Endothelin pp 93-119 | Cite as

Endothelin Receptor-Signaling Mechanisms in Vascular Smooth Muscle

  • E. Radford Decker
  • Tommy A. Brock
Chapter
Part of the Contemporary Biomedicine book series (CB)

Abstract

The local regulation of tissue blood flow depends on a delicate balance of physical and chemical stimuli acting on the vascular endothelium, the innermost lining of all blood vessels. By virtue of its location at the blood—tissue interface in vivo, vascular endothelium is ideally suited to play a pivotal role in vascular tone regulation. It is now well-documented that endothelial cells produce several vasoactive substances that activate or inhibit underlying smooth muscle cells in the blood vessel wall. Vascular smooth muscle cell (VSMC) stimulation leads to relaxation/contraction via a series of biochemical and morphological events that are responsible directly for mediating changes in vessel diameter. To date, endothelin is one of the most potent stimulators of both vascular and nonvascular smooth muscle contraction that has been identified.

Keywords

Nickel Hydrolysis Tyrosine Adenosine Explosive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hickey, K. A., Rubanyi, G. M., Paul, R. J., and Highsmith, R. F. (1985) Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. 248: C550–0556.PubMedGoogle Scholar
  2. 2.
    Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T. (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature (London) 332: 411–415.CrossRefGoogle Scholar
  3. 3.
    Rubanyi, G. M. and Polokoff, M. A. (1994) Endothelins: molecular biology, biochemistry, pharamacology, physiology, and pathophysiology. Pharmacol. Rev. 46: 325–414.PubMedGoogle Scholar
  4. 4.
    Arai H., Nori, S., Amori, I., Ohkubu, H., and Nakanishi, S. (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730–732.PubMedCrossRefGoogle Scholar
  5. 5.
    Sakurai, T., Yanagisawa, M., Takuwa, Y., Miyazaki, H., Kimura, S., Goto, K., and Masaki, T. (1990) Cloning of a cDNA encoding a non-isopeptideselective subtype of the endothelin receptor. Nature 348: 732–735.PubMedCrossRefGoogle Scholar
  6. 6.
    Karne, S., Ayawickreme, C. K., and Lerner, M. R. (1993) Cloning and characterization of an endothelin-3 specific receptor (ETc) receptor from Xenopus Laevis dermal melanophores. J. Biol. Chem. 268:19, 126–19, 133.Google Scholar
  7. 7.
    MacLean, M. R., Randall, M. D., and Hiley, C. R. (1989) Effects of moderate hypoxia, hypercapnia, and acidosis on haemodynamic changes induced by endothelin-1 in pithed rat. Br. J. Pharmacol. 98: 1055–1065.PubMedCrossRefGoogle Scholar
  8. 8.
    Davenport, A. P. and Maguire, J. J. (1994) Is endothelin-induced vasoconstriction mediated only by Eta receptors in humans? TIPS 15: 9–11.PubMedGoogle Scholar
  9. 9.
    Bax, W. A. and Saxena, P. R. The current endothelin receptor classification: time for reconsideration? TIPS 15: 379–386.Google Scholar
  10. 10.
    Warner, T. D., Allcock, G. H., Corder, R., and Vane, J. R. (1993) Use of the endothelin antagonists BQ-123 and PD 142893 to reveal three endothelin receptors mediating smooth muscle contraction and the release of EDRF. Br. J. Pharmacol. 110: 777–782.PubMedCrossRefGoogle Scholar
  11. 11.
    Battistini, B., O’Donnell, L. J., Warner, T. D., et al. (1994) Characterization of endothelin (ET) receptors in the isolated gallbladder of the guinea pig: evidence for an additional ET receptor subtype. Br. J. Pharmacol. 112: 1244–1250.PubMedCrossRefGoogle Scholar
  12. 12.
    Teerlink, J. R., Breu, V., Sprecher, U., Clozel, M., and Clozel, J.-P. (1994) Potent vasoconstriction mediated by endothelin ETB receptors in canine coronary arteries. Circ. Res. 74: 105–114.PubMedCrossRefGoogle Scholar
  13. 13.
    Neer, E. J. (1995) Heteromeric G-proteins: organizers of transmembrane signals. Cell 80: 249–257.PubMedCrossRefGoogle Scholar
  14. 14.
    Hepler, J. R. and Gilman, A. G. (1992) G-proteins. TIBS 17: 383–387.PubMedGoogle Scholar
  15. 15.
    Takuwa, Y., Kasuya, Y., Kudo, N., Yanagisawa, M., Goto, K., Masaki, T., and Yamashita, K. (1990) Endothelin receptor is coupled to phospholipase C via a pertussis toxin insensitive guanine nucleotide binding regulatory protein in vascular smooth muscle cells. J. Clin. Invest. 85: 653–658.PubMedCrossRefGoogle Scholar
  16. 16.
    Reynolds, E. E., Mok, L. L., and Kurokawa, S. (1989) Phorbol ester dissociates endothelin-stimulated phosphoinositide hydrolysis and arachidonic acid release in vascular smooth muscle cells. Biochem. Biophys. Res. Comm. 160: 868–873.PubMedCrossRefGoogle Scholar
  17. 17.
    Simonson, M. S. and Dunn, M. J. (1990) Cellular signaling by peptides of the endothelin gene family. FASEB J. 4: 2989–3000.PubMedGoogle Scholar
  18. 18.
    Simonson, M. S. and Dunn, M. J. (1990) Endothelin 1 stimulates contraction of rat glomerular mesangial cells and potentiates beta adrenergic mediated cyclic adenosine monophosphate accumulation. J. Clin. Invest. 85: 790–797.PubMedCrossRefGoogle Scholar
  19. 19.
    Kasuya, Y., Takuwa, Y., Yanagisawa, M., Kimura, S., Masaki, T., and Goto, K. (1992) A pertussis toxin sensitive mechanism of endothelin action in porcine coronary artery smooth muscle. Br. J. Pharmacol. 107: 456–462.PubMedCrossRefGoogle Scholar
  20. 20.
    Muldoon, L. L., Rodland, K. D., Forsythe, M. L., and Magun, B. E. (1989) Stimulation of phosphatidylinositol hydrolysis, diacylglcerol release and gene expression in response to endothelin, a potent new agonist for fibroblasts and smooth muscle cells. J. Biol. Chem. 264: 8529–8536.PubMedGoogle Scholar
  21. 21.
    Vigne, P., Breittmayer, J. P., Marsault, R., and Frelin, C. (1990) Endothelin mobilizes Cat+ from a caffeine and ryanodine insensitive intracellular pool in rat atrial cells. J. Biol. Chem. 265: 6782–6787.PubMedGoogle Scholar
  22. 22.
    Nestler, E. J. and Duman, R. S. (1994) G-proteins and cyclic nucleotides in the nervous system, in: Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 5th ed. ( Siegel, G. J., ed.), Raven, New York.Google Scholar
  23. 23.
    Eguchi, S., Hirata, Y., Imai, T., and Marumo, F. (1993) Endothelin receptor subtypes are coupled to adenylate cyclase via different guanyl nucleotide-binding proteins in vasculature. Endocrinology 132 (2): 524–529.PubMedCrossRefGoogle Scholar
  24. 24.
    Aramori, I. and Nakanishi, S. (1992) Coupling of two endothelin receptor subtypes to differeing signal transduction in transfected Chinese hamster ovary cells. J. Biol. Chem. 267:12, 468–12, 474.Google Scholar
  25. 25.
    Lee, S. B. and Rhee, S. G. (1995) Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr. Opin. Cell Biol. 7: 183–189.PubMedCrossRefGoogle Scholar
  26. 26.
    Divecha, N. and Irvine, R. F. (1995) Phospholipid signaling. Cell 80: 269–278.PubMedCrossRefGoogle Scholar
  27. 27.
    Pang, D. C., John, A., Patterson, K., Botelho, L. H., and Rubanyi, G. M. (1989) Endothelin-1 stimulates phosphatidyinositol hydrolysis and calcium uptake in isolated canine coronary arteries. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): S75 — S79.PubMedCrossRefGoogle Scholar
  28. 28.
    Kasuya, Y., Ishikawa, T., Yanagisawa, M., Kimura, S., Goto, K., and Masaki, T. (1989) Mechanism of contraction to endothelin in isolated porcine coronary artery. Am. J. Physiol. 257: H1828 — H1835.PubMedGoogle Scholar
  29. 29.
    Kasuya, Y., Takuwa, Y., Yanagisawa, M., Kimura, S., Goto, K., and Masaki, T. (1989) Endothelin-1 induces vasocontriction through two functionally distinct pathways in porcine coronary artery: contribution of phosphoinositide turnover. Biochem. Biophys. Res. Commun. 161 (3): 1049–1055.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Renterghem, C., Vigne, P., Barhanin, J., Schmid-Alliana, A., Frelin, C., and Lazdunski, M. (1988) Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem. Biophys. Res. Commun. 157: 977–985.PubMedCrossRefGoogle Scholar
  31. 31.
    Resink, T. J., Scott-Burden, T., and Buhler, F. R. (1988) Endothelin stimulates phospholipase C in cultured vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 157: 1360–1368.PubMedCrossRefGoogle Scholar
  32. 32.
    Araki, S., Kawahara, Y., Kariya, K., Sunako, M., Fukuzaki, H., and Takai, Y. (1989) Stimulation of phospholipase C mediated hydrolysis of phosphoinositides by endothelin in cultured rabbit aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 159: 1072–1079.PubMedCrossRefGoogle Scholar
  33. 33.
    Sugiura, M., Inagami, T., Hare, G. M., and Johns, J. A. (1989) Endothelin action: inhibition by a protein kinase C inhibitor and involvement of phosphoinositols. Biochem. Biophys. Res. Commun. 158: 170–176.PubMedCrossRefGoogle Scholar
  34. 34.
    Rapoport, R. M., Stauderman, K. A., and Highsmith, R. F. (1990) Effects of EDCF and endothelin on phosphatidylinositol hydrolysis and contraction in rat aorta. Am. J. Physiol. 258: C122 — C131.PubMedGoogle Scholar
  35. 35.
    Ohlstein, E. H., Horohonich, S., and Hay, D. W. (1989) Cellular mechanisms of endothelin in rabbit aorta. J. Pharmacol. Exp. Ther. 250: 548–555.PubMedGoogle Scholar
  36. 36.
    Homma, Y., Sakamot, H., Tsunda, M., Aoki, M., Takenawa, T., and Ooyama, T. (1993) Evidence for involvement of phospholipase C-d2 in signal transduction of platelet-derived growth factor in vascular smooth muscle cells. Biochem. J. 290: 649–653.PubMedGoogle Scholar
  37. 37.
    Griendling, K. K., Tsuda, T., and Alexander, R. W. (1989) Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J. Biol. Chem. 264: 8237–8240.PubMedGoogle Scholar
  38. 38.
    Sunaka, M., Kawahara, Y., Kariya, K., Tsuda, T., Yokoyama, M., Fukuzaki, H., and Takai, Y. (1990) Mass analysis of 1,2 diacylglycerol in cultured rabbit vascular smooth muscle cells. Comparison of stimulation by angiotensin II and endothelin. Hypertension 15: 84–88.CrossRefGoogle Scholar
  39. 39.
    Xuan, Y. T., Wang, O. L., and Wharton, A. R. (1994) Regulation of endothelin-induced Cat+ mobilization in smooth muscle cells by protein kinase C. Am. J. Physiol. 266: C1560 — C1567.PubMedGoogle Scholar
  40. 40.
    Liu, Y., Geisbuhler, B., and Jones, A. W. (1992) Activation of multiple mechanisms including phospholipase D by endothelin-1 in rat aorta. Am. J. Physiol. 262 (4 PT1): C941 — C949.PubMedGoogle Scholar
  41. 41.
    Plevin, R., Kellock, N. A., Wakelam, M. J., and Wadsworth, R. (1994) Regulation by hypoxia of endothelin-1 stimulated phospholipase D activity in sheep pulmonary artery cultured smooth muscle cells. Br. J. Pharmacol. 112 (1): 311–315.PubMedCrossRefGoogle Scholar
  42. 42.
    Wilkes, L. C., Patel, V., Purkiss, J. R., and Boarder, M. R. (1993) Endothelin-1 stimulated phospholipase D in A10 vascular smooth muscle derived cells is dependent on tyrosine kinase. FEBS Lett. 322 (2): 147–150.PubMedCrossRefGoogle Scholar
  43. 43.
    Boarder, M. R. (1994) A role for phospholipase D in control of mitogenesis. TIPS 15 (2): 57–62.PubMedGoogle Scholar
  44. 44.
    Paul, A. and Plevin, R. (1994) Evidence against a role for phospholipase D in mitogenesis. TIPS 15(6): 174, 175.Google Scholar
  45. 45.
    Axelrod, J., Burch, R. M., and Jelsema, C. L. (1988) Receptor-mediated acivation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci. 11: 117–123.PubMedCrossRefGoogle Scholar
  46. 46.
    Kim, D., Lewis, D. L., Graziadei, L., Neer, E. J., Barsagi, D., and Clapham, D. E. (1989) G-protein fry-subunits activate the cardiac muscarinic K+ -channel via phospholipase A2. Nature (Lond.) 337: 557–560.CrossRefGoogle Scholar
  47. 47.
    Needleman, P., Turk, J., Jakshik, B. A., Morrison, A. R., and Lefkowith, J. B. (1986) Arachidonic acid metabolism. Ann. Rev. Biochem. 55: 66–102.CrossRefGoogle Scholar
  48. 48.
    Shimizu, Y. and Wolfe, L. S. (1990) Arachidonic acid cascade and signal transduction. J. Neurochem. 55: 1–15.PubMedCrossRefGoogle Scholar
  49. 49.
    Schramek, H., Wang, Y., Konieczkowski, M., Simonson, M. S., and Dunn, M. J. (1994) Endothelin-1 stimulates cytosolic phospholipase A2 activity and gene expression in rat glomerular mesangial cells. Kidney Int. 46: 1644–1652.PubMedCrossRefGoogle Scholar
  50. 50.
    McDonald, T. F., Pelzer, S., Trautwein, W., and Pelzer, D. J. (1994) Regulation and modulation of calcium channels in cardiac, skeletal and smooth muscle cells. Physiol. Rev. 74 (2): 365–507.PubMedGoogle Scholar
  51. 51.
    Somlyo, A. P. and Somlyo, A. V. (1994) Signal transduction and regulation in smooth muscle. Nature (London) 372: 231–236.CrossRefGoogle Scholar
  52. 52.
    Lee, M. W. and Severson, D. L. (1994) Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action. Am. J. Physiol. 267: C659 - C678.PubMedGoogle Scholar
  53. 53.
    Brock, T. A. and Danthuluri, N. R. (1992) Cellular actions of endothelin in vascular smooth muscle, in: Endothelin (Ruybanyi, G., ed.), Clinical Physiology Series, American Physiological Society, Oxford University Press, New York, pp. 103–124.Google Scholar
  54. 54.
    Pollock, D. M., Keith, T. L., and Highsmith, R. F. (1995) Endothelin receptors and calcium signaling. FASEB J. 9: 1196–1204.PubMedGoogle Scholar
  55. 55.
    Little, P. J., Neylon, C. B., Tkachuk, V. A., and Bobik, A. (1992) Endothelin-1 and endothelin-3 stimulate calcium mobilization by different mechanisms in vascular smooth muscle. Biochem. Biophys. Res. Commun. 183: 694–700.PubMedCrossRefGoogle Scholar
  56. 56.
    Clapham, D. E. (1995) Calcium signaling. Cell 80: 259–268.PubMedCrossRefGoogle Scholar
  57. 57.
    Marks, A. R. (1992) Calcium channels expressed in vascular smooth muscle. Circulation 86(Suppl. 3):III-61-III-67.Google Scholar
  58. 58.
    Kai, H., Kanaide, H., and Nakamura, M. (1989) Endothelin-sensitive intracellular Caz+ store overlaps with a caffeine-sensitive one in rat aortic smooth muscle cells in primary culture. Biochem. Biophys. Res. Commun. 158: 235–243.PubMedCrossRefGoogle Scholar
  59. 59.
    Wagner-Mann, C., Bowman, L., and Sturek, M. (1991) Primary action of endothelin on Caz+ release in bovine coronary artery smooth muscle cells. Am. J. Physiol. 260: C763 — C770.PubMedGoogle Scholar
  60. 60.
    Lee, H. C., Galione, A., and Walseth, T. F. (1994) Cyclic ADP-ribose: Metabolism and calcium mobilizing function. Vitamins and Hormones 48: 199–257.PubMedCrossRefGoogle Scholar
  61. 61.
    Goto, K., Kasuya, Y., Matsuki, N., Takuwa, Y., Kurihara, H., Ishikawa, T., Kimura, S., Yanagisawa, M., and Masaki, T. (1989) Endothelin activates the dihydropyridine-sensitive voltage-dependent Caz+ channel in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 86: 3915–3918.PubMedCrossRefGoogle Scholar
  62. 62.
    Takenaka, T., Epstein, M., Forster, H., Landry, D. W., Iijima, K., and Goligorsky, M. S. (1992) Attenuation of endothelin effects by a chloride channel inhibitor, indanyloxyacetic acid. Am. J. Physiol. 262: F799 — F806.PubMedGoogle Scholar
  63. 63.
    Inoue, Y., Oike, M., Nakao, K., Kitamura, K., and Kuriyama, H. (1990) Endothelin augments unitary calcium channel currents on the smooth muscle cell membrane of guinea pig portal vein. J. Physiol. (London) 423: 171–191.Google Scholar
  64. 64.
    Blackburn, K. and Highsmith, R. F. (1990) Nickel inhibits endothelin induced contractions of vascular smooth muscle. Am. J. Physiol. 258: C1025 — C1030.PubMedGoogle Scholar
  65. 65.
    Charbrier, P. E., Auget, M., Roubert, P., Longchampt, M. O., Gillard, V., Guillon, J. M., DelafLotte, S., and Braquet, P. (1989) Vascular mechanisms of action of endothelin-1: effect of Caz+ antagonists. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): 32–35.CrossRefGoogle Scholar
  66. 66.
    Steffan, M. and Russell, J. A. (1990) Signal transduction in endothelininduced contraction of rabbit pulmonary vein. Pulm. Pharmacol. 3: 1–7.PubMedCrossRefGoogle Scholar
  67. 67.
    D’Orleans-Juste, P., DeNucci, G., and Vane, J. R. (1989) Endothelin-1 contracts isolated vessels independently of dihydropyridine-sensitive Caz+ channel activation. Eur. J. Pharmacol. 165: 289–295.PubMedCrossRefGoogle Scholar
  68. 68.
    Yoshida M., Suzuki, A., and Itoh, T. (1994) Mechanisms of vasoconstriction induced by endothelin-1 in smooth muscle of rabbit mesenteric artery. J. Physiol. 477: 253–265.PubMedGoogle Scholar
  69. 69.
    Gardner, J. P., Tokudome, G., Tomonari, H., Maher, E., Hollander, D., and Aviv, A. (1992) Endothelin induced calcium responses in human vascular smooth muscle cells. Am. J. Physiol. 262: C148 — C155.PubMedGoogle Scholar
  70. 70.
    Xuan, Y. T., Whorton, A. R., and Watkins, W. D. (1989) Inhibition by nicardipine on endothelin-mediated inositol phosphate formation and Caz+ mobilization in smooth muscle cells. Biochem. Biophys. Res. Commun. 160: 758–764.PubMedCrossRefGoogle Scholar
  71. 71.
    Mitsuhashi, T., Morris, R. C., Jr., and Ives, H. E. (1989) Endothelininduced increases in vascular smooth muscle Caz+ do not depend on dihydropyridine-sensitive Caz+ channels. J. Clin. Invest. 84: 635–639.PubMedCrossRefGoogle Scholar
  72. 72.
    Simpson, A. W. and Ashely, C. C. (1989) Endothelin evoked Cat+ transients and oscillations in A10 vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 163: 1223–1229.PubMedCrossRefGoogle Scholar
  73. 73.
    Huang, S., Simonson, M. S., and Dunn, M. J. (1993) Mandidipine inhibits endothelin-1 induced [Ca2+]; signaling but potentiates endothelin’s effect on c-fos and c-jun induction in vascular smooth muscle and glomerular mesangial cells. Am. Heart J. 125: 589–597.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang, R., Karpinski, E., and Pang, P. K. T. (1989) Two types of calcium channels in isolated smooth muscle cells from rat tail artery. Am. J. Physiol. 256: H1361 - H1368.PubMedGoogle Scholar
  75. 75.
    Bean, B. P., Sturek, M., Puga, A., and Hermsmeyer, K. (1986) Calcium channels in muscle cells from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ. Res. 59: 229–235.PubMedCrossRefGoogle Scholar
  76. 76.
    Benham, C. D., Hess, P., and Tsien, R. W. (1987) Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single channel recordings. Circ. Res. 61(Suppl. I):I-10-I-16.Google Scholar
  77. 77.
    Yatani, A., Seidel, C. L., Allen, J., and Brown, A. M. (1987) Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein. Circ. Res. 60: 523–533.PubMedCrossRefGoogle Scholar
  78. 78.
    Friedman, M. E., Suarez-kurtz, G., Kaczorowski, G. J., Katz, G. M., and Reuben, J. P. (1986) Two calcium currents in a smooth muscle cell line. Am. J. Physiol. 250: H699 - H703.PubMedGoogle Scholar
  79. 79.
    McCarthy, R. T. and Cohen, C. J. (1989) Nimodipine block of calcium channels in rat vascular smooth muscle cell lines. Exceptionally high-affinity binding in A7r5 and A10 cells. J. Gen. Physiol. 94: 669–692.PubMedCrossRefGoogle Scholar
  80. 80.
    Sturek, M. and Hermsmeyer, K. (1986) Calcium and sodium channels in spontaneusly contracting vascular muscle cells. Science 233: 475–478.PubMedCrossRefGoogle Scholar
  81. 81.
    Amenta, F., Rossodivita, I., and Ferrante, F. (1994) Interactions between endothelin and the dihydropyridine-type calcium channel antagonist nicardipine in human renal artery: a radioligand and autoradiographic study. J. Auton. Pharmacol. 14 (2): 129–136.PubMedCrossRefGoogle Scholar
  82. 82.
    Shetty, S. S. and DelGrande, D. (1994) Inhibition by nickel of endothelin1-induced tension and associated 45Ca movement in rabbit aorta. J. Pharmacol. Exp. Ther. 271: 1223–1227.PubMedGoogle Scholar
  83. 83.
    Simpson, A. W., Stampfl, A., and Ashley, C. C. (1990) Evidence for receptor-mediated bivalent-cation entry in A10 vascular smooth muscle cells. Biochem. J. 267: 277–280.PubMedGoogle Scholar
  84. 84.
    Ruegg, U. T., Wallnofer, A., Weir, S., and Cauvin, C. (1989) Receptor-operated calcium-permeable channels in vascular smooth muscle. J. Cardiov. Pharmacol. 14 (Suppl. 6): S49 - S58.Google Scholar
  85. 85.
    Van Renterghem, C. and Lazdunski, M. (1994) Identification of the Cat+ current activated by vasoconstrictors in vascular smooth muscle cells. Pflugers Arch. 429: 1–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Blayney, L. M., Gapper, P. W., and Newby, A. C. (1992) Vasoconstrictor agonists activate G-protein-dependent receptor-operated calcium channels in pig aortic microsomes. Biochem. J. 282: 81–84.PubMedGoogle Scholar
  87. 87.
    Gordienko, D. M., Clausen, C., and Goligorsky, M. S. (1994) Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries. Am. J. Physiol. 266: F325 - F341.PubMedGoogle Scholar
  88. 88.
    Stockhand, J. D. and Sansom, S. C. (1994) Large Cat+-activated K+ channels responsive to angiotensin II in cultured human mesangial cells. Am. J. Physiol. 267: C1080 - C1086.Google Scholar
  89. 89.
    Minami, K., Hirata, Y., Tokumura, A., Nakaya, Y., and Fukuzawa, K. (1995) Protein kinase C independent inhibition of the Cat+ -activated K+ channel by angiotensin II and endothelin-1. Biochem. Pharmacol. 49: 1051–1056.PubMedCrossRefGoogle Scholar
  90. 90.
    Klockner, U. and Isenberg, G. (1991) Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through Ca-activated chloride current. Pflugers Arch. 418: 168–175.PubMedCrossRefGoogle Scholar
  91. 91.
    Van Renterghem, C. and Lazdunski, M. (1993) Endothelin and vasopressin activate low conductance chloride channels in aortic smooth muscle cells. Pflugers Arch. 425: 156–163.PubMedCrossRefGoogle Scholar
  92. 92.
    Chen, C. and Wagoner, P. K. (1991) Endothelin induces a nonselective cation current in vascular smooth muscle cells. Circ. Res. 69: 447–454.PubMedCrossRefGoogle Scholar
  93. 93.
    Enoki, T., Miwa, S., Sakamoto, A., Minowa, T., Komuro, T., Kobayashi, S., Ninomiya, H., and Masaki, T. (1995) Long-lasting activation of cation current by low concentration of endothelin-1 in mouse fibroblasts and smooth muscle cells of rabbit aorta. Br. J. Pharmacol. 115: 479–485.PubMedCrossRefGoogle Scholar
  94. 94.
    Bell, R. M. and Burns, D. J. (1991) Lipid activation of protein kinase C. J. Biol. Chem. 266: 4661–4664.PubMedGoogle Scholar
  95. 95.
    Niskizuka, Y. (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9: 484–496.Google Scholar
  96. 96.
    Stauble, B., Boscoboinik, D., and Azzi, A. (1993) Purification and kinetic properties of protein kinase C from cultured smooth muscle cells. Biochem. Mol. Biol. Int. 20: 203–211.Google Scholar
  97. 97.
    Singer, H. A., Oren, J. W., and Benscoter, H. (1989) Myosin light chain phosphorylation in 32P-labelled rabbit aorta stimulated by phorbol-12,13dibutyrate and phenylephrine. J. Biol. Chem. 264:21, 215–21, 222.Google Scholar
  98. 98.
    Andrea, J. E. and Walsh, M. P. (1992) Protein kinase C of smooth muscle. Hypertension 20: 585–595PubMedCrossRefGoogle Scholar
  99. 99.
    Khalil, R. A., Lajoie, C., Resnick, M. S., and Morgan, K. G. (1992) Cat+-independent isoforms of protein kinase C differentially translocated in smooth muscle. Am. J. Physiol. 263: C7111 C719.Google Scholar
  100. 100.
    Walsh, M. P., Andrea, J. E., Allen, B. G., Clement-Chomienne, O., Collins, E. M., and Morgan, K. G. (1994) Smooth muscle protein kinase C. Can. J. Physiol. Pharmacol. 72: 1392–1399.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee, T. S., Chao, T., Hu, K. Q., and King, G. L. (1989) Endothelin stimulates a sustained 1,2 diacylglycerol increase and protein kinase C activition in bovine aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 162: 381–386.PubMedCrossRefGoogle Scholar
  102. 102.
    Sperti, G. and Colucci, W. S. (1987) Phorbol ester-stimulated bidirectional transmembrane calcium flux in A7r5 vascular smooth muscle cells. Mol. Pharmacol. 32: 37–42.PubMedGoogle Scholar
  103. 103.
    Fisher, R. D., Speriti, G., Colucci, W. S., and Clapham, D. E. (1988) Phorbol ester increases the dihydropyridine-sensitive calcium conductance in a vascular smooth muscle cell line. Circ. Res. 62: 1049–1054.CrossRefGoogle Scholar
  104. 104.
    Marala, R. B. and Mustafa, S. J. (1995) Adenosine analogues prevent phorbol ester-induced PKC depletion in porcine coronary atery via Al receptor. Am. J. Physiol. 268: H271 — H277.PubMedGoogle Scholar
  105. 105.
    Shimamoto, H., Shimamoto, Y., Kwan, C.-Y., and Daniel, E. (1992) Participation of protein kinase C in endothelin-1 induced contraction in rat aorta: studies with a new tool, calphostin C. Br. J. Pharmacol. 107: 282–287.PubMedCrossRefGoogle Scholar
  106. 106.
    Cardell, L. O., Uddman, R., and Edvinsson, L. (1990) Analysis of endothelin1 induced contractions of guinea pig trachea, pulmonary veins and different types of pulmonary arteries. Acta Physiol. Scand. 139: 103–111.PubMedCrossRefGoogle Scholar
  107. 107.
    Huang, X. N., Hisayama, T., and Takayanagi, I. (1990) Endothelin-1 induced contraction of rat aorta: contributions made by Cat+ influx and activation of contractile apparatus associated with no change in cytoplasmic Cat+ level. Naunyn Schmiedibergs Arch. Pharmacol. 341: 80–87.Google Scholar
  108. 108.
    Nishimura, J., Moreland, S., Alm, H. Y., Kawase, T., Moreland, R. S., and VanBreeman, C. (1992) Endothelin increases myofilament Cat+ sensitivity in alpha toxin penneabilized rabbit mesenteric artery. Circ. Res. 71: 951–959.PubMedCrossRefGoogle Scholar
  109. 109.
    Abe, Y., Kasuya, Y., Kudo, M., Yamashita, K., Goto, K., Masaki, T., and Takuwa, Y. (1991) Endothelin-1 induced phosphorylation of the 20 kDa myosin light chain and caldesmon in porcine coronary artery smooth muscle. Jpn. J. Pharmacol. 57: 431–435.PubMedCrossRefGoogle Scholar
  110. 110.
    Adam, L. P., Milio, L., Brengle, B., and Hathaway, D. R. (1990) Myosin light chain and caldesmon phosphorylation in arterial muscle stimulation with endothelin-1. J. Mol. Cell. Cardiol. 22: 1017–1023.PubMedCrossRefGoogle Scholar
  111. 111.
    Mino, T., Yuasa, U., Naka, M., and Tanaka, T. (1995) Phosphorylation of calponin mediated by protein kinase C in association with contraction in porcine coronary artery. Biochem. Biophys. Res. Commun. 208: 397–404.PubMedCrossRefGoogle Scholar
  112. 112.
    Kodoma, M., Kanaide, H., Abe, S., Hirano, K., Kai, H., and Nakamura, M. (1989) Endothelin induced Ca independent contraction of the porcine coronary artery. Biochem. Biophys. Res. Commun. 160: 1302–1308.CrossRefGoogle Scholar
  113. 113.
    Ozaki, H., Sato, K., Sakata, K., and Karaki, H. (1989) Endothelin dissociates muscle tension from cytosolic Cat+ in vascular smooth muscle of rat carotid artery. Jpn. J. Pharmacol 50: 521–524.PubMedCrossRefGoogle Scholar
  114. 114.
    Sakata, K., Ozaki, H., Kwon, S. C., and Karaki, H. (1989) Effects of endothelin on the mechanical activity and cytosolic calcium level of various types of smooth muscle. Br. J. Pharmacol. 98: 483–492.PubMedCrossRefGoogle Scholar
  115. 115.
    Resink, T. J., Scott-Burden, T., Weber, E., and Buhler, F. (1990) Phorbol ester promotes a sustained down-regulation of endothelin receptors and cellular responses to endothelin in human vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 166: 1213–1219.PubMedCrossRefGoogle Scholar
  116. 116.
    Reynolds, E. E., Mok, L. L. S., and Kurokawa, S. (1989) Phorbol ester dissociates endothelin-stimulated phosphoinositide hydrolysis and arachidonic acid release in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 160: 868–873.PubMedCrossRefGoogle Scholar
  117. 117.
    Calderone, A., Rouleau, J. L., de Champlain, J., Belichard, P., and Stewart, D. J. (1993) Regulation of the endothelin-1 transmembrane signaling pathway: the potential role of agonist-induced desensitization in the coronary artery of the rapid ventricular pacing-overdrive dog model of heart failure. J. Mol. Cell. Cardiol. 25: 895–903.PubMedCrossRefGoogle Scholar
  118. 118.
    Ryu, S. H., Kim, U., Wahl, M. I., Brown, A. B., Carpenter, G., Huang, K., and Rhee, S. G. (1990) Feedback regulation of phospholipase C-b by protein kinase C. J. Biol. C.em. 265:17, 941–17, 945.Google Scholar
  119. 119.
    Mulvaney, M. J., Aalkjaer, C., and Jensen, P. E. (1991) Sodium-calcium exchange in vascular smooth muscle. Ann. NYAcad. Sci. 639: 498–504.CrossRefGoogle Scholar
  120. 120.
    Hubel, C. A. and Highsmith, R. F. (1995) Endothelin-induced changes in intracellular pH and Cat+ in coronary smooth muscle: role of Na+-H+ exchange. Biochem. J. 310: 1013–1020.PubMedGoogle Scholar
  121. 121.
    Zagulova, D. V., Pinelis, V. G., Markov, Kh. M., Storozhevykh, T. P., Medvedev, M. A., Baskahov, M. R., Chabrier, E. P., and Braque, P. (1993) The role of extracellular calcium in the vasocontriction evoked by endothelia-1. Bull. Eksp. Biol. Med. 116: 258–260 (abstract).Google Scholar
  122. 122.
    Koide, M., Kawahara, Y., Tsuda, T., Ishida, Y., Shii, K., and Yokoyama, M. (1992) Endothelin-1 stimulates tyrosine phosphorylation and the activities of two mitogen-activated protein kinases in cultured vascular smooth muscle cells. J. Hypertension 10: 1173–1182.CrossRefGoogle Scholar
  123. 123.
    Hollenberg, M. D. (1994) Tyrosine kinase pathways and the regulation of smooth muscle contractility. TIPS 15: 108–111.PubMedGoogle Scholar
  124. 124.
    Douglas, S. A., Louden, C., Vickery-Clark, L. M., Storer, B. L., Hart, T., Feuerstein, G. Z., Elliott, J. D., and Ohlstein, E. H. (1994) A role for endogenous endothelin-1 in neointimal formation after rat carotid artery balloon angioplasty. Circ. Res. 75: 190–197.PubMedCrossRefGoogle Scholar
  125. 125.
    Skobat, K. M. (1994) Tyrosine kinases: modular signaling enzymes with tunable specificities. Chem. Biol. 2: 509–514.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • E. Radford Decker
  • Tommy A. Brock

There are no affiliations available

Personalised recommendations