Advertisement

Smart-Pixel Technology Current Status and Future Trends

  • Marc P. Y. Desmulliez
  • Brian S. Wherrett
Chapter

Abstract

Smart-pixel technology or hybrid-VLSI electronics is emerging as a serious candidate for the fabrication of massively parallel, large throughput bandwidth optoelectronics systems. This chapter attemps to review the current state of the art and the future trends in this field. Basic considerations show that the technology depends on few parameters in the optical and electronic domains. A system-specific calculation on the optimum throughput is carried out in the case of the bitonic sorter demontrator which is being built at Heriot-Watt University. The methodology developed emphasizes the need for more compact, high sensitivity, high gain and low power consumption photoreceiver amplifiers as well as the development of short pulse duration, high modulation rate, high energy laser sources.

Keywords

Spatial Light Modulator Clock Period Throughput Rate Voltage Swing Optical Interconnection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Alidina, S. Devadas, A. Ghosh, and M. Papaefthymiou. Precomputationbased sequential logic optimization for low power. IEEE Transactions on VLSI Systems, 2:126.-435, 1994.Google Scholar
  2. [2]
    N. E. Batcher. Sorting networks and their applications. In Spring Joint Computer Confercnec, pages 307— 314, 1968.Google Scholar
  3. [3]
    A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low power CMOS digital design. IEEE Journal of Solid-State Circuits, 27: 473–484, 1992.CrossRefGoogle Scholar
  4. [4]
    M. P. Y. Desmulliez, P. W. Foulk, and M. R. Taghizadeh. Optical clock distribution for multichip module Accepted for Optical Review, 1997.Google Scholar
  5. [5]
    M. P. Y. Desmulliez, P. W. Foulk, and B. S. Wherrett. Hybrid technology for optoelectronic parallel processing. basic considerations. Accepted to OSA Topical Meeting in Optics in Computing 97, Lake Tahoe, Nevada, USA, 1997.Google Scholar
  6. [6]
    M. P. Y. Desmulliez, F. A. P. Tooley, J. A. B. Dines, N. L. Grant, D. J. Goodwill, D. Baillie, B. S. Wherrett, P. W. Foulk, S. Ashcroft, and P. Black. Perfect-shuffle interconnected bitonic sorter: optoelectronic design..applied Optics, 34: 50775090, 1995.Google Scholar
  7. [7]
    M. P. Y. Desmulliez, B. S. Wherrett, A. J. Waddie, J. F. Snowdon, and J. A. B. Dines. Performance analysis of SEED-based smart-pixel arrays used in data sorting. Applied Optics, 35 (32): 6397–6416, 1996.ADSCrossRefGoogle Scholar
  8. [8]
    J. A. B. Dines. Smart-pixel optoelectronic receiver based on a charge sensitive amplifier design. IEEE Journal on Selected Topics in Quantum Electronics, 2: 117–120, 1996.CrossRefGoogle Scholar
  9. [9]
    Eager. Advances in rechargeable batteries pace portable computer growth. In Silicon Valley Personal Computer Conference, pages 693–697, 1991.Google Scholar
  10. [10]
    M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee. Comparison between optical and electrical interconnects based on power and speed considerations. Applied Optics, 27: 1742–1751, 1988.ADSCrossRefGoogle Scholar
  11. [11]
    D. Fey. Characterization of massively parallel smart-pixels systems for the example of a binary associative memory. In Second International Workshop on Massively Parallel Processing using Optical Interconnections,pages 76–83, San Antonio (USA), Oct. 1995. IEEE Computer Society Press.Google Scholar
  12. [12]
    S. R. Forrest and H. S. Hinton. Special issue on smart pixels. IEEE Journal of Quantum Electronics, Vol. 29, 1993.Google Scholar
  13. [13]
    W. Franz. Z. Naturforsch. Teil. A 13, 1958.Google Scholar
  14. [14]
    J. W. Goodman. Optical Processing and Computing, chapter Optics as an interconnect technology, pages 1–32. Academic Press, San Diego, 1989. H.H. Arsenault, T. Szoplik, and B. Macukow, Eds.Google Scholar
  15. [15]
    M. Goodwin, A. Moseley, M. Kearley, R. Morris, C. Kirby, J. Thompson, R. Goodfellow, and I. Bennion. Opto-electronic component array for optical interconnection of circuits and subsystems. Journal of Lightwave Technology, 9: 1639–1644, 1991.ADSCrossRefGoogle Scholar
  16. [16]
    S. H. Hinterlong and H. M. Hall. Bringing photonics to broadband switching. AT6;T Technical Journal, pages 71–80, 1994.Google Scholar
  17. [17]
    H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley. Free-space digital optical systems. Proceedings of the IEEE, 82: 1632–1649, 1994.CrossRefGoogle Scholar
  18. [18]
    A. Iwata. Optical interconnections for ULSI technology innovation. Optoelectronic Devices and Technology, 9: 778–783, 1994.Google Scholar
  19. [19]
    L. V. Keldysh. Zh. Eksp. Teor. Fiz. 34, 1958. [Soy. Phys. - JETP 7, pp. 788 (1958)].Google Scholar
  20. [20]
    R. W. Keyes. The wire-limited logic chip. IEEE Journal of Solid-State Circuits, 17:1232–1233, 1982.Google Scholar
  21. [21]
    D. R. Kiefer and V. W. Swanson. Implementation of optical clock distribution in a supercomputer. In Optical Computing, number 10, pages 261–263, 1995. OSA Technical Digest Series (Optical Society of America, Washington DC, 1995 ).Google Scholar
  22. [22]
    A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, S. P. Hui, B. Tseng, L. M. F. Chirovsky, R. Leibenguth, D. Kossives, D. Dahringer, L. A. D’Asaro, F. E. Kiamilev, G. F. Aplin, R. G. Rozier, and D. A. B. Miller. Photonic page buffer based on GaAs multiple-quantum-well modulators bonded directly over active silicon CMOS ciruits. Applied Optics, 35: 2439–2448, 1996.ADSCrossRefGoogle Scholar
  23. [23]
    A. V. Krishnamoorthy and D. A. B. Miller. Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap. IEEE Journal on Selected Topics in Quantum Electronics, 2: 55–76, 1996.CrossRefGoogle Scholar
  24. [24]
    Z. L. Lemnos. Manufacturing technology challenges for low power electronics (LPE). DARPA Project, 1996. http://eto.sysplan.com.Google Scholar
  25. [25]
    A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, E. Laskowski, S. Pei, M. Focht, J. Freund, G. Guth, R. Leibenguth, L. Smith, and T. K. Woodward. Field-effect transistor self electrooptic effect (FET-SEED) electrically addressed differential modulator array. Applied Optics, 33: 2849–2855, 1994.ADSCrossRefGoogle Scholar
  26. [26]
    A. L. Lentine, L. M. F. Chirovsky, and T. K. Woodward. Optical energy considerations for diode-clamped smart-pixel optical receivers. IEEE Journal of Quantum Electronics, 30: 1167–1174, 1994.ADSCrossRefGoogle Scholar
  27. [27]
    Ceramic ball grid array package. Semiconductor International, Nov. 1996. page 64.Google Scholar
  28. [28]
    D. T. Lu, H. Ozguz, P. J. Marchand, A. V. Krishnamoorthy, F. Kiamilev, R. Pa-turi, S. H. Lee, and S. C. Esener, Design trade-offs in optoelectronics parallel processing systems using smart-SLMs. Optical and Quantum Electronics, 24: S379 — S403, 1992.CrossRefGoogle Scholar
  29. [29]
    D. A. B. Miller. Hybrid SEED - massively parallel optical interconnections for silicon ICs. In Second International Workshop on Massively Parallel Processing using Optical Interconnections,pages 2–7, San Antonio (USA), Oct. 1995. IEEE Computer Society Press.Google Scholar
  30. [30]
    D. A.’13. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus. Band-edge electroabsorption in quantum well structures - the quantum confined Stark effect. Physics Review Letters, 53: 2173, 1984.ADSCrossRefGoogle Scholar
  31. [31]
    L. S. Nielsen, C. Niessen, J. Sparso, and K. Van Berkel. Low-power operation self-timed circuits and adaptive scaling of the supply voltage. IEEE Transactions on VLSI Systems, 2: 391–397, 1994.CrossRefGoogle Scholar
  32. [32]
    H. Ozaktas and J. W. Goodman. Frontiers of Computing Systems Research 2, chapter The limitations of interconnections in providing communication between an array of points, pages 61–130. Plenum Press, New York, 1991.Google Scholar
  33. [33]
    A. Payne and C. Toumazou. Analog amplifiers: classification and generalization. IEEE Tansactions on Circuits and Systems-I, 43: 43–50, 1995.CrossRefGoogle Scholar
  34. [34]
    D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang. An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays. IEEE Photonics Technology Letters, 7:1057–1069, 199. 5.Google Scholar
  35. [35]
    A. Schiltz. A review of planar techniques for multichip modules. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 15: 236–244, 1992.Google Scholar
  36. [36]
    Semiconductor Industry Association. The national technology roadmap for semiconductors, 1994. San Jose, California.Google Scholar
  37. [37]
    T. H. Szymanski and H. S. Hinton. A reconfigurable intelligent optical backplane for parallel computing and communications. submitted to Applied Optics, 1997.Google Scholar
  38. [38]
    N. Tan and S. Eriksson. Low-power chip-to-chip communication circuits. Electronic Letters, 30: 1732–1733, 1994.CrossRefGoogle Scholar
  39. [39]
    P. P. Vasilev, I. H. White, D. Burns, and W. Sibbett. High-power, low-jitter encoded picosecond pulse genration using an RF-locked, Q-switched multi-contact GaAs/GaAIAs diode laser. Electronic Letters, 29: 1593, 1993.CrossRefGoogle Scholar
  40. [40]
    Vitesse VSC864A-2. Gallium arsenide 64x64 crosspoint switch. Preliminary data sheet, 1993.Google Scholar
  41. [41]
    A. C. Walker, M. P. Y. Desmulliez, F. A. P. Tooley, D. T. Neilson, J. A. B. Dines, D. A. Baillie, S. M. Prince, L. C. Wilkinson, M. R. Taghizadeh, P. Blair, J. F. Snowdon, B. S. Wherrett, C. Stanley, F. Pottier, I. Underwood, D. G. Vass, W. Sibbett, and M. H. Dunn. Construction of demonstration parallel optical processors based on CMOs/InGaAs smart pixel technology. In Second International Workshop on Massively Parallel Processing using Optical Interconnections,pages 180–187, San Antonio (USA), Oct. 1995. IEEE Computer Society Press.Google Scholar
  42. [42]
    T. K. Woodward, L. M. F. Chirovsky, A. L. Lentine, L. A. d’Asaro, E. Laskowski, M. Focht, G. Guth, S. Pei, F. Ren, G. Przybylek, L. Smith, R. Leibenguth, M. Asom, R. Kopf, J. Fuo, and M. Feuer. Operation of a fully integrated GaAsA1X Gal _x As FET-SEED–a basic optically addressed integrated circuit. IEEE Photonic Letters, 4: 616–618, 1992.ADSGoogle Scholar
  43. [43]
    T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, and L. M. F. Chirovsky. Optical receivers for optoelectronic VLSI. IEEE Journal on Selected Topics in Quantom Electronics, 2: 106–116, 1996.CrossRefGoogle Scholar
  44. [44]
    T. K. Woodward, A. L. Lentine, and L. M. F. Chirovsky. Experimental sensitivity studies of diode clamped FET-SEED smart pixels optical receivers. IEEE Journal of Quantum Electronics, 30: 2319–2324, 1994.ADSCrossRefGoogle Scholar
  45. [45]
    A. Yu, M. Krainak, and G. Unger. 1047-nm laser diode master ocillato Nd:YLF power amplifier laser system. Electronic Letters, 29: 678–679, 1993.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Marc P. Y. Desmulliez
    • 1
  • Brian S. Wherrett
    • 2
  1. 1.Department of Computing & Electrical EngineeringHeriot-Watt UniversityScotland, UK
  2. 2.Department of PhysicsHeriot-Watt UniversityScotland, UK

Personalised recommendations