, S. (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bateria. Plant Physiol. 112: 919–929.PubMedGoogle Scholar
  204. Boller, T. (1995) Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:189–214.CrossRefGoogle Scholar
  205. Broglie, K., Holliday, M., Cressman, R., Riddle, P., Knowtown, S., Mauvais, C.J., & Broglie, R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1195–1197.Google Scholar
  206. Bruin, J., Sabelis, M.W., & Dicke, M. (1995) Do plants tap SOS signals from their infested neighbours. Trends Ecol. Evol. 10:167–170.PubMedCrossRefGoogle Scholar
  207. Cammue, B.P.A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I.J., Proots, P., Van Damme, J., Osborn, R.P., Guerbette, F., Kader, J.-K., & Broekaert, W.F. (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 109:445–455.PubMedCrossRefGoogle Scholar
  208. Chamberlain, D.W. & Paxton, J.D. (1968) Protection of soybean plants by phytoalexins. Phytopathology 58:1349–1350.Google Scholar
  209. Delaney, T.P. (1997) Genetic dissection of acquired resistance to disease. Plant Physiol. 113:5–12.PubMedCrossRefGoogle Scholar
  210. He, S.Y. (1996) Elicitation of plant hypersensitive response by bacteria. Plant Physiol. 112:865–869.PubMedGoogle Scholar
  211. Hoffland, E., Niemann, G.J., Van Pelt, J.A., Pureveen, J.B.M., Eijkel, G.B., Boon, J.J., & Lambers, H. (1996a) Relative growth rate correlates negatively with pathogen resistance in radish. The role of plant chemistry. Plant Cell Environ. 19:1281–1290CrossRefGoogle Scholar
  212. Hoffland, E., Hakulinen, I., & Van Pelt, J.A. (1996b) Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86:757–762.CrossRefGoogle Scholar
  213. Jones, A.M. & Dangl, J.L. (1996) Logjam at the Styx: Programmed cell death in plants. Trend Plant Sci. 1:114–119.CrossRefGoogle Scholar
  214. Kader, J.-C. (1996) Lipid-transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:627–654.PubMedCrossRefGoogle Scholar
  215. Kader, J.-C. (1997) Lipid-transfer proteins: A puzzling family of plant proteins. Trends Plant Sci. 2:66–70.CrossRefGoogle Scholar
  216. Linthorst, H. (1991) Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci. 10:123–150.CrossRefGoogle Scholar
  217. Mehdy, M.C., Sharma, Y.K., Sathasivan, K., & Bays, N.W. (1996) The role of activated oxygen species in plant disease resistance. Physiol. Plant. 98:365–374.CrossRefGoogle Scholar
  218. Osbourn, A. (1996) Saponins and plant defence—a soap story. Trend Plant Sci. 1:4–9.CrossRefGoogle Scholar
  219. Pieterse, C.M.J., Van Wees, S.C.M., Hoffland, E., Van Pelt, J.A., & Van Loon, L.C. (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pahogenesis-related gene expression. Plant Cell 8:1225–1237.PubMedGoogle Scholar
  220. Raikhel, N.V., Lee, H.-I., & Broekaert, W.F. (1993) Structure and function of chitin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:591–615.CrossRefGoogle Scholar
  221. Ryals, J., Uknes, S., & Ward, E. (1994) Systemic acquired resistance. Plant Physiol. 104:1109–1112.PubMedGoogle Scholar
  222. Shulaev, V., Silverman, P., & Raskin, I. (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721.CrossRefGoogle Scholar
  223. Simons, B.H. & Lambers, H. (1998) The alternative oxidase: is it a respiratory pathway allowing a plant to cope with stress? In: Plant responses to environmental stresses: From phytohormones to genome reorganization, H.R. Lerner (ed). Plenum Publishing Corporation, New York, in press.Google Scholar
  224. Stakman, E.C. (1915) Relation between Puccinia graminis f.sp. tritici and plants highly resistant to its attack. J. Agric. Res. 4:195–199.Google Scholar
  225. VanEtten, H.D., Sandrock, R.W., Wasmnan, C.C., Soby, S.D., McCluskey, K., & Wang, P. (1994) Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Can. J. Bot. 73 (Suppl. 1):S518-S525.Google Scholar
  226. Van Loon, L.C. (1985) Pathogenesis-related proteins. Plant Mol. Biol. 4:111–116CrossRefGoogle Scholar
  227. Van Loon, L.C., Pierpoint, W.S., Boller, T., & Conejero, V. (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep. 12:245–264.CrossRefGoogle Scholar
  228. Van Peer, R., Niemann, G.J., & Schippers, B. (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734.CrossRefGoogle Scholar
  229. Vierheilig, H., Alt, M., Neuhaus, J.-M., Boller, T., & Wiemken, A. (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol. Plant-Microbe Int. 6:261–264.CrossRefGoogle Scholar
  230. Wei, G., Kloepper, J.W., & Tuzun, S. (1991) Induction of systemic resistance of cucumber to Colletrotrichium orbiculate by selected strains of plant growth-promiting rhizobacteria. Phytopathology 81:1508–1512.CrossRefGoogle Scholar
  231. Atsatt, P.R. (1983) Host-parasite interactions in higher plants. In: Encyclopedia of plant physiology, N.S. Vol. 12C, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 519–535.Google Scholar
  232. Babiker, A.G.T., Ejeta, G., Butler, L.G., & Woodson, W.R. (1993) Ethylene biosynthesis and strigol-induced germination of Striga asiatica. Physiol. Plant. 88:359–365.CrossRefGoogle Scholar
  233. Cechin, I. & Press, M.C. (1993) Nitrogen relations of the sorghum-Striga hermonthica host-parasite association: Growth and photosynthesis. Plant Cell Environ. 16:237– 247.CrossRefGoogle Scholar
  234. Davidson, N.J. & Pate, J.S. (1992) Water relations of the mistletoe Amyema fitzgeraldii and its host Acacia acuminata. J. Exp. Bot. 43:1459–1555.CrossRefGoogle Scholar
  235. Dawson, J.H., Musselman, L.J., Wolswinkel, P., & Dörr, I. (1994) Biology and control of Cuscuta. In: Reviews of weed science, Vol. 6, S.O. Duke (ed). Imperial Printing Company, Champaign, pp. 265–317.Google Scholar
  236. Ehleringer, J.R., Schulze, E.D., Ziegler, H., Lange, O.L., Farquhar, G.D., & Cowan, I.R. (1985) Xylem-tapping mistletoes: Water or nutrient parasites? Science 227:1479–1481.PubMedCrossRefGoogle Scholar
  237. Ehleringer, J.R., Ullmann, I., Lange, O.L., Farquhar, G.D., Cowan, G.D., & Schulze, E.-D. (1986) Mistletoes: A hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70:234–237.CrossRefGoogle Scholar
  238. Einhellig, F.A. & Souza, I.F. (1992) Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18:1–11.CrossRefGoogle Scholar
  239. Fate, G., Chang, M., & Lynn, D.G. (1990) Control of germination in Striga asiatica: Chemistry of spatial definition. Plant Physiol. 93:201–207.PubMedCrossRefGoogle Scholar
  240. Govier, R.N., Brown, J.G.S., & Pate, J.S. (1968) Hemiparasitic nutrition in angiosperms. II. Root haustoria and leaf glands of Odontites verna (Bell.) Dum. and their relevance to the abstraction of solutes from the host. New Phytol. 67:863–972.CrossRefGoogle Scholar
  241. Graves, J.D., Press, M.C., Smith, S., & Stewart, G.R. (1992) The carbon canopy economy of the association between cowpea and the parasitic angiosperm Striga gesneroides. Plant Cell Environ. 15:283–288.CrossRefGoogle Scholar
  242. Harborne, J.B. (1982) Introduction to ecological biochemistry. Academic Press, London.Google Scholar
  243. Jeschke, W.D. & Hilpert, A. (1997) Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: nitrogen and carbon relations of the parasitic association Cuscuta reflexa-Ricinus communis. Plant Cell Environ. 20:47–56.CrossRefGoogle Scholar
  244. Jeschke, W.D., Bäumel, P., Räth, N., Czygan, F.-C., & Proksch, P. (1994) Modelling of the flows and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb. and its host Lupinus albus. L. II. Flows between host and parasite and within parasitized host. J. Exp. Bot. 45:801–812.CrossRefGoogle Scholar
  245. Jeschke, W.D., Bäumel, P., & Räth, N. (1995) Partitioning of nutrients in the system Cuscuta reflexa-Lupinus albus. Aspects Appl. Biol. 42:71–79.Google Scholar
  246. Klaren, C.H. (1975) Physiological aspects of the hemiparasite Rhinanthus serotinus. PhD Thesis, University of Groningen, the Netherlands.Google Scholar
  247. Klaren, C.H. & Janssen, G. (1978) Physiological changes in the hemiparasite Rhinanthus serotinus before and after attachment. Physiol. Plant. 42:151–155.CrossRefGoogle Scholar
  248. Klaren, C.H. & Van de Dijk, S.J. (1976) Water relations of the hemiparasite Rhinanthus serotinus before and after attachment. Physiol. Plant. 38:121–125.CrossRefGoogle Scholar
  249. Kuijt, J. (1969) The biology of parasitic flowering plants. University of California Press, BerkeleyGoogle Scholar
  250. Kuo, J., Pate, J.S., & Davidson, N.J. (1989) Ultrastructure of the haustorial interface and apoplastic continuum between host and the root hemiparasite Olax phyllanthi (Labill.) R. Br. (Olacaceae). Protoplasma 150:27–39.CrossRefGoogle Scholar
  251. Logan, D.C. & Stewart, G.R. (1991) Role of ethylene in the germination of the hemiparasite Striga hermontica. Plant Physiol. 97:1435–1438.PubMedCrossRefGoogle Scholar
  252. Lynn, D.G. & Chang, M. (1990) Phenolic signals in cohabitation: Implications for plant development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:497–526.CrossRefGoogle Scholar
  253. Marshall, J.D. & Ehleringer, J.R. (1990) Are xylem-tapping mistletoes partially heterotrophic? Oecologia 84:244– 248.Google Scholar
  254. Pate, J.S. (1995) In: Global change and mediterranean-type ecosystems. Ecological Studies 117, J.M. Moreno, & W.C. Oechel (eds). Springer-Verlag, Berlin, pp. 16–180.Google Scholar
  255. Pate, J.S., True, K.C., & Rasins, E. (1991) Xylem transport and storage of amino acids by S.W. Australian mistletoe and their hosts. J. Exp. Bot. 42:441–451.CrossRefGoogle Scholar
  256. Pate, J.S., Woodall, G., Jeschke, W.D., & Stewart, G.R. (1994) Root xylem transport of amino acids in the root hemiparasite shrub Olax phyllanthi (Labill) R.Br. (Olacaceae) and its multiple hosts. Plant Cell Environ. 17:1263–1273.CrossRefGoogle Scholar
  257. Popp, M., Mensen, R., Richter, A., Buschmann, H., & Von Willert, D.J. (1995) Solutes and succulence in southern African mistletoes. Trees 9:303–310.CrossRefGoogle Scholar
  258. Press, M.C. & Graves, J.D. (eds) (1995) Parasitic plants. Chapman, & Hall, London.Google Scholar
  259. Press, M.C., Tuohy, J.M., & Stewart, G.R. (1987) Gas exchange characteristics of the Sorghum-Striga hostparasite association. Plant Physiol. 84:814–819.PubMedCrossRefGoogle Scholar
  260. Richter, A. & Popp, M. (1992) The physiological importance of accumulation of cyclitols in Viscum album L. New Phytol. 121:431–438.CrossRefGoogle Scholar
  261. Richter, A., Popp, M., Mensen, R., Stewart, G.R., & Von Willert, D.J. (1995) Heterotrophic carbon gain of the parasitic angiosperm Papinanthus oleifolius. Aust. J. Plant Physiol. 22:537–544.CrossRefGoogle Scholar
  262. Schulze, E.-D. & Ehleringer, J.R. (1984) The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta 162:268–275.CrossRefGoogle Scholar
  263. Schulze, E.-D., Lange, O.L., Ziegler, H., & Gebauer, G. (1991) Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88:457–462.CrossRefGoogle Scholar
  264. Shah, N., Smirnoff, N., & Stewart, G.R. (1987) Photosynthesis and stomatal characteristics of Striga hermonthica in relation to its parasitic habit. Physiol. Plant. 69:699–703.CrossRefGoogle Scholar
  265. Smith, C.E., Dudley, M.W., & Lynn, D.G. (1990) Vegetative/parasitic transition: Control and plasticity in Striga development. Plant Physiol. 93:208–215.PubMedCrossRefGoogle Scholar
  266. Stewart, G.R. & Press, M.C. (1990) The physiology and biochemistry of parasitic angiosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:127–151.CrossRefGoogle Scholar
  267. Taylor, A., Martin, J., & Seel, W.E. (1996) Physiology of the parasitic association between maize and witchweed (Striga hermonthica): Is ABA involved? J. Exp. Bot. 47:1057–1065.CrossRefGoogle Scholar
  268. Tennakoon, K.U. & Pate, J.S. (1996a) Effects of parasitism by a mistletoe on the structure and functioning of branches of its host. Plant Cell Environ. 19:517–528.CrossRefGoogle Scholar
  269. Tennakoon, K.U. & Pate, J.S. (1996b) Heterotrophic gain of carbon from hosts by the xylem-tapping root hemiparasite Olax phyllanthi (Olacaceae). Oecologia 105:369–376.CrossRefGoogle Scholar
  270. Tuquet, C., Farineau, N., & Sallé, G. (1990) Biochemical composition and photosynthetic activity of chloroplasts from Striga hermonthica and Striga aspera, root parasites of field-grown cereals. Physiol. Plant. 78:574–582.CrossRefGoogle Scholar
  271. Wolswinkel, P. (1978) Phloem unloading in stem parts by Cuscuta: the release of 14 C and K+ to the free space at 0°C and 25°C. Physiol. Plant. 42:167–172.CrossRefGoogle Scholar
  272. Wolswinkel, P., Ammerlaan, A., & Peters, H.F.C. (1984) Phloem unloading of amino acids at the site of Cuscuta europaea. Plant Physiol. 75:13–20.PubMedCrossRefGoogle Scholar
  273. Ziegler, H. (1975) Nature of transported substances. In: Encyclopedia of plant physiology, N.S. Vol. 1, M.H. Zimmermann & J.A. Milburn (eds). Springer-Verlag, Berlin, pp. 59–100.Google Scholar
  274. Aerts, R. & Van der Peijl, M.J. (1993) A simple model to explain the dominance of low-productive perennials in nutrient poor habitats. Oikos 66:144–147.CrossRefGoogle Scholar
  275. Aerts, R., Boot, R.G.A., & Van der Aart, P.J.M. (1991) The relation between above- and below-ground biomass allocation patterns and competitive ability. Oecologia 87:551–559.CrossRefGoogle Scholar
  276. Aguiar, M.R., Soriano, A., & Sala, O.E. (1992) Competition and facilitation in the recruitment of seedlings in Patagonian stetppe. Funct. Ecol. 6:66–70.CrossRefGoogle Scholar
  277. Arp, W.J., Drake, B.G., Pockman, W.T., Curtis, P.S., & Whigham, D.F. (1993) Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Vegetatio 104/105:133–143.CrossRefGoogle Scholar
  278. Ball, M.C., Egerton, J.J.G., Leuning, R., Cunningham, R.B., & Dunne, P. (1997) Microclimate above grass adversely affects growth of seedling snow gum (Eucalyptus pauciflora). Plant Cell Environ. 20:155–166.CrossRefGoogle Scholar
  279. Ballaré, C.L. (1994) Light gaps: Sensing the light opportunities in highly dynamic canopy environments. In: Exploitation of environmental heterogeneity by plants, M.M. Caldwell & R.W. Pearcy (eds). Academic Press, San Diego, pp. 73–110.CrossRefGoogle Scholar
  280. Ballaré, C.L., Scopel, A.L., Jordan, E.T., & Vierstra, R.D. (1994) Signaling among neighboring plants and the development of size inequalities in plant populations. Proc. Natl. Acad. Sci. USA 91:10094–10098.PubMedCrossRefGoogle Scholar
  281. Ballaré, C.L., Scopel, A.L., & Sanchez, R.A. (1995) Plant photomorphogenesis in canopies, crop growth, and yield. HortScience 30:1172–1182.Google Scholar
  282. Baruch, Z., Ludlow, M.M., & Davis, R. (1985) Photosynthetic responses of native and introduced C4 grasses from Venezuelan savannas. Oecologia 67:388–393.CrossRefGoogle Scholar
  283. Bazzaz, F.A. (1979) The physiological ecology of plant succession. Annu. Rev. Ecol. Syst. 10:351–371.CrossRefGoogle Scholar
  284. Bazzaz, F.A. (1990) The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst. 21:167–196.CrossRefGoogle Scholar
  285. Bazzaz, F.A. (1996) Plants in changing environments. Cambridge University Press, Cambridge.Google Scholar
  286. Berendse, F. & Aerts, R. (1987) Nitrogen-use efficiency: A biologically meaningful definition? Funct. Ecol. 1:293–296.Google Scholar
  287. Berendse, F. & Elberse, W.T. (1989) Competition and nutrient losses from the plant. Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds). SPB Academic Publishing, The Hague, pp. 269–284.Google Scholar
  288. Biere, A. (1996) Intra-specific variation in relative growth rate: Impact on competitive ability and performance of Lychnis flos-cuculi in habitats differing in soil fertility. Plant Soil 182:313–327.Google Scholar
  289. Boerner, R.E.J. & Harris, K.K. (1991) Effects of collembola (Arthropoda) and relative germination date on competition between mycorrhizal Panicum virgatum (Poaceae) and non-mycorrhizal Brassica nigra (Brassicaceae). Plant Soil 136:121–129.CrossRefGoogle Scholar
  290. Boller, T. (1995) Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:189–214.CrossRefGoogle Scholar
  291. Boot, R.G.A. (1989) The significance of size and morphology of root systems for nutrient acquisition and competition. Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds), pp. 299–311. SPB Academic Publishing, The Hague.Google Scholar
  292. Bryant, J.P & Chapin III F.S. (1986) Browsing-woody plant interactions during boreal forest plant succession. In: Forest ecosystems in the alaskan taiga. A synthesis of structure and function, K. Van Cleve, F.S. Chapin, III, P.W. Flanagan, L.A. Viereck, & C.T. Dyrness (eds). Springer-Verlag, New York, pp. 213–225.CrossRefGoogle Scholar
  293. Bryant, J.P. & Kuropat, P.J. (1980) Selection of winter forage by subarctic browsing vertebrates: The role of plant chemistry. Annu. Rev. Ecol. Syst. 11:261–285.CrossRefGoogle Scholar
  294. Caldwell, M.M., Eissenstat, D.M., Richards, J.H., & Allen, M.F. (1985) Competition for phosphorus: Differential uptake from dual-isotope-labeled soil interspaces between shrub and grass. Science 229.384–386PubMedCrossRefGoogle Scholar
  295. Caldwell, M.M., Richards, J.H., Manwaring, J.H., & Eissenstat, D.M. (1987) Rapid shifts in phosphate acquisition show direct competition between neigbouring plants. Nature 327:6123–6124.CrossRefGoogle Scholar
  296. Callaway, R.M. (1995) Positive interactions among plants. Bot. Rev. 61:306–349.CrossRefGoogle Scholar
  297. Carter, D.R. & Peterson, K.M. (1983) Effects of a CO2- enriched atmosphere on the growth and competition interaction of a C3 and a C4 grass. Oecologia 58:188–193.CrossRefGoogle Scholar
  298. Carter, G.A., Teramura, A.H., & Forseth, I.N. (1989) Photosynthesis in an open field for exotic versus native vines of the south-eastern United States. Can. J. Bot. 67:443–446.CrossRefGoogle Scholar
  299. Chapin III F.S. (1980) The mineral nutrition of wild plants. Annu. Rev. Ecol. Svst. 11:233–260.CrossRefGoogle Scholar
  300. Chapin III F.S.. (1993) Physiological controls over plant establishment in primary succession. In: Primary succession, J. Miles & D.W.H. Walton (eds). Blackwells, Oxford, pp. 161–178.Google Scholar
  301. Chapin III F.S., Walker, L.R., Fastie, C.L., & Sharman, L.C. (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 64:149–175.CrossRefGoogle Scholar
  302. Coleman, J.S. & Bazzaz, F.A. (1992) Effects of CO2 and temperature on growth and resource use of cooccurring C3 and C4 annuals. Ecology 73:1244–1259.CrossRefGoogle Scholar
  303. D’Antonio, C.M. & Mahall, B.E. (1991) Root profiles and competition between the invasive, exotic perennial, Carpobrotus edulis and two native shrub species in California coastal shrub. Am. J. Bot. 78:885–894.CrossRefGoogle Scholar
  304. Dawson, T.E. (1993) Water sources of plants as determined from xylem-water isotopic composition: Perspectives on plant competition, distribution, and water relations. In: Stable isotopes and plant carbon-water relations, J.R. Ehleringer, A.E. Hall, & G.D. Farquhar (eds). Academic Press, San Diego, pp. 465–496.CrossRefGoogle Scholar
  305. Den Dubbelden, K.C. & Oosterbeek, B. (1995) The availability of external support affects allocation patterns and morphology of herbaceous climbing plants. Funct. Ecol. 9:628–634.CrossRefGoogle Scholar
  306. Deregibus, V.A., Sanchez, R.A., & Casal, J.J. (1983) Effects of light quality on tiller production in Lolium spp. Plant Physiol. 72:900–902.PubMedCrossRefGoogle Scholar
  307. Egler, F.E. (1954) Vegetation science concepts. I. Initial floristic composition, a factor in old-field vegetation development. Vegetatio 4:414–417.CrossRefGoogle Scholar
  308. Eissenstat, D.M. (1992) Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 15:763–782.CrossRefGoogle Scholar
  309. Eissenstat, D.M. & Caldwell, M.M. (1987) Characteristics of successful competitors: An evaluation of potential growth rate in two cold desert tussock grasses. Oecologia 71:167–173.CrossRefGoogle Scholar
  310. Eissenstat, D.M. & Caldwell, M.M. (1988) Competitive ability is linked to rates of water extraction. A field study of two aridland tussock grasses. Oecologia 75:1–7.CrossRefGoogle Scholar
  311. Emery, R.J.N., Chinnappa, C.C., & Chmielewski, J.G. (1994) Specialization, plant strategies, and phenotypic plasticity in populations of Stellaria longipes alongan el eva tinnal gradient. Int. T. Plant Sci 155:203–219.CrossRefGoogle Scholar
  312. Eviner, V.T. & Chapin III F.S. (1997) Plant-microbial interactions. Nature 385:26–27.CrossRefGoogle Scholar
  313. Fitter, A.H. (1976) Effects of nutrient supply and competition from other species on root growth of Lolium perenne in soil. Plant Soil 45:177–189.CrossRefGoogle Scholar
  314. Francis, R. & Read, D.J. (1994) The contribution of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159:11–25.Google Scholar
  315. Gilbert, I.R., Seavers, G.P., Jarvis, P.G., & Smith, H. (1995) Photomorphogenesis and canopy dynamics. Phytochrome-mediated proximity perception accounts for the growth dynamics of canopies of Populus trichocarpa x deltoides “Beaupré”. Plant Cell Environ. 18:475–497.CrossRefGoogle Scholar
  316. Goldberg, D.E. (1990) Components of resource competition in plant communities. In: Perspectives on plant competition, J.B. Grace & D. Tilman (eds). Academic Press, San Diego, pp. 27–49.Google Scholar
  317. Goldberg, D.E. & Barton, A.M. (1992) Patterns and consequences of interspecific competition in natural communities: A review of field experiments with plants. Am. Nat. 139:771–801.CrossRefGoogle Scholar
  318. Gottlieb, L.D. (1978) Allocation, growth rates and gas exchange in seedlings of Stephanomeria exigua ssp. coronaria and its recent derivative S. malheurensis. Am. J. Bot. 65:970–977.CrossRefGoogle Scholar
  319. Grace, J.B. (1990) On the relationship between plant traits and competitive ability. In: Perspectives on plant competition, J.B. Grace & D. Tilman (eds). Academic Press, San Diego, pp. 51–65.Google Scholar
  320. Grime, J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111:1169–1194.CrossRefGoogle Scholar
  321. Grime, J.P. & Hunt, R. (1975) Relative growth rate: Its range and adaptive significance in a local flora. J. Ecol. 63:393–422.CrossRefGoogle Scholar
  322. Grime, J.P., Mason, G., Curtis, A.V., Rodman, J., Band, S.R., Mowforth, M.A.G., Neal, A.M., & Shaw, S. (1981) A comparative study of germination characteristics in a local flora. J. Ecol. 69:1017–1059.CrossRefGoogle Scholar
  323. Grime, J.P., Crick, J.C., & Rincon, E. (1986) The ecological significance of plasticity. In: Plasticity in plants, D.H. Jennings (ed). Company of Biologists, Cambridge, pp. 5–29.Google Scholar
  324. Grime, J.P., Mackey, J.M.L., Hillier, S.H., & Read, D.J. (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422.CrossRefGoogle Scholar
  325. Grime, J.P., Campbell, B.D., Mackey, J.M.L., & Crick, J.C. (1991) Root plasticity, nitrogen capture and competitive ability. In: Plant root growth. An ecological perspective. Special Publication of the British Ecological Society. D. Atkinson (ed). Blackwell Scientific Publications, London. pp. 381–397.Google Scholar
  326. Gurevitch, J., Morrow, L.L., Wallace, A., & Walsh, J.S. (1992) A meta-analysis of competition in field experiments. Am. Nat. 140:539–572.CrossRefGoogle Scholar
  327. Hartnett, D.C., Hetrick, B.A.D., Wilson, G.W.T., & Gibson, D.J. (1993) Mycorrhizal influence on intra- and interspecific neighbor interactions among co-occurring prairie grasses. J. Ecol. 81:787–795.CrossRefGoogle Scholar
  328. Henderson, S., Hattersley, P., Von Caemmerer, S., & Osmond C.B. (1995) Are C4 pathway plants threatened by global climatic change? In: Ecophysiology of photosynthesis, E.-D. Schulze & M.M. Caldwell (eds), Springer-Verlag, Berlin, pp. 529–549.CrossRefGoogle Scholar
  329. Hetrick, B.A.D., Wilson, G.W., & Hartnett, D.C. (1989) Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie species. Can J. Bot. 67:2608–2615.CrossRefGoogle Scholar
  330. Houghton, J.T., Jenkins, G.J., & Ephraums, J.J. (1990) Climate Change, The IPCC Scientific Assessment. Cambridge University Press, Cambridge.Google Scholar
  331. Huber-Sannwald, E., Pyke, D.A., & Caldwell, M.M. (1996) Morphological plasticity following species-specific competition in two perennial grasses. Am. J. Bot. 83:919–931.CrossRefGoogle Scholar
  332. Johnson, H.B., Polley, H.W., & Mayeux, H.S. (1993) Increasing CO2 and plant-plant interactions: Effects on natural vegetation. Vegetatio 104/105:157–170.CrossRefGoogle Scholar
  333. Kasperbauer, M.J. (1987) Far-red reflection from green leaves and effects on phytochrome-mediated assimilate partitioning under field conditions. Plant Physiol. 85:350–354.PubMedCrossRefGoogle Scholar
  334. Koide, R.T. & Li, M. (1991) Mycorrhizal fungi and the nutrient ecology of three oldfield annual plant species. Oecologia 85:403–412.CrossRefGoogle Scholar
  335. Krannitz, P.G. & Caldwell, M.M. (1995) Root growth responses of three Great Basin perennials to intra- and interspecific contact with other roots. Flora 190:161–167.Google Scholar
  336. Küppers, M. (1984) Carbon relations and competition between woody species in a central European hedgerow. I. Photosynthetic characteristics. Oecologia 64:332–343.CrossRefGoogle Scholar
  337. Lambers, H. & Poorter, H. (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23:187–261.CrossRefGoogle Scholar
  338. Mahall, B.E. & Callaway, R.M. (1991) Root communication among desert shrubs. Proc. Nat. Acad. Sci. (USA) 88:874–876.CrossRefGoogle Scholar
  339. Mahall, B.E. & Callaway, R.M. (1992) Root communication mechanisms and intracommunity distribution of two Mojave Desert shrubs. Ecology 73:2145–2151.CrossRefGoogle Scholar
  340. Mahmoud, A. & Grime, J.P. (1976) An analysis of competitive ability in three perennial grasses. New Phytol. 77:431–435.CrossRefGoogle Scholar
  341. McGraw, J.B. & Chapin III F.S. (1989) Competitive ability and adaptation to fertile and infertile soils in two Eriophorum species. Ecology 70:736–749.CrossRefGoogle Scholar
  342. Milne, A.A. (1928) The house at Pooh Corner. Dutton, New York.Google Scholar
  343. Mo, H. Kirkham, M.B., He, H., Ballou, L.K., Caldwell, F.W., & Kanemasu, E.T. (1992) Root and shoot weight in a tallgrass prairie under elevated carbon dioxide. Env. Exp. Bot. 32:193–201.CrossRefGoogle Scholar
  344. New, T.R. (1984) A Biology of acacias. Oxford University Press, Melbourne.Google Scholar
  345. Newman, E.I., Eason, W.R., Eissenstat, D.M., & Ramos, M.I.F.R. (1992) Interactions between plants: The role of mycorrhizae. Mycorrhiza 1:47–53.CrossRefGoogle Scholar
  346. Nobel, P.S. (1984) Extreme temperatures and thermal tolerances for seedlings of desert succulents. Oecologia 62:310–317.CrossRefGoogle Scholar
  347. Owens, M.K. (1996) The role of leaf and canopy-level gas exchange in the replacement of Quercus virginiana (Fagaceae) by Juniperus ashei (Cupressaceae) in semiarid savannas. Am. J. Bot. 83:617–623.CrossRefGoogle Scholar
  348. Owensby, C.E., Coyne, P.I., Ham, J.M., Auen, L.M., & Knapp, A.K. (1993) Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecol. Appl. 3:644–653.CrossRefGoogle Scholar
  349. Pammenter, N.W., Drennan, P.M., & Smith, V.R. (1986) Physiological and anatomical aspects of photosynthesis of two Agrostis species at a sub-antarctic island. New Phytol. 102:143–160.CrossRefGoogle Scholar
  350. Polley, H.W., Johnson, H.B., & Mayeuz, H.S. (1994) Increasing CO2: Comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology 75:976–988.CrossRefGoogle Scholar
  351. Poorter, H., Van de Vijver, C.A.D.M., Boot, R.G.A., & Lambers, H. (1995) Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. Plant Soil 171:217–227.CrossRefGoogle Scholar
  352. Putz, F.E. (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:1713–1724.CrossRefGoogle Scholar
  353. Raaimakers, D., Boot, R.G.A., Dijkstra, P., Pot, S., & Pons T.L. (1995) Photosynthetic rates in relation to leaf phosphorous content in pioneer versus climax tropical rainforest species. Oecologia 102:120–125.Google Scholar
  354. Read, D.J. (1991) Mycorrhizas in ecosystems. Experientia 47:376–391.CrossRefGoogle Scholar
  355. Reich, P. (1993) Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant life forms and climates: “The blind man and the elephant retold.” Funct. Ecol. 7:721–725.Google Scholar
  356. Reynolds, H.L. (1996) Effects of elevated CO2 on plants grown in competition. In: Carbon dioxide, populations, and communities, C. Körner & F.A. Bazzaz (eds). Academic Press, San Diego, pp. 273–286.CrossRefGoogle Scholar
  357. Reynolds, H.L. & D’Antonio, C. (1996) The ecological significance of plasticity in root weight ratio in response to nitrogen. Opinion. Plant Soil 185:75–97.CrossRefGoogle Scholar
  358. Richards, J.H. & Caldwell, M.M. (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489.CrossRefGoogle Scholar
  359. Ritchie, G.A. (1997) Evidence for red: far red signaling and photomorphogenic growth response in Douglas-fir Pseudostuga menziesii) seedlings. Tree Physiol. 17:161–168.PubMedCrossRefGoogle Scholar
  360. Rosenthal, J.P. & Kotanen, P.M. (1994) Terrestrial plant tolerance to herbivory. Trends Ecol. Evolu. 9: 145–148.CrossRefGoogle Scholar
  361. Ryser, P. (1996) The importance of tissue density for growth and life span of leaves and roots: A comparison of five ecologically contrasting grasses. Funct. Ecol. 10:717–723.CrossRefGoogle Scholar
  362. Ryser P. & Lambers H. (1995) Root and leaf attributes accounting for the performance of fast- and slowgrowing grasses at different nutrient supply. Plant Soil 170:251–265.CrossRefGoogle Scholar
  363. Schläpfer, B. & Ryser, P. (1996) Leaf and root turnover of three ecologically contrasting grass species in relation to their performance along a productivity gradient. Oikos 75:398–406.CrossRefGoogle Scholar
  364. Schlumbaum, A., Mauch, F., Vögeli, U., & Boller, T. (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367.CrossRefGoogle Scholar
  365. Stock, W.D., Wienand, K.T., & Baker A.C. (1995) Impacts of invading N2- fixing Acacia species on patterns of nutrient cycling in two Cape Ecosystems: Evidence from soil incubation studies and 15N natural abundance values. Oecologia 101:375–382.CrossRefGoogle Scholar
  366. Tilman, D. (1988) Plant Strategies and the Dynamics and Function of Plant Communities. Princeton University Press, Princeton.Google Scholar
  367. Tilman, D. (1990) Mechanisms of plant competition for nutrients: The elements of a predictive theory of competition. In: Perspective on plant competition, J.B. Grace & D. Tilman (eds). Academic Press, San Diego, pp. 117–141.Google Scholar
  368. Tilman, D. & Wedin, D. (1991) Dynamics of nitrogen competition between successional grasses. Ecology 72:1038–1049.CrossRefGoogle Scholar
  369. Turner, R.M., Alcorn, S.M., Olin, G., & Booth, J.A. (1966) The influence of shade, soil, and water on saguaro seedling establishment. Bot. Gaz. 127:95–102.CrossRefGoogle Scholar
  370. Van Bavel, C.H.M. & Baker, J.M. (1985) Water transfer by plant roots from wet to dry soil. Naturwissenschaften 72:606–607.CrossRefGoogle Scholar
  371. Vierheilig, H., Iseli, B., Alt, M., Raikhel, N., Wiemken, A., & Boller, T. (1996) Resistance of Urtica dioica to mycorrhizal colonization: A possible involvement of Urtica dioica agglutinin. Plant Soil 183:131–136.CrossRefGoogle Scholar
  372. Walker, L.R. & Chapin III F.S. (1986) Physiological controls over seedling growth in primary succession on an Alaskan floodplain. Ecology 67:1508–1523.CrossRefGoogle Scholar
  373. Wedin, D.A. & Tilman, D. (1990) Species effects on nitrogen cycling: A test with perennial grasses. Oecologia 84:433–441.Google Scholar
  374. Wong, S.-C. & Osmond, C.B. (1991) Elevated atmospheric partial pressure of CO2 and plant growth. III. Interactions between Triticum aestivum (C3) and Echinochloa frumentacea (C4) during growth in mixed culture under different CO2, N nutrition and irradiance treatments, with emphasis on below-ground responses estimated using 13C value of root biomass. Aust. J. Plant Physiol. 18:137–152.CrossRefGoogle Scholar
  375. Barber, J.T. (1978) Capsella bursa-pastoris seeds. Are they “carnivorous”? Carniv. Plant Newslett. 7:39–42.Google Scholar
  376. Darwin, C. (1875) Insectivorous plants. Murray, London.CrossRefGoogle Scholar
  377. Darwin, F. (1878) Experiments on the nutrition and growth of Drosera rotundifolia. J. Linn. Soc. Bot. 17:17–23.CrossRefGoogle Scholar
  378. Dixon, K.W., Pate, J.S., & Bailey, W.J. (1980) Nitrogen nutrition of the tuberous sundew Drosera erythrorhiza Lindl, with special reference to catch of arthropod fauna by glandular leaves. Aust. J. Bot. 28:283–297.CrossRefGoogle Scholar
  379. Chandler, G.E. & Andersson, J.W. (1976) Studies on the nutrition and growth of Drosera species with reference to the carnivorous habit. New Phytol. 76:129–141.CrossRefGoogle Scholar
  380. Fagerberg, W.R. & Howe, D.G. (1996) A quantitative study of tissue dynamics in Venus’ fly trap Dionaea muscipula (Droseraceae). II. Trap reopening. Am. J. Bot. 83:836–842.CrossRefGoogle Scholar
  381. Hodick, D. & Sievers, A. (1988) The action potential of Dionaea muscipula Ellis. Planta 174:8–18.CrossRefGoogle Scholar
  382. Hodick, D. & Sievers, A. (1989) On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179:32–42.CrossRefGoogle Scholar
  383. Karlsson, P.S., Nordell, K.O., Carlsson, B.A., & Svensson, B.M. (1991) The effect of soil nutrient status on prey utilization in four carnivorous plants. Oecologia 86:1–7.CrossRefGoogle Scholar
  384. Knight, S.E. (1992) The costs of carnivory in the common bladderwort, Utricularia macrorhiza. Oecologia 89:348–355.Google Scholar
  385. Lüttge, U. (1983) Ecophysiology of carnivorous plants. In: Encyclopedia of plant physiology, N.S. Vol. 12C, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 489–517.Google Scholar
  386. Mabberley, D.J. (1993) The plant-book. A portable dictionary of the higher plants. Cambridge University Press, New York.Google Scholar
  387. Schulze, E.-D., Gebauer, G., Schulze, W., & Pate, J.S. (1991) The utilization of nitrogen from insect capture by different growth forms of Drosera from southwest Australia. Oecologia 87:240–246.CrossRefGoogle Scholar
  388. Schulze, W. & Schulze, E.-D. (1990) Insect capture and growth of the insectivorous Drosera rotundifolia L. Oecologia 82:427–429.CrossRefGoogle Scholar
  389. Thum, M. (1988) The significance of carnivory for the fitness of Drosera in its natural habitat. 1. The reactions of Drosera intermedia and D. rotundifolia to supplementary insect feeding. Oecologia 75:472–480.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hans Lambers
    • 1
    • 2
  • F. Stuart ChapinIII
    • 3
  • Thijs L. Pons
    • 1
  1. 1.Department of Plant Ecology and Evolutionary BiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Plant Sciences, Faculty of AgricultureUniversity of Western AustraliaNedlandsAustralia
  3. 3.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA

Personalised recommendations