Advertisement

Multivariate Linear Regression

  • Gregory C. Reinsel
  • Raja P. Velu
Part of the Lecture Notes in Statistics book series (LNS, volume 136)

Abstract

Regression methods are perhaps the most widely used statistical tools in data analysis. When several response variables are studied simultaneously, we are in the sphere of multivariate regression. The usual description of the multivariate regression model, that relates the set of m multiple responses to a set of n predictor variables, assumes implicitly that the m × n regression coefficient matrix is of full rank. It can then be demonstrated that the simultaneous estimation of the elements of the coefficient matrix, by least squares or maximum likelihood estimation methods, yields the same results as a set of m multiple regressions, where each of the m individual response variables is regressed separately on the predictor variables. Hence, the fact that the multiple responses are likely to be related is not involved in the estimation of the regression coefficients as no information about the correlations among the response variables is taken into account. Any new knowledge gained by recognizing the multivariate nature of the problem and the fact that the responses are related is not incorporated when estimating the regression parameters jointly. There are two practical concerns regarding this general multivariate regression model. First, the accurate estimation of all the regression coefficients may require a relatively large number of observations, which might involve some practical limitations.

Keywords

Multivariate Linear Regression Multivariate Regression Model Likelihood Ratio Statistic Multivariate Linear Regression Model Likelihood Ratio Test Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Gregory C. Reinsel
    • 1
  • Raja P. Velu
    • 2
  1. 1.Department of StatisticsUniversity of Wisconsin, MadisonMadisonUSA
  2. 2.School of ManagementSyracuse UniversitySyracuseUSA

Personalised recommendations