Special-Purpose SOI

  • James B. Kuo
  • Ker-Wei Su


In this chapter, special-purpose SOI devices are described. Fully-Depleted Lean-Channel Transistors (DELTA), which are similar to double-gate SOI CMOS devices, are vertical SOI transistors. In the beginning of this chapter, DELTAs are presented. In order to improve the surface-scattering mobility of SOI PMOS devices, SiGe-channel SOI PMOS devices were reported. The SiGe-channel is assuming the concept from the heterojunction bipolar transistors (HBT) based on engineering bandgap narrowing. However, due to the SiGe quantum well introduced, the body effect is much more complicated than conventional SOI CMOS devices. In the following portion of this chapter, SiGe-channel SOI PMOS devices are described. SOI technology has also been used to integrate power devices. Owing to the buried oxide structure, SOI power devices are suitable for high-temperature operations. In this chapter, SOI DMOS devices are described. Recently, SOI technology has also been used to integrate BiCMOS devices. SOI MESFET and JFETs have also been created. In addition, single-electron transistors (SET) built on SOI SIMOX substrates have been realized. Amorphous and polysilicon thin-film transistors built on insulators have been used for LCD. In this chapter, these special-purpose SOI devices are described sequentially.


Threshold Voltage Gate Voltage Drain Current Potential Barrier Height Surface Electrostatic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Hisamoto, S. Kimura, T. Kaga, Y. Nakagome, M. Isoda, T. Nishida, and E. Takeda, “A New Stacked Cell Structure for Giga-Bit DRAMs using Vertical Ultra-Thin SOI (DELTA) MOSFETs,” IEDM Dig., pp. 959–961, 1991.Google Scholar
  2. [2]
    D. Hisamoto, T. Kaga, Y. Kawamoto and E. Takeda, “A Fully Depleted Lean-Channel Transistor(DELTA)—A Novel Vertical Ultra Thin SOI MOSFET,” IEDM Dig., pp.833–836, 1989.Google Scholar
  3. [3]
    K. W. Su and J. B. Kuo, “Analytical Threshold Voltage Formula Including Narrow-Channel Effects for VLSI Mesa-Isolated Fully Depleted Ultrathin Silicon-on-Insulator N-Channel Metal-Oxide-Silicon Devices,” Jpn. J. Appl. Phys., Vol. 34, No. 84, pp. 4010–4019, Aug. 1995.CrossRefGoogle Scholar
  4. [4]
    D. K. Nayak, J. C. S. Woo, G. K. Yabiku, K. P. MacWilliams, J. S. Park, and K. L. Wang, “High-Mobility GeSi PMOS on SIMOX,” IEEE Elec. Dev. Let, Vol. 14, No. 11, pp. 520–522, Nov. 1993.CrossRefGoogle Scholar
  5. [5]
    D. K. Nayak, J. C. S. Woo, J. S. Park, K. L. Wang, and K. P. MacWilliams, “Channel Mobility of GeSi Quantum-Well P-MOSFET’s,” Symp. VLSI Tech. Dig., pp.107–108, 1991.Google Scholar
  6. [6]
    P. M. Garone, V. Venkataraman, and J. C. Sturm, “Hole Confinement in MOS-Gated Ge x Si 1-x/Si Heterostructures,” IEEE Elec. Dev. Let, Vol. 12, No. 5, pp. 230–232, May 1991.CrossRefGoogle Scholar
  7. [7]
    D. K. Nayak, J. S. Park, J. C. S. Woo, K. L. Wang, G. K. Yabiku, and K. P. MacWilliams, “High Performance GeSi Quantum-Well PMOS on SIMOX,” IEDM Dig., pp.777–780, 1992.Google Scholar
  8. [8]
    J. H. Sim and J. B. Kuo, “An Analytical Back-Gate Bias Effect Model for Ultra-Thin SOI CMOS Devices,” IEEE Trans. Elec. Dev., Vol. 40, No. 4, pp. 755–765, Apr. 1993.CrossRefGoogle Scholar
  9. [9]
    T. W. MacElwee, I. D. Calder, R. A. Bruce and F. R. Shepherd, “High-Performance Fully Depleted Silicon-on-Insulator Transistors,” IEEE Trans. Elec. Dev., Vol. 37, No. 6, pp. 1444–1451, June 1990.CrossRefGoogle Scholar
  10. [10]
    J. B. Kuo, M. C. Tang and J. H. Sim, “An Analytical Back Gate Bias Dependent Threshold Voltage Model for SiGe-Channel Ultrathin SOI PMOS Devices,” IEEE Trans. Elec. Dev., Vol. 40, No. 12, pp. 2237–2244, Dec. 1993.CrossRefGoogle Scholar
  11. [11]
    B. Pejcinovic, L. E. Kay, T.-W. Tang, and D. H. Navon, “Numerical Simulation and Comparison of Si BJT’s and Si 1-x Ge x HBT’s,” IEEE Trans. Elec. Dev., Vol. 36, No. 10, pp.2129–2137, Oct. 1989.CrossRefGoogle Scholar
  12. [12]
    R. People, “Indirect Band Gap of Coherently Strained Ge x Si 1-x Bulk Alloys on (100) Silicon Substrates,” Phys. Rev. B., Vol. 32, No. 2, pp.1405–1408, July 1985.Google Scholar
  13. [13]
    D. V. Lang, R. People, J. C. Bean, and A. M. Sergent, “Measurement of the Bandgap of Ge x Si 1-x/Si Strained-Layer Heterostructures,” Appl. Phys. Let., Vol. 47, No. 12, pp. 1333–1335, Dec. 1985.CrossRefGoogle Scholar
  14. [14]
    B. J. Baliga, “High Voltage Integrated Circuits,” IEEE Press, 1988.Google Scholar
  15. [15]
    C. M. Liu, K. H. Lou and J. B. Kuo, “77K versus 300K Operation: The Quasi-Saturation Behavior of a DMOS Device and its Fully Analytical Model,” IEEE Trans. Elec. Dev., Vol. 40, No. 9, pp. 1636–1644, Sept. 1993.CrossRefGoogle Scholar
  16. [16]
    E. Arnold, T. Letavic, and H. Bhimnathwala, “High-Temperature Off-State Characteristics of Thin-SOI Power Devices,” IEEE Elec. Dev. Let., Vol. 17, No. 12, pp.557–559, Dec. 1996.CrossRefGoogle Scholar
  17. [17]
    E. Arnold, H. Pein and S. P. Herko, “Comparison of Self-Heating Effects in Bulk-Silicon and SOI High-Voltage Devices,” IEDM Dig., pp. 813–816, 1994.Google Scholar
  18. [18]
    T. Ifstrom, U. Apel, H.-G. Graf, C. Harendt, and B. Hofflinger, “A 150-V Multiple Up-Drain VDMOS, CMOS, and Bipolar Process in Directed-Bonded Silicon on Insulator on Silicon,” IEEE Elec. Dev. Let., Vol. 13, No. 9, pp. 460–461, Sept. 1992.CrossRefGoogle Scholar
  19. [19]
    T. Ohno, S. Matsumoto, and K. Izumi, “An Intelligent Power IC with Double Buried-Oxide Layers Formed by SIMOX Technology,” IEEE Trans. Elec. Dev., Vol. 40, No. 11, pp. 2074–2080, Nov. 1993.CrossRefGoogle Scholar
  20. [20]
    U. Apel, H. G. Graf, C. Harendt, B. Hofflinger, and T. Ifstrom, “A 100-V Lateral DMOS Transistor with a 0.3-Micrometer Channel in a 1-Micrometer Silicon-Film-on-Insulator-on-Silicon,” IEEE Trans. Elec. Dev., Vol. 38, No. 7, pp.1655–1659, July 1991.CrossRefGoogle Scholar
  21. [21]
    C.M. Liu and J. B. Kuo, “Back Gate Bias Dependent Quasi-Saturation in a High-Voltage SOI MOSFET: 2D Analysis and Closed-form Analytical Model,” SOI Conf. Dig., pp. 25–26, 1994.Google Scholar
  22. [22]
    R. C. Jerome, I. R. C Post, P. G. Travnicek, G. M. Wodek, K. E. Huffstater, and D. R. Williams, “ACUTE:A High Performance Analog Complementary Polysilicon Emitter Bipolar Technology Utilizing SOI/Trench Full Dielectric Isolation,” SOI Conf. Dig., pp.100–101, 1993.Google Scholar
  23. [23]
    T. Hiramoto, N. Tamba, M. Yoshida, T. Hashimoto, T. Fujiwara, K. Watanabe, M. Odaka, M. Usami, and T. Ikeda, “A 27GHz Double Polysilicon Bipolar Technology on Bonded SOI with Embedded 58/μm2 CMOS Memory Cells for ECL-CMOS SRAM Applications,” IEDM Dig., pp.39–42, 1992.Google Scholar
  24. [24]
    J. C. Sturm and J. F. Gibbons, “Vertical Bipolar Transistors in Laser-Recrystallized Polysilicon”, IEEE Elec. Dev. Let, Vol. 6, No. 8, pp. 400–402, Aug. 1985.CrossRefGoogle Scholar
  25. [25]
    B.-Y. Tsaur, R. W. Mountain, C. K. Chen and J. C. C Fan, “Merged CMOS/Bipolar Technologies utilizing Zone-Melting-Recrystallized SOI Films,” IEEE Elec. Dev. Let, Vol. 5, No. 11, pp. 461–463, Nov. 1984.CrossRefGoogle Scholar
  26. [26]
    G. G. Shahidi, D. D. Tang, B. Davari, Y. Taur, P. McFarland, K. Jenkins, D. Danner, M. Rodriguez, A. Megdanis, E. Petrillo, M. Polcari and T. H. Ning, “A Novel High-Performance Lateral Bipolar on SOI,” IEDM Dig., pp. 663–666, 1991.Google Scholar
  27. [27]
    M. Racanelli, W. M. Huang, S. Kuehne, J. Foerstner, S. Wong, and B.-Y. Hwang, “Contact Technology for High Performance Scalable BiCMOS on TFSOI,” IEEE Elec. Dev. Let, Vol. 16, No. 10, pp.424–426, Oct. 1995.CrossRefGoogle Scholar
  28. [28]
    J. N. Burghartz, A. O. Cifuentes, and J. D. Warnock, “A Low-Capacitance Bipolar/BiCMOS Isolation Technology, Part II— Circuit Performance and Device Self-Heating,” IEEE Trans. Elec. Dev., Vol. 41, No. 8, pp. 1388–1395, Aug. 1994.CrossRefGoogle Scholar
  29. [29]
    J. N. Burghartz, R. C. Mcintosh and C. L. Stanis, “A Low-Capacitance Bipolar/BiCMOS Isolation Technology, Part I—Concept, Fabrication Process, and Characterization,” IEEE Trans. Elec. Dev., Vol. 41, No. 8, pp. 1379–1387, Aug. 1994.CrossRefGoogle Scholar
  30. [30]
    P. A. Tove, K. Bohlin, F. Masszi, H. Norde, J. Nylander, J. Tiren, and U. Magnusson, “Complementary Si MESFET Concept Using Silicon-on-Sapphire Technology,” IEEE Elec. Dev. Let., Vol. 9, No. 1, pp.47–49, Jan. 1988.CrossRefGoogle Scholar
  31. [31]
    B.-Y. Tsaur, H. K. Choi, C. K. Chen, C. L. Chen, R. W. Mountain and J. C. C. Fan, “Merged CMOS/Bipolar Technologies and Microwave MESFETs utilizing Zone-Melting-Recrystallized SOI Films,” IEDM Dig., pp.812–815, 1984.Google Scholar
  32. [32]
    B.-Y. Tsaur, and H. K. Choi, “Radiation-Hardened Silicon-on-Insulator Complementary Junction Field-Effect Transistors,” IEEE Elec. Dev. Let., Vol. 7, No. 5, pp.324–326, May 1986.CrossRefGoogle Scholar
  33. [33]
    J. P. Blanc, J. Bonaime, E. Delevoye, J. Gautier, J. de Pontcharra, R. Truche, E. Dupont-Nivet, J. L. Martin, and J. Montaron, “P-JFET on SIMOX for Rad-Hard Analog Devices,” IEEE SOI Conf. Dig., pp. 85–86, 1990.Google Scholar
  34. [34]
    A. Nakajima, T. Futatsugi, K. Kosemura, T. Fukano, and N. Yokoyama, “Room Temperature Operation of Si Single-Electron Memory with Self-Aligned Floating Dot Gate,” IEDM Dig., pp. 952–954, 1996.Google Scholar
  35. [35]
    K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, and K. Seki, “Room-Temperature Single-Electron Memory,” IEEE Trans. Elec. Dev., Vol. 41, No. 9, pp.1628–1638, Sept. 1994.CrossRefGoogle Scholar
  36. [36]
    Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, K. Iwdate, Y. Nakajima, S. Horiguchi, K. Murase, and M. Tabe, “Conductance Oscillations of a Si Single Electron Transistor at Room Temperature,” IEDM Dig., pp. 938–940, 1994.Google Scholar
  37. [37]
    M. J. Thompson and H. C. Tuan, “Amorphous Si Electronic Devices and Their Applications,” IEDM Dig., pp. 192–195, 1986.Google Scholar
  38. [38]
    F. Okumura and S. Kaneko, “Amorphous Si:H TFT Array,” Proc. Materials Res. Soc. Symp., Vol. 33, M. J. Thompson, Ed., North-Holland: New York, pp. 275–288, 1984.Google Scholar
  39. [39]
    A. H. Firester, “Active-matrix Addressing for TFT-LCDs,” Soc. Inform. Disp., Vol. 3, No. 10, pp.11–14, Nov. 1987.Google Scholar
  40. [40]
    H. Miki, S. Dawamoto, T. Horikawa, H. Maejima, H. Sakamoto, M. Hayama, and Y. Onishi, “Large Scale and Large Area Amorphous Silicon Thin Film Transistor Arrays for Active Matrix Liquid Crystal Displays,” Mat. Res. Soc. Symp. Proc. Vol. 95, 1987, pp.431–436.CrossRefGoogle Scholar
  41. [41]
    T. L. Credelle, “Recent Trends in Color Avionic LCD’s,” Soc. Inform. Disp., Vol. 3, No. 10, pp.15–18, Nov. 1987.Google Scholar
  42. [42]
    A. R. Kmetz, “Flat-Panel Displays,” IEDM Dig., pp. 12–17, 1986.Google Scholar
  43. [43]
    Y. Nara, Y. Kudou, and M. Matsumura, “Application of Amorphous Field Effect Transistor in 3-Dimensional Integrated Circuits,” Jpn J. Appl. Phys., Vol.22, No. 6, pp. L370–372, June 1983.CrossRefGoogle Scholar
  44. [44]
    F. Okumura, K. Sera, H. Asada, S. Kaneko, H. Ichinose, K. Tanaka, T. Yokoi, and C. Tani, “Ferroelectric Liquid-Crystal Shutter Array with a-Si:H TFT Driver,” IEEE Trans. Elec. Dev., Vol. 37, No. 10, pp. 2201–2206, Oct. 1990.CrossRefGoogle Scholar
  45. [45]
    Y. Kaneko, A. Sasano, and T. Tsukada, “Analysis and Design of a-Si TFT/LCD Panels with a Pixel Model,” IEEE Trans. Elec. Dev., Vol. 36, No. 12, pp. 2953–2958, Dec. 1989.CrossRefGoogle Scholar
  46. [46]
    D. B. Thomasson, M. Dayawansa, J. H. Chang and T. N. Jackson, “Thin Active Layer a-Si:H Thin-Film Transistors,” IEEE Elec. Dev. Let., Vol. 18, No. 3, pp.117–119, March 1997.CrossRefGoogle Scholar
  47. [47]
    K. Y. Chung, G. W. Neudeck, and H. F. Bare “Analytical Modeling of the CMOS-like a-Si:H TFT Inverter Circuit,” IEEE J. Sol. St. Ckts, Vol.23, No. 2, pp.566–572, Apr. 1988.CrossRefGoogle Scholar
  48. [48]
    M. Shur and M. Hack, “Physics of Amorphous Silicon Based Alloy Field-Effect Transistors,” J. Appl. Phys., Vol. 55, No. 10, pp.3831–3842, May 1984.CrossRefGoogle Scholar
  49. [49]
    K. Khakzar and E. H. Lueder, “Modeling of Amorphous-Silicon Thin-Film Transistors for Circuit Simulations with SPICE,” IEEE Trans. Elec. Dev., Vol. 39, No. 6, pp.1428–1434, June 1992.CrossRefGoogle Scholar
  50. [50]
    M. Shur, C. Hyun, and M. Hack “New High Field-Effect Mobility Regimes of Amorphous Silicon Alloy Thin-Film Transistor Operation,” J. Appl. Phys., Vol. 59, No. 7, pp. 2488–2497, April 1986.CrossRefGoogle Scholar
  51. [51]
    G. W. Neudeck, K. Y. Chung, H. F. Bare, and Z. Li “A Simplified Model for the Static Characteristics of Amorphous Silicon Thin-Film Transistor,” Sol. St. Elec., Vol. 29, No. 6, pp.639–645, June 1986.CrossRefGoogle Scholar
  52. [52]
    T. Leroux, “Static and Dynamic Analysis of Amorphous-Silicon Field-Effect Transistors,” Sol. St. Elec, Vol. 29, No. 1, pp.47–58, Jan. 1986.CrossRefGoogle Scholar
  53. [53]
    M. Shur, M. Hack, and J. G. Shaw, “A New Analytic Model for Amorphous Silicon Thin-Film Transistors,” J. Appl. Phys., Vol. 66, No. 7, pp. 3371–3380, Oct. 1989.CrossRefGoogle Scholar
  54. [54]
    M. Hack, M. S. Shur and J. G. Shaw, “Physical Models for Amorphous-Silicon Thin-Film Transistors and Their Implementation in a Circuit Simulation Program,” IEEE Trans. Elec. Dev., Vol. 36, No. 12, pp.2764–2769, Dec. 1989.CrossRefGoogle Scholar
  55. [55]
    M. Shur, M. Hack, J. G. Shaw and R. A. Martin, “Capacitance-Voltage Characteristics of Amorphous Silicon Thin-Film Transistors,” J. Appl. Phys., Vol. 66, No. 7, pp. 3381–3385, Oct. 1989.CrossRefGoogle Scholar
  56. [56]
    J. S. Choi, G. W. Neudeck and S. Luan, “A Computer Model for Inter-Electrode Capacitance-Voltage Characteristics of an a-Si:H TFT,” Sol. St. Elec, Vol. 36, No. 2, pp. 223–228, Feb. 1993.CrossRefGoogle Scholar
  57. [57]
    K. Y. Chung, and G. W. Neudeck, “Transient Analysis of the CMOS-like a-Si:H TFT Inverter Circuit,” IEEE J. Sol. St. Ckts, Vol.24, No. 3, pp.822–829, June 1989.CrossRefGoogle Scholar
  58. [58]
    M. Matsumura and H. Hayama, “Amorphous-Silicon Integrated Circuit,” Proc IEEE, Vol. 68, No. 10, pp. 1349–1350, Oct. 1980.CrossRefGoogle Scholar
  59. [59]
    Y. Nara and M. Matsumara, “An Amorphous Silicon Integrated Inverter,” IEEE Trans. Elec. Dev., Vol. 29, No.10, pp.1646–1649, Oct. 1982.CrossRefGoogle Scholar
  60. [60]
    G. W. Neudeck and K. Y. Chung, “A CMOS-Like Amorphous Silicon Ambipolar Thin-Film Transistor,” Proc. Inform. Disp., pp. 151–154, May 1987.Google Scholar
  61. [61]
    M. Shur and M. Hack, “Determination of Density of Localized States in Amorphous Silicon Alloys Form the Low Field Conductance of Thin n-i-n Diodes,” Material Res. Soc. Symp. Proc, Vol. 49, pp.69–76, 1985.CrossRefGoogle Scholar
  62. [62]
    S. S. Chen and J. B. Kuo, “An Analytical a-Si:H TFT DC/Capacitance Model using an Effective Temperature Approach for Deriving a Switching Time Model for an Inverter Circuit Considering Deep and Tail States,” IEEE Trans. Elec. Dev., Vol. 41, No. 7, pp. 1169–1178, July 1994.CrossRefGoogle Scholar
  63. [63]
    J. G. Shaw and M. Hack, “An Analytic Model for Calculating Trapped Charge in Amorphous Silicon,” J. Appl Phys., Vol. 64, No. 9, pp.4562–4566, Nov. 1988.CrossRefGoogle Scholar
  64. [64]
    M. S. Shur, M. Hack, and C. Hyun, “Flat-band Voltage and Surface States in Amorphous Silicon-Based Alloy Field-Effect Transistors,” J. Appl. Phys., Vol. 56, No. 2, pp.382–386, July 1984.CrossRefGoogle Scholar
  65. [65]
    M. Takabatake, J. Ohwada, Y. A. Ono, K. Ono, A. Mimura, and N. Konishi, “CMOS Circuits for Peripheral Circuit Integrated Poly-Si TFT LCD Fabricated at Low Temperature Below 600C,” IEEE Trans. Elec. Dev., Vol. 38, No. 6, pp. 1303–1309, June 1991.CrossRefGoogle Scholar
  66. [66]
    A. G. Lewis, I.-W. Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, “Active Matrix Liquid Crystal Display Design using Low and High Temperature Processed Polysilicon TFT’s,” IEDM Dig., pp. 843–846, 1990.Google Scholar
  67. [67]
    M. Cao, T. Zhao, K. C. Saraswat, and J. D. Plummer, “A Simple EEPROM Cell Using Twin Polysilicon Thin Film Transistors,” IEEE Elec. Dev. Let, Vol. 15, No. 8, pp. 304–306, Aug. 1994.CrossRefGoogle Scholar
  68. [68]
    G. K. Giust and T. W. Sigmon, “Self-Aligned Aluminum Top-Gate Polysilicon Thin-Film Transistors Fabricated Using Laser Recrystallization and Gas-Immersion Laser Doping,” IEEE Elec. Dev. Let., Vol. 18, No. 8, pp.394–396, Aug. 1997.CrossRefGoogle Scholar
  69. [69]
    S. S. Bhattacharya, S. K. Banerjee, B.-Y. Nguyen, and P. J. Tobin, “Temperature Dependence of the Anomalous Leakage Current in Polysilicon-on-Insulator MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 41, No. 2, pp. 221–227, Feb. 1994.CrossRefGoogle Scholar
  70. [70]
    A. G. Lewis, I.-W. Wu, T. Y. Huang, M. Koyanagi, A. Chiang and R. H. Bruce, “Small Geometry Effects in N- and P- Channel Polysilicon Thin Film Transistors,” IEDM Dig., pp. 260–263, 1988.Google Scholar
  71. [71]
    N. Yamauchi, J.-J. J. Hajjar, R. Reif, K. Nakazawa, and K. Tanaka, “Characteristics of Narrow-Channel Polysilicon Thin-Film Transistors,” IEEE Trans. Elec. Dev., Vol. 38, No. 8, pp. 1967–1968, Aug. 1991.Google Scholar
  72. [72]
    A. G. Lewis, T. Y. Huang, R. H. Bruce, M. Koyanagi, A. Chiang and I.-W. Wu, “Polysilicon Thin Film Transistors for Analogue Circuit Applications,” IEDM Dig., pp. 264–267, 1988.Google Scholar
  73. [73]
    T. Yamanaka, T. Hashimoto, N. Hashimoto, T. Nishida, A. Shimizu, K. Ishibashi, Y. Sakai, K. Shimohigashi and E. Takeda, “A 25μm2 New Poly-Si PMOS Load (PPL) SRAM Cell Having Excellent Soft Error Immunity,” IEDM Dig., pp.48–51, 1988.Google Scholar
  74. [74]
    S. Koyama, “A Novel Cell Structure for Giga-bit EPROMs and Flash Memories Using Polysilicon Thin Film Transistors,” Symp. VLSI Tech. Dig., pp. 44–45, 1992.Google Scholar
  75. [75]
    T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, “Low-Temperature Fabrication of High-Mobility Poly-Si TFT’s for Large-Area LCD’s,” IEEE Trans. Elec. Dev., Vol. 36, No. 9, pp. 1929–1933, Sept. 1989.CrossRefGoogle Scholar
  76. [76]
    A. G. Lewis, D.D. Lee, and R. H. Bruce, “Polysilicon TFT Circuit Design and Performance,” IEEE J. Sol. St. Ckt, Vol. 27, No. 12, pp. 1833–1842, Dec. 1992.CrossRefGoogle Scholar
  77. [77]
    H. Hayama and W. I. Milne, “A New Polysilicon MOS Transistor Model Which Includes The Effects of Bulk Trap States in Grain Boundary Regions,” Sol. St. Elec, Vol. 33, No. 2, pp.279–286, Feb. 1990.CrossRefGoogle Scholar
  78. [78]
    S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elahy, G. P. Pollack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee and H. W. Lam, “Characteristics and Three-Dimensional Integration of MOSFET’s in Small-Grain LPCVD Polycrystalline Silicon,” IEEE Trans. Elec. Dev., Vol.32, No. 2, pp.258–281, Feb. 1985.CrossRefGoogle Scholar
  79. [79]
    A. Ortiz-Conde and J. G. Fossum, “Subthreshold Behavior of Thin-Film LPCVD Polysilicon MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 33, No. 10, pp.1563–1571, Oct. 1986.CrossRefGoogle Scholar
  80. [80]
    J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity Behavior in Polycrystalline Semiconductor Thin Film Transistors,” J. Appl. Phys., Vol. 53, No. 2, pp.1193–1202, Feb. 1982.CrossRefGoogle Scholar
  81. [81]
    T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, “A Model of Current-Voltage Characteristics in Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Elec. Dev., Vol. 34, No. 2, pp.321–324, Feb. 1987.CrossRefGoogle Scholar
  82. [82]
    P.-S. Lin, J.-Y. Guo and C.-Y. Wu, “A Quasi-Two-Dimensional Analytical Model for the Turn-on Characteristics of Polysilicon Thin-Film Transistors,” IEEE Trans. Elec. Dev., Vol. 37, No. 3, pp. 666–674, March 1990.CrossRefGoogle Scholar
  83. [83]
    R. E. Proano, R. S. Misage and D. G. Ast, “Development and Electrical Properties of Undoped Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Elec. Dev., Vol. 36, No. 9, pp.1915–1922, Sept. 1989.CrossRefGoogle Scholar
  84. [84]
    B. Faughnan, “Subthreshold Model of a Polycrystalline Silicon Thin-Film Field Effect Transistor,” Appl. Phys. Lett, Vol. 50, No. 5, pp. 290–292, Feb. 1987.CrossRefGoogle Scholar
  85. [85]
    T.-S. Li and P.-S. Lin, “On the Pseudo-Subthreshold Characteristics of Polycrystalline-Silicon Thin-Film Transistors with Large Grain Size,” IEEE Elec. Dev. Let., Vol. 14, No. 5, pp.240–242, May 1993.CrossRefGoogle Scholar
  86. [86]
    M. Hack, J. G. Shaw, P. G. LeComber and M. Willums, “Numerical Simulation of Amorphous and Polycrystalline Silicon Thin-Film Transistors,” Jpn. J. Appl. Phys., Vol. 29, No. 12, L-2360–2362, Dec. 1990.CrossRefGoogle Scholar
  87. [87]
    S. S. Chen and J. B. Kuo, “An Analytical Moderate Inversion Drain Current Model for Polycrystalline Silicon Thin-Film Transistors Considering Deep and Tail States in the Grain Boundary,” J. Appl. Phys., Vol. 79, No. 4, pp. 1961–1967, Feb. 1996.CrossRefGoogle Scholar
  88. [88]
    J. G. Shaw and M. Hack, “Amorphous and Polysilicon Device Simulations,” IEDM Dig., pp. 915–918, 1992.Google Scholar
  89. [89]
    G. Fortunato and P. Migliorato, “Determination of Gap State Density in Polycrystalline Silicon by Field-Effect Conductance,” Appl. Phys. Let, Vol.49, No. 16, pp.1025–1027, Oct., 1986.CrossRefGoogle Scholar
  90. [90]
    H. N. Chern, C. L. Lee and T. F. Lei, “The Effects of Fluorine Passivation on Polysilicon Thin-Film Transistors,” IEEE Trans. Elec. Dev., Vol. 41, No. 5, pp.698–702, May 1994.CrossRefGoogle Scholar
  91. [91]
    M. Hack and A. G. Lewis, “Avalanche-Induced Effects in Polysilicon Thin-Film Transistors,” IEEE Elec. Dev. Let, Vol. 12, No. 5, pp. 203–205, May 1991.CrossRefGoogle Scholar
  92. [92]
    Y. H. Byun, M. Shur, M. Hack and K. Lee, “New Analytical Polycrystalline-Silicon Thin-Film Transistor Model for Computer Aided Design and Parameter Extraction,” Sol. St Elec, Vol. 35, No. 5, pp. 655–663, May 1992.CrossRefGoogle Scholar
  93. [93]
    S. S. Chen, F. C. Shone, and J. B. Kuo, “A Closed-Form Inversion-Type Polysilicon Thin-Film Transistor DC/AC Model Considering the Kink Effect,” J. Appl. Phys., Vol. 77, No. 4, pp. 1776–1784, Feb. 1995.CrossRefGoogle Scholar
  94. [94]
    C. C. Li, H. Ikeda, T. Inoue, and P. K. Ko, “A Physical Polysilicon Thin Film Transistors Model for Circuit Simulations,” IEDM Dig., pp.497–500, 1993.Google Scholar
  95. [95]
    S. M. Sze, “Physics of Semiconductor Devices,” Wiley: New York, 1991.Google Scholar
  96. [96]
    F.-C. Hsu, P.-K. Ko, S. Tarn, C. Hu, and R. S. Muller, “An Analytical Breakdown Model for Short-Channel MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 29, No. 11, pp.1735–1740, Nov. 1982.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • James B. Kuo
    • 1
  • Ker-Wei Su
    • 1
  1. 1.National Taiwan UniversityTaiwan

Personalised recommendations