Skip to main content

Growth and Allocation

  • Chapter

Abstract

Growth of a plant is a consequence of the interaction of all the processes discussed in previous chapters: photosynthesis, long-distance transport, respiration, water relations, and mineral nutrition. By the same token, these physiological processes may be controlled themselves by the growth rate of the plants, as discussed in the preceding chapters; however, what exactly do we mean by plant growth? Growth is the increment in dry mass, volume, length, or area, and it mostly involves the division, expansion, and differentiation of cells. Increment in dry mass, however, may not occur at the same time as increment in one of the other parameters. For example, leaves often expand and roots elongate at night, when the entire plant is decreasing in dry mass because of carbon use in respiration. On the other hand, a tuber may gain dry mass without concomitant change in volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  • Ahn, J.H., Choi, Y., Kwon, Y.M., Kim, S.-G., Choi, Y.D., & Lee, J.S. (1996) A novel extensin gene encoding for a hydroxyprolin-rich glycoprotein requires sucrose for its wound-inducible expression in transgenic plants. Plant Cell 8:1477–1490.

    PubMed  CAS  Google Scholar 

  • Anten, N.P.R., Schieving, F., & Werger, M.J.A. (1995) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 monoand dicotyledonous species. Oecologia 101:504–513.

    Article  Google Scholar 

  • Aphalo, P.J. & Ballaré, C.L. (1995) On the importance of information-acquiring systems in plant-plant interactions. Funct. Ecol. 9:5–14.

    Article  Google Scholar 

  • Armstrong, W., Jackson, M.B., & Brändle, R. (1994) Mechanisms of flood tolerance in plants. Acta Bot. Neerl. 43:307–358.

    CAS  Google Scholar 

  • Atkin, O.K. (1996) Reassessing the nitrogen relations of arctic plants: A mini-review. Plant Cell Environ. 19:695–704.

    Article  Google Scholar 

  • Atkin, O.K., Botman, B., & Lambers, H. (1996) The causes of inherently slow growth in alpine plants: An analysis based on the underlying carbon economies of alpine and lowland Poa species. Funct. Ecol. 10:698–700.

    Article  Google Scholar 

  • Atwell, B.J. (1989) Physiological responses of lupin roots to soil compaction. In: Structural and functional aspects of transport in roots, B.C. Loughman, O. Gasparikova, & J. Kolek (eds). Kluwer Academic Publishers, Dordrecht, pp. 251–255.

    Chapter  Google Scholar 

  • Atwell, B.J., Drew, M.C., & Jackson, M.B. (1988) The influence of oxygen deficiency on ethylene synthesis, 1- amino-cyclopropane 1-carboxylic acid levels and aerenchyma formation in roots of Zea mays. Physiol. Plant. 72:15–22.

    Article  CAS  Google Scholar 

  • Avice, J.-C., Ourry, A., Volenec, J.J., Lemaire, G., & Boucoud, J. (1996) Defoliation-induced changes in abundance and immuno-localiztion of vegetative storage proteins in taproots of Medicago sativa. Plant Physiol. Biochem. 34:561–570.

    CAS  Google Scholar 

  • Bakken, A.K. (1992) Effect of daylength on the nitrogen status of timothy (Phleum pratense L.). Acta Agric. Scand. 42B:62–68.

    Google Scholar 

  • Ball, M.C. (1988) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning and salt balance. Aust. J. Plant Physiol. 15:447–464.

    Article  Google Scholar 

  • Ball, M.C. & Pidsley, S.M. (1995) Growth responses to salinity in relation to distribution of two mangrove species, Sonneratia alba and S. lanceolata, in northern Australia. Funct. Ecol. 9:77–85.

    Article  Google Scholar 

  • Ballaré, C.L., Scopel, A.L., Roush, M.L., & Radosevich, S.R. (1995) How plants find light in patchy canopies. A comparison between wild-type and phytochromeB-deficient mutant plants of cucumber. Funct. Ecol. 9:859–868.

    Article  Google Scholar 

  • Banga, M., Blom, C.W.P.M., & Voesenek, L.A.C.J. (1996) Sensitivity to ethylene: The key factor in ethylene production by primary roots of Zea mays L. in submergence-induced shoot elongation of Rumex. Plant Cell Environ. 19:1423–1430.

    Article  CAS  Google Scholar 

  • Bauer, H. & Thöni, W. (1988) Photosynthetic light acclimation in fully developed leaves of the juvenile and adult life phases of Hedera helix. Physiol. Plant. 73:31–37.

    Article  CAS  Google Scholar 

  • Beemster, G.T.S., Masle, J., Williamson, R.E., & Farquhar, G.D. (1996) Effects of soil resistance to root penetration on leaf expansion in wheat (Triticum aestivum L.): Kinematic analysis of leaf elongation. J. Exp. Bot. 47:1663–1678.

    Article  CAS  Google Scholar 

  • Belanger, G., Gastal, F., & Warembourg, F.R. (1994) Carbon balance of tall fescue (Festuca arundinacea Schreb.): Effects of nitrogen fertilization and the growing season. Ann. Bot. 74:653–659.

    Article  Google Scholar 

  • Bell, T.L., Pate, J.S., & Dixon, K.W. (1996) Relationship between fire response, morphology, root anatomy and starch distribution in south-west Australian Epacridaceae. Ann. Bot. 77:357–364.

    Article  Google Scholar 

  • Bennie, A.T.P. (1996) Growth and mechanical impedance. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, New York, pp. 453–470.

    Google Scholar 

  • Bengough, A.C. & Mullins, C.E. (1990a) The resistnce experienced by roots growing in a pressurized cell. Plant Soil 123:73–82.

    Google Scholar 

  • Bengough, A.C. & Mullins, C.E. (1990b) Mechanical impedance to root growth: A review of experimental techniques and root growth responses. J. Soil Sci. 41: 341–358.

    Article  Google Scholar 

  • Berger, S., Bell, E., Sadka, A., & Mullet, J.E. (1995) Arabidopsis thalina Atvsp is homologous to soybean vspA and vspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl

    Google Scholar 

  • Chapin III, F.S. (1988) Ecological aspects of plant putrition. Adv. Min. Nutr. 3:161–191.

    Google Scholar 

  • Chapin III, F.S., Follet J.M., & O’Connor, K.F. (1982) Growth, phosphate absorption, and phosphorus chemical fractions in two Chionochloa species. J. Ecol. 70:305–321.

    Article  CAS  Google Scholar 

  • Chapin III, F.S., Shaver, G.R., & Kedrowski, R.A. (1986) Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum in Alaskan tussock tundra. J. Ecol. 74:167–195.

    Article  CAS  Google Scholar 

  • Chapin III, F.S., Schulze, E.-D., & Mooney, H.A. (1990) The ecology and economiccs of storage in plants. Annu. Rev. Ecol. Syst. 21:423–447.

    Article  Google Scholar 

  • Chapin III, F.S., Walter, C.H.S., & Clarkson, D.T. (1988) Growth response of barley and tomato to nitrogen stress and its control by abscisisc acid, water relations and photosynthesis. Planta 173:352–366.

    Article  CAS  Google Scholar 

  • Chimenti, C.A. & Hall, A.J. (1994) Responses to water stress of apoplastic water fraction and bulk elastic modulus of elasticity in sunflower (Helianthus annuus L.) genotypes of contrasting capacity for osmotic adjustment. Plant Soil 166:101–107.

    Article  CAS  Google Scholar 

  • Clark, L.J., Whalley, W.R., Dexter, A.R., Barraclough, P.B., & Leight, R.A. (1996) Complete mechanical impedance increases the turgor of cells in the apex of pea roots. Plant Cell Environ. 19:1099–1102.

    Article  Google Scholar 

  • Clarkson, D.T. (1986) Regulation of the absorption and release of nitrate by plant cells: A review of current ideas and methodology. In: Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants, H. Lambers, J.J. Neeteson, & I. Stulen (eds). Martinus Nijhof /Dr W. Junk, The Hague, pp. 3–27.

    Chapter  Google Scholar 

  • Clarkson, D.T., Earnshaw, M.J., White, P.J., & Cooper, H.D. (1988) Temperature dependent factors influencing nutrient nutrient uptake: An analysis of responses at different levels of organization. In: Plants and temperature, S.P. Long & F.I. Woodward (eds). Company of Biologists, Cambridge, pp 281–309.

    Google Scholar 

  • Clarkson, D.T., Jones, L.H.P., & Purves, J.V. (1992) Absorption of nitrate and ammonium ions by Lolum perenne from flowing solution cultures at low root temperatures. Plant Cell Environ. 15:99–106.

    Article  CAS  Google Scholar 

  • Cleland, R.E. (1967) Extensibility of isolated cell walls: Measurrements and changes during cell elongation. Planta 74:197–209.

    Article  CAS  Google Scholar 

  • Coleman, G.D., Chen, T.H.H., & Fuchigami, L.H. (1992) Complementary DNA cloning of poplar bark storage protein and control of its expression by photoperiod. Plant Physiol. 98:687–693.

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen, J.H.C., Castro Diez, P., & Hunt, R. (1996) Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84:755–765.

    Article  Google Scholar 

  • Cosgrove, D. (1986) Biophysical control of plant cell growth. Annu. Rev. Plant Physiol. 37:377–405.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove, D.J. (1993) How do plant cell walls extend? Plant Physiol. 24:1–6.

    Google Scholar 

  • Creelman, R.A., Mason, H.S., Bensen, R.J., Boyer, J.S., & Mullet, J.E. (1990) Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in jasmonate, wounding, sugars, light and phosphate Plant Mol. Biol. 27:933–942.

    Google Scholar 

  • Berry, J.A. & Raison, J.K. (1981) Responses of macrophytes to temperatue. In: Encyclopedia of plant physiology, N.S., Vol. 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 277–338.

    Google Scholar 

  • Björkman, O. (1981) Responses to different quantum flux densities. In: Encyclopedia of plant physiology, N.S., Vol 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 57–107.

    Google Scholar 

  • Bloom, A.J., Chapin III, F.S., & Mooney, H.A. (1985) Resource limitation in plants-An economic analogy. Annu. Rev. Ecol. Syst. 16:363–392.

    Google Scholar 

  • Boese, S.R. & Huner, N.P. (1990) Effect of growth temperature and temperature shifts on spinach leag morphology and photosynthesis. Plant Physiol. 94: 1830–1835.

    Article  PubMed  CAS  Google Scholar 

  • Boone, F.R. (1986) Towards soil compaction limits for crop growth. Neth. J. Agric. Sci. 34:349–360.

    Google Scholar 

  • Bowen, G.D. (1991) Soil temperature, root growth, and plant function. In: Plant roots: The hidden half. Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, New York, pp. 309–330.

    Google Scholar 

  • Braam, J. & Davis, R.W. (1990) Rain- wind-, and touchinduced expression of calmodulin and calmodulinrelated genes in Arabidopsis. Cell 60:357–364.

    Article  PubMed  CAS  Google Scholar 

  • Braam, J., Sistrunk, M.L., Polisensky, D.H., Xu, W., Purugganan, M.M., Antosiewicz, D.M., Campbell, P., & Johnson, K.A. (1996) Life in a changing world: TCH gene regulation of expression and responses to environmental signals. Physiol. Plant. 98:909–917.

    Article  PubMed  CAS  Google Scholar 

  • Brailsford, R.W., Voesenek, L.A.C.J., Blom, C.W.P.M., Smith, A.R., Hall, M.A., & Jackson, M.M. (1993) Enhanced ethylene production by primary roots of Zea mays L. in response to sub-ambent partial pressures of oxygen. Plant Cell Environ. 16:1071–1080.

    Article  CAS  Google Scholar 

  • Brouwer, R. (1963) Some aspects of the equilibrium between overground and underground palant parts. Meded. Inst. Biol. Scheikd. Onderzoek Landbouwgewassen 213:31–39.

    Google Scholar 

  • Brouwer, R. (1983) Functional equilibrium: Sense or nonsense? Neth. T. Agric. Sci. 31:335–348.

    Google Scholar 

  • Carpit, N.C. & Gibeaut, D.M. (1993) Structural modelks of primry cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:1–30.

    Article  Google Scholar 

  • Ceulemans, R. (1989) Genetic variation in functional and structural productivity components in Populus. In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds). SPB Academic Publishing, The Hague, pp. 69–85.

    Google Scholar 

  • Chapin III, F.S. (1974) Morphological and physiological mechanisms of temperature compensation in phosphate absorption along a latitudinal gradient. Ecology 55:1180–1198.

    Article  CAS  Google Scholar 

  • Chapin III, F.S. (1980) The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11:233–260.

    Article  CAS  Google Scholar 

  • Fonseca, F., Den Hertog, J., & Stulen, I. (1996) The response of Plantago major ssp. pleiosperma to elevated CO2 is modulated by the formation of secondary shoots. New Phytol. 133:627–635.

    Article  Google Scholar 

  • Garnier, E. (1991) Resource capture, biomass allocation and growth in herbaceous plants. Trends Ecol. Evol. 6:126–131.

    Article  PubMed  CAS  Google Scholar 

  • Garnier, E. (1992) Growth analysis of congeneric annual and perennial grass species. J. Ecol. 80:665–675.

    Article  Google Scholar 

  • Garnier, E. & Laurent, G. (1994) Leaf anatomy, specific leaf mass and water content in congeneric annual and perennial grass species. New Phytol. 128:725–736.

    Article  Google Scholar 

  • Garnier, E. & Vancaeyzeele, S. (1994) Carbon and nitrogen content of congeneric annual and perennial grass species: Relationships with growth. Plant Cell Environ. 17:399–407.

    Article  Google Scholar 

  • Garnier, E., Gobin, O., & Poorter, H. (1995) Interspecific variation in nitrogen productivity depends on photosynthetic nitrogen use efficiency and nitrogen allocation within the plant. Ann. Bot. 76:667–672.

    Article  Google Scholar 

  • Gastal, F. & Belanger, G. (1993) The effects of nitrogen fertilization and the growing season on photosynthesis of field-grown tall fescue (Festuca arundinacea Schreb.) canopies. Ann. Bot. 72:401–408.

    Article  CAS  Google Scholar 

  • Gould, S.J. & Lewontin, R.C. (1979) The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationists programme. Proc. R. Soc. Lond. B. 205:581–598.

    Article  PubMed  CAS  Google Scholar 

  • Gowing, D.J.G., Davies, W.J., & Jones, H.G. (1990) A positive root-sourced signal as an indicator of soil drying in apple, Malus x domestica Borkh. J. Exp. Bot. 41:1535–1540.

    Article  Google Scholar 

  • Green, P.B. (1976) Growth and cell pattern formation on an axis: Critique of concepts, terminology, and mode of study. Bot. Gaz. 137:187–202.

    Article  Google Scholar 

  • Grime, J.P. (1979) Plant strategies and vegetation processes. John Wiley & Sons, Chichester.

    Google Scholar 

  • Grime, J.P. & Hunt, R. (1975) Relative growth-rate: Its range an adaptive significance in a local flora. J. Ecol. 63:393–422.

    Article  Google Scholar 

  • Groeneveld, H.W. & Bergkotte, M. (1996) Cell wall composition of leaves of an inherently fast- and a slow-growing grass species. Plant Cell Environ. 19:1389–1398.

    Article  CAS  Google Scholar 

  • Harpham, N. V. J., Berry, A.W., Knee, E.M., Roveda Hoyos, G., Raskin, I., Sanders, I.O., Smith, A.R., Wood, C.K., & Hall, M.A. (1991) The effect of ethylene on the growth and development of wild-type and mutant Arabidopsis thaliana (L.) Heynh. Ann. Bot 68:55–61.

    CAS  Google Scholar 

  • Hart, R. (1977) Why are biennials so few? Am. Nat. 111:792–799.

    Article  Google Scholar 

  • Hay, R.K.M. (1990) The influence of photoperiod on the dry-matter production of grasses and cereals. New Phytol. 116:233–254.

    Article  Google Scholar 

  • He, T. & Cramer, G.R. (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species. Plant Soil 179:25–33.

    Article  CAS  Google Scholar 

  • Heide, O.M., Bush, M.G., & Evans, L.T. (1985) Interaction of photoperiod and gibberellin on growth and photo- soybean seedlings. Analysis of growth, sugar accumulation, and gene expression. Plant Physiol. 92:205–214.

    Google Scholar 

  • Cyr, D.R. & Bewley, J.D. (1990) Proteins in the roots of perennial weeds chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Weber) are associated with overwintering. Planta 182:370–374.

    Article  CAS  Google Scholar 

  • Cyr, D.R., Bewley, J.D., & Dumbroff, E.B. (1990) Seasonal dynamics of carbohydrate and nitrogenous components in the roots of perennial weeds. Plant Cell Environ. 13:359–365.

    Article  CAS  Google Scholar 

  • Dale, J.E. (1988) The control of leaf expansion. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:267–295.

    Article  Google Scholar 

  • Darwin, C. (1880) The power of movement in plants. John Murray, London.

    Google Scholar 

  • Davies, W.J. & Zhang, J. (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Mol. Biol. 42:55–76.

    Article  CAS  Google Scholar 

  • Davies, W.J., Tardieu, F., & Trejo, C.L. (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol. 104:309–314.

    PubMed  CAS  Google Scholar 

  • Dodd, I.C. & Davies, W.J. (1996) The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone. Plant Cell Environ. 19:1047–1056.

    Article  CAS  Google Scholar 

  • Else, M.A., Davies, W.J., Malone, M., & Jackson, M.B. (1995) A negative hydraulic message from oxygendeficient roots of tomato plants? Influence of soil flooding on leaf water potential. leaf expansion, and synchrony between stomatal conductance and root hydraulic conductivity. Plant Physiol. 109:1017–1024.

    PubMed  CAS  Google Scholar 

  • Else, M.A., Tiekstra, A.E., Croker, S.J., Davies, W.J., & Jackson, M.B. (1996) Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transirant in xylem sap. Plant Physiol. 1012:239–247.

    Google Scholar 

  • Emery, R.J.N., Reid, D.M., & Chinnappa (1994) Phenotypic plasticity of stem elongation in two ecotypes of Stellara longipes: The role of ethylene and reponse to wind. Plant Cell Environ. 17:691–700.

    Article  Google Scholar 

  • Evans, G.C. (1972) The quantitative analysis of plant growth. Blackwell Scientific Publications. Oxford.

    Google Scholar 

  • Evans, J.R. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19.

    Article  Google Scholar 

  • Farrar, J.F. (1996) Regulation of root weight ratio is mediated by sucrose. Plant Soil 185:13–19.

    Article  CAS  Google Scholar 

  • Fetene, M. & Beck, E. (1993) Reversal of direction of photosynthate allocation in Urtica dioica L. plants by increasing cytokinin import into the shoot. Bot. Acta. 106:235–240.

    CAS  Google Scholar 

  • Fichtner, K. & Schulze, E.D. (1992) The effct of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 92:236–241.

    Article  Google Scholar 

  • Field, C.B. (1991) Ecological scaling of carbon gain to stress and resourse availability In: Integrated responses of plants to stress, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 35–65.

    Chapter  Google Scholar 

  • Fondy, B.R. & Geiger, D.R. (1985) Diurnal changes in alloction of newly fixed carbon in exporting sugar beet leaves. Plant Physiol. 78:753–757. synthesis of high-latitude Poa pratensis. Physiol. Plant. 65:135–145.

    Article  PubMed  CAS  Google Scholar 

  • Heilmeier, H. & Monson, R.K. (1994) Carbon and nitrogen storage in herbaceous plants. In: A whole-plant perspective on carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic publishing, The Hague pp. 149–171.

    Google Scholar 

  • Heilmeier, H., Schulze, E.-D., & Whale, D.M. (1986) Carbon and nitrogen partitioning in the biennial monocarp Arctium tomentosum Mill. Oecologia 70:466–474.

    Article  Google Scholar 

  • Hirose, T. & Werger, M.J.A. (1987a) Maximizing daily canopy photosynthesis with respect to leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526.

    Article  Google Scholar 

  • Hirose, T. & Werger, M.J.A. (1987b) Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of a Solidago altissima stand. Physiol. Plant. 70:215–222.

    Article  CAS  Google Scholar 

  • Hübel, F. & Beck, F. (1996) Maize root phytase. Purification, characterization, and localization of enzyme activity and its putative substrate. Plant Physiol. 112:1429–1436.

    PubMed  Google Scholar 

  • Hunt, R. (1982) Plant growth curves. The functional approach to growth analysis. Edward Arnold, London.

    Google Scholar 

  • Jackson, M.B. (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. 36:145–174.

    Article  CAS  Google Scholar 

  • Jaffe, M.J. (1973) Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation. Planta 114:143–157.

    Article  Google Scholar 

  • Jaffe, M.J. & Forbes, S. (1993) Thigmomorphogenesis: The effects of mechanical perturbation on plants. Plant Growth Regul. 12:313–324.

    Article  PubMed  CAS  Google Scholar 

  • Jonasson, S. & Chapin III, F.S. (1985) Significance of sequential leaf development for nutrient balance of the cotton sedge, E riophorum vaginatum L. Oecologia 67:511–518.

    Article  Google Scholar 

  • Kendrick, R.E. & Kronenberg, H.H.M. (eds) (1994) Photomorphogenesis in plants. Kluwer Academic Publishers. Dordrecht.

    Google Scholar 

  • Keyes, G., Sorrells, M.E., & Setter, T.L. (1990) Gibberellic acid regulates cell wall extensibility in wheat (Triticum aestivum L.). Plant Physiol. 92:242–245.

    Article  PubMed  CAS  Google Scholar 

  • Kigel, J. & Cosgrove, D.J. (1991) Photoinhibition of stem elongation by blue and red light. Effects on hydraulic and cell wall properties. Plant Physiol. 95:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  • Kimball, B.A., Mauney, J.R., Nakayama, F.S., & Idso, S.B. (1993) Effects of increasing atmospheric CO2 on vegetation. Vegetation 104/105:65–75.

    Article  Google Scholar 

  • Kitajima, K. (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419–428.

    Article  Google Scholar 

  • Kitajima, K. (1996) Ecophysiology of tropical tree seedling. In: Tropical forest plant ecophysiology, S. Mulkey, R. Chazdon, & A. Smith (eds). Chapman & Hall, New York, pp. 559–596.

    Chapter  Google Scholar 

  • Knight, M.R., Campbell, A.K., Smith, S.M., & Trewawas, A.J. (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526.

    Article  PubMed  CAS  Google Scholar 

  • Knight, M.R., Smith, S.M., & Trewawas, A.J. (1992) Windinduced plant motion immediately increases cytosolic calciun. Proc. Natl. Acad. Sci. USA 89:4967–4971.

    Article  PubMed  CAS  Google Scholar 

  • Konings, H. & Lambers, H. (1991) Respiratory metabolism, oxygen transport and the induction of aerenchyma in roots. In: Plant life under low oxygen: Ecology, physiology and biochemistry, M.B. Jackson, D.D. Davies, & H. Lambers (eds). SPB Academic Publishing, The Hague, pp. 247–265.

    Google Scholar 

  • Kraus, E., Lambers, H., & Kollöffel, C. (1993) The effect of handling on the yield of two populations of Lolium perenne selected for differences in mature leaf respiration rate. Physiol. Plant. 89:341–346.

    Article  Google Scholar 

  • Kraus, E., Kollöffel, C., & Lambers, H. (1994) The effect of handling on photosynthesis, transpiration, respiration, and nitrogen and carbohydrate content of populations of Lolium perenne. Physiol. Plant. 91:631–638.

    Article  CAS  Google Scholar 

  • Kuiper, D. & Staal, M. (1987) The effect of exogenously supplied plant growth substances on the physiological plasticity in Plantago major ssp major: Responses of growth, shoot to root ratio and respiration. Physiol. Plant. 69:651–658.

    Article  CAS  Google Scholar 

  • Kuiper, D., Kuiper, P.J.C., Lambers, H., Schuit, J.T., & Staal, M. (1989) Cytokinin contents in relation to mineral nutrition and benzyladenine addition in Plantago major ssp. pleiosperma. Physiol. Plant. 75:511–517.

    Article  CAS  Google Scholar 

  • Kuo, T. & Boersma, L.L. (1971) Soil water suction and root temperature effects on nitrogen fixation in soybeans. Agron. J. 63:901–904.

    Article  Google Scholar 

  • Lambers, H. & Atkin, O.K. (1995) Regulation of carbon metabolism in roots. In: Carbon partitioning and source-sink interactions in plants, M.A. Madore & W.J. Lucas (eds). American Society of Plant Physiologists, Rockville, MD, pp. 226–238.

    Google Scholar 

  • Lambers, H. & Poorter, H. (1992) Inherent variation in growth rate between higher plant: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 22:187–261.

    Article  Google Scholar 

  • Lambers, H., Cambridge, M.L., Konings, H., & Pons, T.L. (eds). (1989) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Lambers, H., Poorter, H., & Van Vuuren, M.M.I. (eds). (1998) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden.

    Google Scholar 

  • Langheinrich, U. & Tischner, R. (1991) Vegetative storage proteins in poplar. Induction and characterization of a 32- and a 36-kilodalton polypeptide. Plant Physiol. 97:1017–1025.

    Article  PubMed  CAS  Google Scholar 

  • Leverenz, J.W. (1992) Shade shoot structure and productivity of evergreen conifer stands. Scand. J. For. Res. 7:345–353.

    Article  Google Scholar 

  • Li, X., Feng, Y., & Boersma, L. (1994) Partitioning of photosynthates between shoot and root in spring wheat (Triticum aestivum L.) as a function of soil water potential and root temperature. Plant Soil 164:43–50.

    Article  CAS  Google Scholar 

  • Li, Z.-C., Durachko, D.M., & Cosgrove, D.J. (1993) An oat coleoptile wall protein that induces wall extension in vitro and that is antigenetically related to a simular protein from cucumber hypocotyls. Planta 191:349–356.

    Article  CAS  Google Scholar 

  • MacAdam, J.W., Volenec, J.J., & Nelson, C.J. (1989) Effects of nitrogen supply on mesophyll cell division and epidermal cell elongation in tall fescue leaf blades. Plant Physiol. 89:549–556.

    Article  PubMed  CAS  Google Scholar 

  • Maranon, T. & Grub, P.J. (1993) Physiological basis and ecological significance of the seed size and relative growth rate relationship in Mediterranean annuals. Funct. Ecol. 7:591–599.

    Article  Google Scholar 

  • Martinez-Garcia, J.F. & Garcia-Martinez, J.L. (1992) Interaction of gibberellins and phytochrome in the control of cowpea elongation. Physiol. Plant. 86:236–244.

    Article  CAS  Google Scholar 

  • Martinoia, E. & Wiemken, A. (1981) Vacuoles as storage compartments for nitrate in barley leaves. Nature 289:292–293.

    Article  CAS  Google Scholar 

  • Masle, J. & Passioura, J.B. (1987) The effect of soil strength on the growth of young wheat plants. Aust. J. Plant Physiol. 14:643–656.

    Article  Google Scholar 

  • Materechera, S.A., Alston, A.M., Kirby, J.M., & Dexter, A.R. (1993) Field evaluation of laboratory techniques for predicting the ability of roots to penetrate strong soil and of the influence of roots on water absorptivity. Plant Soil 149:149–158.

    Article  Google Scholar 

  • McArthur, R.H. & Wilson E.O. (1967) The theory of island biogeography. Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  • McDonald, A.J.S. & Davies, W.J. (1996) Keeping in touch: Responses of the whole plant to deficits in water and nitrogen supply. Adv. Bot. Res. 22:229–300.

    Article  Google Scholar 

  • McQueen-Mason, S.J. (1995) Expansions and cell wall expansion. J. Exp. Bot. 46:1639–1650.

    Article  CAS  Google Scholar 

  • McQueen-Mason, S.J., Durachko, D.M., & Cosgrove, D.J. (1992) Two endogenous proteins that induce cell wall extension. Plant Cell 4:1425–1433.

    PubMed  CAS  Google Scholar 

  • Millard, P. (1988) The accumulation and storage of nitrogen by herbaceous plants. Plant Cell Environ. 11:1–8.

    Article  CAS  Google Scholar 

  • Millard, P. & Neilson, G.H. (1989) The influence of nitrogen supply on the uptake and remobilization of stored N for the seasonal growth of apple trees. Ann. Bot. 63:301–309.

    Google Scholar 

  • Munns, R. & Cramer, G.R. (1996) Is coordination of leaf and root growth mediated by abscisic acid? Plant Soil 185:33–49.

    Article  CAS  Google Scholar 

  • Munns, R. & Sharp, R.E. (1993) Involvement of abscisic acid in controlling plant growth in soil of low water potential. Aust. J. Plant Physiol. 20:425–437.

    Article  CAS  Google Scholar 

  • Neumann, P.M., Azaizeh, H., & Leon, D. (1994) Hardening of root cell walls: A growth inhibitory response to salinity stress. Plant Cell Environ. 17:303–309.

    Article  Google Scholar 

  • Okamoto, A. & Okamoto, H. (1995) Two proteins regulate the cell-wall extensibility and the yield threshold in glycerinated hollow cylinders of cowpea hypocotyl. Plant Cell Environ. 18:827–830.

    Article  CAS  Google Scholar 

  • Okamoto, A., Katsumi, M., & Okamoto, H. (1995) The effects of auxin on the mechanical properties in vivo of cell wall in hypocotyl segments from gibberellindeficient cowpea seedlings. Plant Cell Physiol. 36:645–651.

    CAS  Google Scholar 

  • Palmer, S.J., Berridge, D.M., McDonald, A.J.S., & Davies, W.J. (1996) Control of leaf expansion is sunflower (Helianthus annuus L.) by nitrogen nutrition. J. Exp. Bot. 47:359–368.

    Article  CAS  Google Scholar 

  • Parsons, R.F. (1968) The significance of growth-rate comparisons for plant ecology. Am. Nat. 102:595–597.

    Article  Google Scholar 

  • Passioura, J.B. (1988) Root signals control leaf expansion in wheat seedlings growing in drying soil. Aust. J. Plant Physiol. 15:687–693.

    Article  Google Scholar 

  • Passioura, J.B. (1994) The physical chemistry of the primary cell wall: Implications for the control of expansion rate. J. Exp. Bot. 45:1675–1682.

    CAS  Google Scholar 

  • Passioura, J.B. & Fry, S.C. (1992) Turgor and cell expansion: beyond the Lockhart equation. Aust. J. Plant Physiol. 19:565–576.

    Article  Google Scholar 

  • Peters, W.S. & Tomos, D. (1996) The epidermis still in control? Bot. Acta 109:264–267.

    Google Scholar 

  • Pianka, E.R. (1970) On r and K selection. Am. Nat. 104:592–597.

    Article  Google Scholar 

  • Pons, T.L. (1977) An ecophysiological study in the field layer of ash coppice. II. Experiments with Geum urbanum and Cirsium palustre in different light intensities. Acta Bot. Neerl. 26:29–42.

    Google Scholar 

  • Pons, T.L. & Bergkotte, M. (1996) Nitrogen allocation in response to partial shading of a plant: Possible mechanisms. Physiol. Plant. 98:571–577.

    Article  CAS  Google Scholar 

  • Pons, T.L., Schieving, F., Hirose, T., & Werger, M.J.A. (1989) Optimization of leaf nitrogen allocation for canopy photosynthesis in Lysimachia vulgaris. In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds). SPB Academic Publishing, The Hague, pp. 175–186.

    Google Scholar 

  • Poorter, H. (1993) Interspcific variation in the growth response of plants to an elevated ambient COZ concentration. Vegetatio 104/105:77–97.

    Article  Google Scholar 

  • Poorter, H. & Remkes, C. (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oečologia 83:553–559.

    Article  Google Scholar 

  • Poorter, H., Remkes, C., & Lambers, H. (1990) Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Phvsiol. 94:621–727.

    Article  CAS  Google Scholar 

  • Poorter, H., Gifford, R.M., Kriedemann, P.E., & Wong, S.C. (1992) A quantitative analysis of dark respiration and carbon content as factors in the growth response of plants to elevated CO2. Aust. J. Bot. 40:501–513.

    Article  CAS  Google Scholar 

  • Poorter, H., Van de Vijver, C.A.D.M., Boot, R.G.A., & Lambers, H. (1995) Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. Plant Soil 171:217–227.

    Article  CAS  Google Scholar 

  • Poorter, H., Roumet, C., & Campbell, B.D. (1996) Interspecific variation in the growth response of plants to elevated CO2: A search for functional types. In: Biological diversity in a CO 2- rich world, C. Körner & F.A. Bazzaz (eds). Physiological Ecology Series, Academic Press, San Diego, pp. 375–412.

    Google Scholar 

  • Pritchard, J. (1994) The control of cell expansion in roots. New Phytol. 127:3–27.

    Article  CAS  Google Scholar 

  • Pritchard, J., Hethrington, P.R., Fry, & Iomos, A.D. (1993) Xyloglucan endotransglycosylase activity, microfibril orientation and the profiles of cell wall properties along growing regions of maize roots. J. Exp. Bot. 44:1281–1289.

    Article  CAS  Google Scholar 

  • Pritchard, J., Fricke, W., & Tomos, D. (1996) Turgorregulation during extension growth and osmotic stress of maize roots. An example of single-cell mapping. Plant Soil 187:11–21.

    Article  CAS  Google Scholar 

  • Radin, J.W. & Boyer, J.S. (1990) Control of leaf expansion by nitrogen nutrition in sunflower plants: Role of hydraulic conductivity and turgor. Plant Physiol. 69:771–775.

    Article  Google Scholar 

  • Ramahaleo, T., Alexandre, J., & Lasalles, J.-P. (1996) Stretch activated channels in plant cells. A new model for osmoelastic coupling. Plant Physiol. Biochem. 34:327–334.

    Google Scholar 

  • Rappoport, H.F. & Loomis, R.S. (1985) Interaction or storage root and shoot in grafted sugarbeet and chard. Crop Sci. 25:1079–1084.

    Article  Google Scholar 

  • Reich, P.B. (1993) Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant life forms and climates: “The blind men and the elephant retold.” Funct. Ecol. 7:721–725.

    Article  Google Scholar 

  • Reich, P.B., Uhl, C., Walters, M.B., & Ellsworth, D.S. (1991) Leaf life-span as a determinant of leaf structure and function among 23 amazonian tree species. Oecologia 86:16–24.

    Article  Google Scholar 

  • Reich, P.B., Walters, M.B., & Ellsworth, D.S. (1992a) Lear life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 62:365–392.

    Article  Google Scholar 

  • Reich, P.B., Walters, M.B., & Ellsworth, D.S. (1992b) Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 62:365–392.

    Article  Google Scholar 

  • Rosnitschek-Schimmel, I. (1983) Biomass and nitroger partitioning in a perennial and an annual nitrophilic species of Urtica. Z. Pflanzenphysiol. 109:215–225.

    CAS  Google Scholar 

  • Rozema, J., Lambers, H., Van de Geijn, S.C., & Cambridge, M.L. (1992) CO2 and Biosphere. Kluwer Dordrecht.

    Google Scholar 

  • Russel, G. & Grace, J. (1978) The effects of wind on grasses V. Leaf extension, diffusive conductance, and photosyn thesis in the wind tunnel. J. Exp. Bot. 29:1249–1258.

    Article  Google Scholar 

  • Russel, G. & Grace, J. (1979) The effects of windspeed o the growth of grasses. J. Appl. Ecol. 16:507–514.

    Article  Google Scholar 

  • Ryser, P. (1998) Intra- and interspecific variation in roc length, root turnover and the underlying parameter In: Inherent variation in plant growth. Physiologica mechanisms and ecological consequences, H. Lamber, H. Poorter, & M.M.I. Van Vuuren (eds). Backhuy Leiden, pp. 441–502.

    Google Scholar 

  • Saab, I.N. & Sachs, M.N. (1996) A flooding-induce xyloglucan endo-transglycosylase homolog in mai is responsive to ethylene and assocaited wii aerenchyma. Plant Physiol. 112:385–391.

    Article  PubMed  CAS  Google Scholar 

  • Aab, I.N., Sharp, R.R., Pritchard, J., & Voetberg, G.S. (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol. 93:1329–1336.

    Article  Google Scholar 

  • Anter, B.D., Wigley, T.M.L., Barnett, T.P., & Anyamba, E. (1996) Detection of climate change and attribution of causes. In: Climate change 1995: The science of climate change, J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, & K. Maskell (eds). Cambridge University Press, Cambridge, UK, pp. 407–443.

    Google Scholar 

  • Sauter, J.J. & Van Cleve, B. (1990) Biochemical, immunochemical, and ultrastructural studies of protein storage in poplar (Populus x canadensis “robusta”) wood. Planta 183:92–100.

    Google Scholar 

  • Schulze, E.-D. & Chapin III, F.S. (1987) Plant specialization to environments of different resource availability. In: Potentials and limitations of ecosystem analysis, E.-D. Schulze & H. Zwölfer (eds). Springer-Verlag, Berlin, pp. 120–148.

    Chapter  Google Scholar 

  • Simpson, R.J., Lambers, H., Beilharz, V.C., & Dalling, M.J. (1982a) Translocation of nitrogen in a vegetative wheat plant (Triticum aestivum). Physiol. Plant. 56:11–17.

    Article  CAS  Google Scholar 

  • Simpson, R.J., Lambers, H., & Dalling, M.J. (1982b) Kinetin application to roots and its effects on uptake, translocation and distribution of nitrogen in wheat (Triticum aestivum) grown with a split root system. Physiol. Plant. 56:430–435.

    Article  CAS  Google Scholar 

  • Simpson, R.J., Lambers, H., & Dalling, M. J. (1983) N itrogen redistribution during grain growth in wheat (Triticum aestivum L.). IV. development of a quantitative model of the translocation of nitrogen to the grain. Plant Phvsiol. 71:7–14.

    Article  CAS  Google Scholar 

  • Smith, H. (1981) Adaptation to shade. In: Physiological processes limiting plant productivity, C.B. Johnson, (ed). Butterworths, London, pp. 159–173.

    Google Scholar 

  • Smith, R.C., Matthews, P.R., Schunmann, & Chandler, P.M. (1996) The regulation of leaf elongation and xyloglucan endotransglycosylase by gibberellin in “Himalaya” barley (Hordeum vulgare L.). J. Exp. Bot. 47:1395–1404.

    Article  CAS  Google Scholar 

  • Snir, N. & Neumann, P.M. (1997) Mineral nutrient supply, cell wall adjustment and the control of leaf growth. Plant Cell Environ. 20:239–246.

    Article  Google Scholar 

  • Staswick, P.E. (1988) Soybean vegetative storage protein structure and gene expression. Plant Physiol. 87:250–254.

    Article  PubMed  CAS  Google Scholar 

  • Staswick, P.E. (1990) Novel regulation of vegetative storage protein genes. Plant Cell 2:1–6.

    PubMed  CAS  Google Scholar 

  • Staswick, P.E., Huang, J.-F., & Rhee, Y. (1991) Nitrogen and methyl jasmonate induction of soybean vegetative s. storage protein genes. Plant Physiol. 96:130–136.

    Article  PubMed  CAS  Google Scholar 

  • Steingröver, E. (1981) The relationship between cyanideresistant root respiration and the storage of sugars s. in the taproot in Daucus carota L. J. Exp. Bot. 32:911–919.

    Article  Google Scholar 

  • Steponkus, P.L. (1981) Responses to extreme temperatures. Cellular and sub-cellular bases. In: Encyclopedia ze of plant physiology, N.S., Vol. 12A, O.L. Lange, P.S. th Nobel, C.B. Osmond, & H. Ziegler (eds). SpringerVerlag, Berlin, pp. 371–402.

    Google Scholar 

  • Stirzaker, R.J., Passioura, J.B., & Wilms, Y. (1996) Soil structure and plant growth: Impact of bulk debsity and biopores. Plant Soil 185:151–162.

    Article  CAS  Google Scholar 

  • Stulen, I. & Den Hertog, J. (1993) Root growth and functioning under atmospheric CO2 enrichment. Vegetatio 104/105:99–115.

    Article  Google Scholar 

  • Tardieu, F., Zhang, J., Katerji, N., Bethenod, O., Palmer, S., & Davies, W.J. (1992) Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying. Plant Cell Environ. 15:193–197.

    Article  CAS  Google Scholar 

  • Ternesi, M., Andrade, A.P., Jorrin, J., & Benloloch, M. (1994) Root-shoot signalling in sunflower plants with confined root systems. Plant Soil 166:31–36.

    Article  CAS  Google Scholar 

  • Terry, N. (1970) Developmental physiology of sugarbeet. II. Effect of temperature and nitrogen supply on the growth, soluble carbohydrate content and nitrogen content of leaves and roots. J. Exp. Bot. 21:477–496.

    Article  CAS  Google Scholar 

  • Todd, G.W., Chadwick, D.L., & Tsai, S.-D. (1972) Effect of wind on plant respiration. Physiol. Plant. 27:342–346.

    Article  Google Scholar 

  • Touraine, B., Clarkson, D.T., & Muller, B. (1994) Regulation of nitrate uptake at the whole plant level. In: A whole-plant perspective on carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic Publishing, The Hague, pp. 11–30.

    Google Scholar 

  • Van Arendonk, J.J.C.M., Niemann, G.J., Boon, J.J., & Lambers, H. (1997) Effects of N-supply on anatomy and chemical composition of leaves of four grass species, belonging to the genus Poa, as determined by imageprocessing analysis and pyrolysis-mass spectrometry. Plant Cell Environ. 20:881–897.

    Article  Google Scholar 

  • Van Arendonk, J.J.C.M. & Poorter, H. (1994) The chemical composition and anatomical structure of leaves of grass species differing in relative growth rate. Plant Cell Environ. 17:963–970.

    Article  CAS  Google Scholar 

  • Van den Boogaard, R., Goubitz, S., Veneklaas, E.J., & Lambers, H. (1996) Carbon and nitrogen economy of four Triticum aestivum cultivars differing in relative growth rate and water use efficiency. Plant Cell Environ. 19:998–1004.

    Article  Google Scholar 

  • Van der Werf, A. (1996) Growth analysis and photoassimilate partitioning. In: Photoassimilate distribution in plants and crops: Source-sink relationships, E. Zamski & A.A. Schaffer (eds). Marcel Dekker, New York, pp. 1–20.

    Google Scholar 

  • Van der Werf, A., Visser, A.J., Schieving, F., & Lambers, H. (1993) Evidence for optimal partitioning of biomass and nitrogen at a range of nitrogen availabilities for a fast- growing and slow-growing species. Funct. Ecol. 7:63–74.

    Article  Google Scholar 

  • Van der Werf, A. & Nagel, O.W. (1996) Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose. Plant Soil 185:21–32.

    Article  Google Scholar 

  • Van Volkenburgh, E. (1994) Leaf and shoot growth. In: Physiology and determination of crop yield, K.J. Boote, J.M. Bennet, T.R. Sinclair, & G.M. Paulsen (eds). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp. 101–120.

    Google Scholar 

  • Van Volkenburgh, E. & Boyer, J.S. (1985) Inhibitory effects of water deficit on maize leaf elongation. Plant Physiol. 77:190–194.

    Article  PubMed  Google Scholar 

  • Visser, E.J.W., Cohen, J.D., Barendse, G.W.M., Blom, C.W.P.M., & Voesenek, L.A.C.J. (1996) An ethylenemediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112:1687–1692.

    PubMed  CAS  Google Scholar 

  • Voesenek, L.A.C.J., Banga, M., Thier, R.H., Mudde, C.M., Harren, F.J.M., Barendse, G.W.M., & Blom, C.W.P.M. (1993) Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistance. Plant Physiol. 103:783–791.

    PubMed  CAS  Google Scholar 

  • Vriezen, W.H., Van Rijn, C.P.E., Voesenek, L.A.C.J., & Mariani, C. (1997) A homologue of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J. 11:1265–1271.

    Article  PubMed  CAS  Google Scholar 

  • Wong, S.C. (1993) Interaction between elevated atmpspheric concentration of CO2 and humidity on plant growth: comparison between cotton and radish. Vegetatio 104/5:211–221.

    Article  Google Scholar 

  • Witkowski, E.T.F. & Lamont, B.B. (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493.

    Google Scholar 

  • Wu, Y., Sharp, R.E., Durachko, D.M., & Cosgrove, D.J. (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins? Plant Physiol. 111:765–772.

    PubMed  CAS  Google Scholar 

  • Zhu, G.L. & Boyer, J.S. (1992) Enlargement in Chara studied with a turgor clamp. Growth rate is not determined by turgor. Plant Physiol. 100:2071–2080.

    Article  PubMed  CAS  Google Scholar 

  • Zidan, I., Azaizeh, H., & Neumann, P.M. (1990) Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol. 93:7–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (1998). Growth and Allocation. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2855-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2855-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2857-6

  • Online ISBN: 978-1-4757-2855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics