Skip to main content

Abstract

This chapter describes the embedding properties of some emerging reconfigurable and partitionable optical networks, and motivates and formalizes several combinatorial optimization problems associated with embeddings in these networks. In particular, the embedding properties of a reconfigurable multichannel free-space optical backplane called the “HyperPlane” will be described. The networks to be embedded can be conventional point-to-point networks which are modeled as graphs G(V, E), or bus-based networks which are modeled as hypergraphs H(V, E). By partitioning the backplane optical channels appropriately, the optical backplane can be dynamically reconfigured to embed arbitrary networks in real time. The optical backplane can thus provide terabits of low latency bandwidth for message-passing multiprocessors based upon graphs, and shared memory multiprocessors based upon broadcast busses. It is also shown that partitionable optical networks exhibit a significant improvement in performance over non-partitionable optical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Barak and E. Schenfeld. Embedding classical communication topologies in the scalable OPAM architecture. IEEE Transactions on Parallel and Distributed Systems, 7 (9): 962–978, Sept. 1996.

    Google Scholar 

  2. C. Berge. Hypergraphs. North-Holland Mathematical Library, Amsterdam, 1989.

    MATH  Google Scholar 

  3. J.-C. Bermond, J. Bond, and S. Djelloul. Dense bus networks of diameter 2. Research Report 94–46, CNRS, Université de Nice Sophia-Antipolis, Aug. 1994.

    Google Scholar 

  4. J.-C. Bermond, J. Bond, and J.-F. Saclé. Large hypergraphs of diameter 1. In Bollobas, editor, Graph Theory and Combinatorics. Academic Press, 1984.

    Google Scholar 

  5. P. Berthomé and A. Ferreira. Improved embeddings in POPS networks through stack-graph models. In Third International Workshop on Massively Parallel Processing using Optical Interconnections, pages 130–136. IEEE CS Press, Oct. 1996.

    Chapter  Google Scholar 

  6. J. Bhasker and S. Sahni. Optimal linear arrangement of circuit components. Journal of VLSI and Computer Systems, pages 87–109, 1987.

    Google Scholar 

  7. J. A. Bondy and U. S. R. Murphy. Graph Theory with Apllications. North Holland, 1984.

    Google Scholar 

  8. H. Bourdin, A. Ferreira, and K. Marcus. A comparative study of one-to-many WDM lightwave interconmnection networks for multiprocessors. In Second International Workshop on Massively Parallel Processing using Optical Interconnections,pages 257–253, San Antonio (USA), Oct. 1995. IEEE Press.

    Google Scholar 

  9. S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. Field Programmable Gate Arrays. Kluwer Academic Publishers, 1992.

    Google Scholar 

  10. Canadian Institute for Telecommunications Research. Research program 199697, photonic devices and systems, Aug. 1996. (http://www.citr.ee.mcgill.ca).

    Google Scholar 

  11. J. P. Cohoon and S. Sahni. Heuristics for backplane ordering. Journal of VLSI and Computer Systems, pages 37–60, 1987.

    Google Scholar 

  12. Cray Research Inc. Cray T3D system architectural overview, Sept. 1993.

    Google Scholar 

  13. P. Desai. Embeddings of a cray T3D supercomputer into the optical backplane. Microelectronics and Computer Systems (MACS) Laboratory, McGill University, Montreal, Quebec, Canada.

    Google Scholar 

  14. P. W. Dowd. Wavelength division multiple access channel hypercube processor interconnection. IEEE Transactions on Computers, 41 (10): 1223–1241, Oct. 1992.

    Article  Google Scholar 

  15. E. E. E. Frietman. Opto-electronic processing and networking: A design study. Delft University of Technology Printing Office, 1995.

    Google Scholar 

  16. M. Garey and D. Johnson. Computers and Intractability. A guide to the theory of NP-completeness. W. Freeman and Compagny, New York, 1979.

    Google Scholar 

  17. G. Gravenstreter and R. G. Melhem. Embedding rings and meshes in partitioned optical passive star networks. In Second International Workshop on Massively Parallel Processing using Optical Interconnections,pages 220–227, San Antonio (USA), Oct. 1995. IEEE Press.

    Google Scholar 

  18. Z. Guo, R. G. Melhem, R. W. Hall, D. M. Chiarulli, and S. P. Levitan. Pipelined communications in optically interconnected arrays. Journal of Parallel and Distributed Computing, 12 (3): 269–282, July 1991.

    Article  Google Scholar 

  19. J. H. Ha and T. M. Pinkston. The SPEED cache coherence protocol for an optical multi-access interconnect architecture. In Second International Workshop on Massively Parallel Processing using Optical Interconnections, pages 98–107, San Antonio (USA), Oct. 1995. IEEE Press.

    Google Scholar 

  20. H. S. Hinton and T. H. Szymanski. Intelligent optical backplanes. In Second International Workshop on Massively Parallel Processing using Optical Interconnections, pages 133–143, San Antonio (USA), Oct. 1995. IEEE Press.

    Google Scholar 

  21. J. Kilian, S. Kipnis, and C. E. Leiserson. The organization of permutation architectures with bused interconnections. IEEE Transactions on Computers, 39 (11): 1346–1358, Nov. 1990.

    Article  ADS  Google Scholar 

  22. R. K. Kostuck, T. J. Kim, D. Ramsey, T.-H. Oh, and R. Boye. Connection cube and interleaved optical backplane for a multiprocessor data bus. In Second International Workshop on Massively Parallel Processing using Optical Interconnections, pages 144–151, San Antonio (USA), Oct. 1995. IEEE Press.

    Google Scholar 

  23. B. Krishnamurthy and M. S. Krishnamoorthy. The difficulty of funding good embeddings of program graphs onto the OPAM architecture. In Second International Workshop on Massively Parallel Processing using Optical Interconnections, pages 124–129, San Antonio (USA), Oct. 1995. IEEE Press.

    Google Scholar 

  24. F. T. Leighton. Introduction to Parallel Algorithms: Arrays, Trees, Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.

    Google Scholar 

  25. Y. Li, S. B. Rao, I. Redmond, and T. Wing. Free-space WDMA optical interconnects using mesh-connected bus topology. In Proc. Int. Conf. Optical Computing (OC’94), pages 153–156, Edinburgh, 1994. Institute of Physics Publishing.

    Google Scholar 

  26. G. Liu, K. Y. Lee, and H. F. Jordan. n-dimensional processor arrays with optical buses. In Second International Workshop on Massively Parallel Processing using Optical Interconnections, pages 116–123, San Antonio (USA), Oct. 1995. IEEE Press.

    Google Scholar 

  27. L. M. Mackenzie, M. Ould-Khaoua, R. J. Sutherland, and T. Kelly. Cobra: A high-performance interconnection for large multicomputers. Computing Science Research Report 1991/R19, University of Glasgow, Oct. 1991.

    Google Scholar 

  28. T. S. Obenaus. Topology of a high speed free-space photonic network. Master’s thesis, Depts. Elec. Eng. and Computer Science, McGill University,.

    Google Scholar 

  29. T. S. Obenaus and T. H. Szymanski. Embedding star graphs into optical meshes without bends. Submitted.

    Google Scholar 

  30. I. Redmond and E. Schenfeld. A distributed reconfigurable free-space optical interconnection network for massively parallel processing architectures. In Proc. Int. Conf. Optical Computing, pages 215–218, Edinburgh, Aug. 1994. Institute of Physics Publishing.

    Google Scholar 

  31. D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, M. H. Ayliffe, D. N. Kabal, A. V. Krishnamoorthy, K. W. Goosen, J. A. Walker, B. Tseng, S. P. Hui, J. C. Cunningham, and W. Y. Jan. A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator. Journal of Quantum Electronics, pages 97–105, Apr. 1996. Special Issue on Smart Pixels.

    Google Scholar 

  32. I. Scherson. Orthogonal graphs for a class of interconnection networks. IEEE Transactions on Parallel and Distributed Systems, 2 (1): 3–19, Jan. 1991.

    Article  Google Scholar 

  33. H. J. Siegel. The theory underlying the partitioning of permutation networks. IEEE Transactions on Computers, 29 (9): 791–800, 1980.

    Article  MATH  Google Scholar 

  34. Q. F. Stout. Mesh-connected computers with broadcasting. IEEE Transactions on Computers, 32 (9): 826–830, Sept. 1983.

    Article  MATH  Google Scholar 

  35. T. Szymanski. Graph-theoretic models for photonic networks. In I. Scherson, editor, Proceedings of New Frontiers: A Workshop on Future Directions of Massively Parallel Processing, pages 85–96. IEEE Computer Society, IEEE Press, Oct. 1992.

    Chapter  Google Scholar 

  36. T. H. Szymanski. Hypermeshes–optical interconnection networks for parallel computing. Journal of Parallel and Distributed Computing, 26: 1–23, Apr. 1995.

    Article  MATH  Google Scholar 

  37. T. H. Szymanski and H. S. Hinton. Reconfigurable intelligent optical backplane for parallel computing and communications. Applied Optics, pages 1253–1268, Mar. 1996. Special Issue on Optical Computing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Szymanski, T.H., Obenaus, S.T. (1998). Embedding Properties of Reconfigurable Partitionable Optical Networks. In: Berthomé, P., Ferreira, A. (eds) Optical Interconnections and Parallel Processing: Trends at the Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2791-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2791-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4782-6

  • Online ISBN: 978-1-4757-2791-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics