Advertisement

Scientific-Medical Foundations of Radiation Protection

  • K. Pinkau
  • K. Decker
  • C. F. Gethmann
  • H. W. Levi
  • J. Mittelstraß
  • S. Peyerimhoff
  • G. zu Putlitz
  • A. Randelzhofer
  • C. Streffer
  • F. E. Weinert
Chapter

Abstract

In this chapter, we will present the scientific-medical foundations which are the basis of today’s standards for radiation protection. They are the result of decades of intensive research. The case of radiation protection is thus rather outstanding with respect to completeness and reliability of its foundations. Political practice will often require that standards are based on a less solid basis of knowledge. It is exactly for this reason, however, that the standards of radiation protection have been chosen to serve as a model for the establishment of environmental standards in this study.

Keywords

Radiation Protection Environmental Standard Relative Biological Effectiveness Organ Dose Radiation Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alper, T. (1979): Cellular Radiobiology, Cambridge, Cambridge University Press.Google Scholar
  2. Altmann, K.I., Gerber, G.B., Okada, S. (1970): Radiation-Biochemistry, New York, Academic Press.Google Scholar
  3. BEIR (1980): The Effects of Exposure to Low Levels of Ionizing Radiation, Washington, D.C., National Academic Press.Google Scholar
  4. Boice, J.D., Fraumeni, J.F. (1984): Radiation Carcinogenesis: Epidemiology and Biological Significance, New York, Raven Press.Google Scholar
  5. Bond, V.P., Fliedner, T.M., Archambeau, J.O. (1965): Mammalian Radiation Lethality: a Disturbance in Cellular Kinetics, New York, Academic Press.Google Scholar
  6. Chadwick, K.H., Leenhouts, H.P. (1981): The Molecular Theory of Radiation Biology, Berlin, Springer.CrossRefGoogle Scholar
  7. Chem G 1982 (Chemikaliengesetz): Gesetz zum Schutz gegen gefährliche Stoffe.Google Scholar
  8. Cook-Mozaffari, P.J., Darby, S.C., Doll, R., Forman, D., Hermon, C., Pike, M.C., Vincent, T. (1989a): Geographical Variation in Mortality from Leukaemia and Other Cancers in England and Wales in Relation to Proximity Nuclear Installations, 1969–1978, Brit. J. Cancer 59, 476–485.CrossRefGoogle Scholar
  9. Cook-Mozaffari, P.J., Darby, S.C., Doll, R. (1989b): Cancer Near Potential Sites of Nuclear Installations, Lancet II, No 8672, 1145–1147.CrossRefGoogle Scholar
  10. Darby, S.C., Doll, R. (1987): Falbut, Radiation Doses Near Dounreay, and Childhood Leukaemia, Brit. Med. J. 294, No 6572, 603–607.CrossRefGoogle Scholar
  11. Dikomey, E., Franzke, J. (1986): Three Classes of DNA Strand Breaks Induced by X-Irradiation and Internal ß-Rays, Int. J. Radiat. Biol. 50, 893–908.CrossRefGoogle Scholar
  12. Dunning, D.E., Schwarz, G. (1981): Variability of Human Thyroid Characteristics and Estimates of Dose from Ingested I-131, Health Phys. 40, 661–675.CrossRefGoogle Scholar
  13. Eckerman, K.F., Kerr, G.D., Raridon, R. (1980): Organ Doses from Isotropic and Cloud Sources of Gamma Rays, Health Phys. 39. 1054.Google Scholar
  14. Ehling, U.H. (1987): Quantifizierung des strahlengenetischen Risikos, Strahlen, Strahlenther. Onkol. 163, 283–291.Google Scholar
  15. Elkind, K.F., Sutton, H. (1960): Radiation Response of Mammalian Cells Grown in Culture. I. Repair of X-Ray Damage in Surviving Chinese Hamster Cells, Radiat. Res. 13, 556–593.CrossRefGoogle Scholar
  16. Feinendegen, L.E. (1977): Das Strahlenrisiko bei Kernreaktoren und radioaktivem Müll, Öff. Gesundh.-Wesen 39, 584–598.Google Scholar
  17. Fischer, A. (1981): Schilddrüsengewichte im saarländisch-pfälzischen Raum — Ein Beitrag zur Endemie des Kropfes, Dissertation, Universität des Saarlandes, Homburg.Google Scholar
  18. Gardner, M.J., Snee, M.P., Hall, A.J., Powell, C.A., Downes, S., Terrell, J.D. (1990): Results of a Case-Control Study of Leukaemia and Lymphoma among Young People Near Sellafield Nuclear Plant in West Cumbria, Brit. Med. J 300, 423–434.CrossRefGoogle Scholar
  19. Generoso, W.M., Shelby, M.D., Serres de, F.J. (1980): DNA Repair and Mutagenesis in Eukaryotes, New York, Plenum Press.CrossRefGoogle Scholar
  20. Glöbel, B. (1978): Die Ökologie von stabilem und radioaktivem Jod und Bedeutung für die Beurteilung des Strahlenrisikos bei der medizinischen Anwendung, Habilitationsschrift, Universität des Saarlandes, Homburg.Google Scholar
  21. Hall, E.J. (1978): Radiobiology for the Radiologist, Hagerstown/Maryland, Harper and Row.Google Scholar
  22. Hanawalt, Ph.C., Cooper, P.K., Ganesau, A.K., Smith, Ch.A. (1979): DNA Repair in Bacteria and Mammalian Cells, Annu. Rev. Biochem. 48, 783.CrossRefGoogle Scholar
  23. Hellstem, P., Keller, H.E., Weinheimer, D. (1978): Thyroid Jodine Concentration and Total Thyroid Iodine in Normal Subjects and in Endemic Goitre Subjects, J. Endocrinol. 9, 351–356.Google Scholar
  24. Henrichs, K., Kaul, A. (1982): Age Dependent Values of Specific Absorbed Fractions and Specific Effective Energy for the Dosimetry of Internal Emitters, Rad. Prot. Dosim., Vol. 3, No. 1/2, 71–73.Google Scholar
  25. Henrichs K., Müller-Brunecker, G., Paretzke, H.G. (1983): Zur Strahlenexposition der Schilddrüse bei Inkorporation von Jod-Isotopen, GSF-Bericht, GSFS-960.Google Scholar
  26. Hoffmann, F.O. (1973): Parameters to be Considered when Calculating the Age Dependent 1–131 Dose to the Thyroid, Bericht des Instituts für Reaktorsicherheit, Köln (jetzt GRS), IRS,Google Scholar
  27. ICRP (1975): Report of the Task Group on Reference Man, ICRP Publication, ICRP 23, Oxford, Pergamon Press.Google Scholar
  28. ICRP (1977): Recommendations of the International Commission on Radiological Protection, ICRP Publication, ICRP 26, Oxford, Pergamon Press.Google Scholar
  29. ICRP (1979): Limits for Intakes of Radionuclides by Workers, ICRP Publication,Google Scholar
  30. ICRP 30, Oxford, Pergamon Press.Google Scholar
  31. Ishihara, T., Sasaki, M.S. (1983): Radiation-Induced Chromosome Damage in Man, New York, Alan R. Liss, Inc.Google Scholar
  32. Jacobi, W (1975): The Concept of the Effective Dose — A Proposal for the Combination of Organ Doses, Radiat. Environ. Bioph. 12, 101–109.CrossRefGoogle Scholar
  33. Jacobi, W., Paretzke, H.G., Ehling, U.H. (1981): Strahlenexposition und Strahlenrisiko der Bevölkerung, Kapitel II, GSF-Bericht, GSF-S-710.Google Scholar
  34. Jacobi, W. (1987): Strahlenschutz in Forschung und Praxis, Stuttgart, G. Thieme, vol. XXIX.Google Scholar
  35. Jacobi, W. (1988): Strahlenexposition und Strahlenrisiko der Bevölkerung durch den Tschernobyl-Unfall, Phys. BI. 44, 240–246.Google Scholar
  36. Karhausen, L., Pages, J.P., Vacca, G., Piepz, A., Visscher, M. (1973): Metabolisme de l’iode chez l’enfant et l’adolescent dans une région de la communauté, Bericht der Europäischen Gemeinschaften, EUR 4964 f. 18/86.Google Scholar
  37. Kaul, A., Roedler, H.D. (1980): Radioiodine: Biokinetics, Mean Dose and Dose Distribution, Radiat. Environ. Bioph. 18, 185–195.CrossRefGoogle Scholar
  38. Kellerer, A.M. (1990): The New Estimates of Radiation Risks, Vol. 55, No 4, 198–203.Google Scholar
  39. Kiefer, J. (1981): Biologische Strahlenwirkung, Berlin, Springer.CrossRefGoogle Scholar
  40. Killough, G.G., Eckerman, K.F. (1983): Internal Dosimetry, in: Radiological Assessment, J.E. Till & H.R. Meyer (eds.), U.S Nuclear Regulatory Commission, Washington, NUREG/CR-3332, 7–88.Google Scholar
  41. Kinlen, L. (1988): Evidence for an Infective Cause of Childhood Leukaemia: Comparison of a Scottish New Town with Nuclear Reprocessing Sites in Britain, Lancet II, No 8624, 1323–1326.CrossRefGoogle Scholar
  42. Kocher, D.C. (1983): External Dosimetry, in: Radiological Assessment, J.E. Till & H.R. Meyer (eds.), U.S. Nuclear Regulatory Commission, Washington, NUREG/CR-3332, 8.1–8.52.Google Scholar
  43. Kramer, R., Drexler, G. (1982): On the Calculation of the Effective Dose Equivalent, Rad. Prot. Dosim. Vol. 3, No 1/2, 13–24.Google Scholar
  44. Luckey, T.D. (1980): Hormesis with Ionizing Radiation, Boca Raton, Florida CRC Press, Inc..Google Scholar
  45. Matthies, M., Eisfeld, K., Paretzke, H.G., Pröhl, G., Wirth, E. (1982): Simulation des Transfers von Radionukliden in landwirtschaftlichen Nahrungsketten, GSF-Bericht, GSF-S-882.Google Scholar
  46. McKusick, V.A. (1983): Mendelian Inheritance in Man, 6th ed., Baltimore, John Hopkins University Press.Google Scholar
  47. NIH (1985): Report of the National Institutes of Health ad hoc Working Group to Develop Radioepidemiological Tables, NIH Publication No. 85 2748, U.S. Department of Health and Human Services, Washington, D.C..Google Scholar
  48. Nothdurft, W. (1985): Knochenmark, in: Handbuch der Radiologie, Berlin, Springer, vol. XX, 235–264.Google Scholar
  49. Otake, M., Yoshimaru, H., Schuh, W.J. (1988): Severe Mental Retardation among the Prenatally Exposed Survivors of the Atomic Bombing of Hiroshima and Nagasaki: A Comparison of the T6SDR and D586 Dosimetry Systems, Radiation Effects Research Foundation, Hiroshima, RERF TR.Google Scholar
  50. Pampfer, S., Streffer, C. (1988): Prenatal Death and Malformations after Irradiation of Mouse Zygotes with Neutrons or X-Rays, Teratology 37, 1–9.CrossRefGoogle Scholar
  51. Patterson, M.C., Bech-Hanssen, N.T., Smith, P.J., Mulvihill, J.J. (1984): Radiogenic Neoplasia, Cellular Radiosensivity and Faulty DNA Repair, in: Radiation Carcinogenesis, J.D. Boice & J.F. Fraumeni (eds.), New York, Raven Press, 319–336.Google Scholar
  52. Preston, D.L., Kato, H., Kopecki, K.J., Fujita, Sh. (1987): Cancer Mortality among A-Bomb Survivors in Hiroshima and Nagasaki, Life Span Study Report 10, Part 1, 1950–1982, Radiation Effects Research Foundation, Hiroshima, RERF TR 1–86.Google Scholar
  53. Pröhl, G., Friedland, W., Paretzke, H.G. (1986): Intercomparison of the Terrestrial Food Cham Models FOOD-MARC and ECOSYS, GSF-Bericht, GSF 18/86.Google Scholar
  54. Roedler, H.D. (1977): Strahlenexposition des Patienten durch Radiopharmaka — Grenzen der Genauigkeit von Dosisberechnungen, Dissertation, FU Berlin.Google Scholar
  55. Roman, E., Beral, V., Carpenter, L., Watson, A., Barton, C., Ryder, H., Aston, D.L. (1987): Childhood Leukaemia in the West Berkshire and Basingstroke and North Hampshire District Health Authorities in Relation to Nuclear Establishments in the Vicinity, Lancet, 17–22.Google Scholar
  56. Schuh, W.J., Otake, M., Neel, J.V. (1981): Genetic Effects of the Atomic Bombs: A Reappraisal, Science 213, 1220–1227.CrossRefGoogle Scholar
  57. Shellabarger, C.J., Chmelevsky, D., Kellerer, A.M. (1980): Induction of Mammary Neoplasms in the Sprague-Dawley Rat by 430 keV Neutrons and XRays, J. Natl. Cancer 164, 821–833.Google Scholar
  58. Shimizu, Y., Kato, H., Schull, W.J., Preston, D.L., Fujita, Sh., Pierce, D.A. (1987): Comparison of Risk Coefficients for Site-Specific Cancer Mortality Based on the D586 and T6SDR Shielded Kerma and Organ Doses, Life Span Study Report 11, Radiation Effects Research Foundation, Hiroshima, RERF TR 12–87.Google Scholar
  59. Snyder, W.S., Fisher, L., Ford, M.R. (1969): Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom, MIRD Pamphlet 5, J. Nucl. Med. 10, Suppl..Google Scholar
  60. Sonntag von, C. (1987): The Chemical Basis of Radiation Biology, London, Taylor & Francis.Google Scholar
  61. Stather, J.W., Greenhalgh, J.R. (1983): The Metabolism of Iodine in Children and Adults, NRPB — R 140, Didcot.Google Scholar
  62. Stewart, A., Kneale, G.W. (1968): Changes in the Cancer Risk Associated with Obstetric Radiography, Lancet, No 7534, 104–107.CrossRefGoogle Scholar
  63. SSK 1985 (Strahlenschutzkommission): Wirkungen nach pränataler Bestrahlung, Bundesminister des Innern (ed.), vol. 2, Stuttgart, Gustav Fischer Verlag.Google Scholar
  64. Strlsch V 1989 (Strahlenschutzverordnung): Verordnung über den Schutz vor Schäden durch ionisierende Strahlen.Google Scholar
  65. Streffer, C. (1969): Strahlen-Biochemie, Heidelberger Taschenbücher 59/60, Berlin, Springer.CrossRefGoogle Scholar
  66. Streffer, C., Müller, W.-U. (1984): Radiation Risk from Combined Exposure to Ionizing Radiations and Chemicals, Adv. Radiat. Biol. 11, 173–210.Google Scholar
  67. Streffer, C., van Beuningen, D. (1985): Zelluläre Strahienbiologie und Strahlen-Pathologie, Handbuch der Radiologie, Berlin, Springer, vol. XX, 1–39.Google Scholar
  68. Streffer, C. (1985): Mechanismen der strahlenbedingten Kanzerogenese: Aspekte zellbiologischer und tierexperimenteller Untersuchungen, in: Strahlenschutz in Forschung und Praxis, Stuttgart, G. Thieme, vol. XXVIII, 34–47.Google Scholar
  69. Streffer, C. (1987): Risiko nach Strahlenexpositionen während der pränatalen Entwicklung des Menschen, in: Strahlenschutz in Forschung und Praxis, Stuttgart, G. Thieme, vol. XXVIII, 34–47.Google Scholar
  70. Trott, K.R. (1985): Strahlenwirkungen auf die Abdominalorgane, in: Handbuch der Radiologie, Berlin, Springer, vol. XX, 69–100.Google Scholar
  71. UNSCEAR 1977 (United Nations Scientific Committee on the Effects of Atomic Radiation): Sources and Effects of Ionizing Radiation, United Nations, New York.Google Scholar
  72. UNSCEAR 1982 (United Nations Scientific Committee on the Effects of Atomic Radiation): Ionizing Radiation: Sources and Biological Effects, United Nations, New York.Google Scholar
  73. UNSCEAR 1986 (United Nations Scientific Committee on the Effects of Atomic Radiation): Genetic and Somatic Effects of Ionizing Radiation, United Nations, New York.Google Scholar
  74. UNSCEAR 1988 (United Nations Scientific Committee on the Effects of Atomic Radiation): Sources, Effects and Risks of Ionizing Radiation, United Nations, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • K. Pinkau
  • K. Decker
  • C. F. Gethmann
  • H. W. Levi
  • J. Mittelstraß
  • S. Peyerimhoff
  • G. zu Putlitz
  • A. Randelzhofer
  • C. Streffer
  • F. E. Weinert

There are no affiliations available

Personalised recommendations