Densitometry Techniques in Medicine Today

  • Sydney Lou Bonnick
Part of the Current Clinical Practice book series (CCP)


The field of bone densitometry has grown rapidly, particularly in the past 15 years. Many techniques are now available from which the physician may choose. Although the clinical application of these technologies is relatively recent, the history of densitometry began over 60 years ago.


Bone Density Bone Mineral Content Proximal Femur Quantitative Compute Tomography Bone Densitometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnston CC, Epstein S (1981) Clinical, biochemical, radiographic, epidemiologic, and economic features of osteoporosis. Orthop Clin North Am 12: 559–569.PubMedGoogle Scholar
  2. 2.
    Aitken M (1984) Measurement of bone mass and turnover, in Osteoporosis in Clinical Practice. Bristol: John Wright, pp. 19, 20.Google Scholar
  3. 3.
    Singh J, Nagrath AR, Maini PS (1970) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 52-A:457–467.PubMedGoogle Scholar
  4. 4.
    Bohr H, Schadt O (1993) Bone mineral content of femoral bone and lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry. Clin Orthop 179: 240–245.Google Scholar
  5. 5.
    Nordin BEC (1983) Osteoporosis with particular reference to the menopause. In: Avioli LV, ed. The Osteoporotic Syndrome, New York: Grune and Stratton, pp. 13–44.Google Scholar
  6. 6.
    Shimmins J, Anderson JB, Smith DA, et al. (1972) The accuracy and reproducibility of bone mineral measurements “in vivo.” (a) The measurement of metacarpal mineralisation using an X-ray generator. Clin Radiol 23: 42–46.PubMedCrossRefGoogle Scholar
  7. 7.
    Exton-Smith AN, Millard PH, Payne PR, Wheeler EF (1969) Method for measuring quantity of bone. Lancet 2: 1153–1154.PubMedCrossRefGoogle Scholar
  8. 8.
    Dequeker J (1982) Precision of the radiogrammetric evaluation of bone mass at the metacarpal bones. In: Dequeker J, Johnston CC, eds. Non-invasive Bone Measurements: Methodological Problems, Oxford: IRL Press, pp. 27–32.Google Scholar
  9. 9.
    Aitken JM, Smith CB, Horton PW, et al. (1974) The interrelationships between bone mineral at different skeletal sites in male and female cadavera. J Bone Joint Surg Br 56B: 370–375.PubMedGoogle Scholar
  10. 10.
    Meema HE, Meindok H (1992) Advantages of peripheral radiogrammetry over dual-photon absorptiometry of the spine in the assessment of prevalence of osteoporotic vertebral fractures in women. J Bone Miner Res 7: 897–903.PubMedCrossRefGoogle Scholar
  11. 11.
    Bywaters EGL (1948) The measurement of bone opacity. Clin Sci 6: 281–287.PubMedGoogle Scholar
  12. 12.
    Barnett E, Nordin BEC (1961) Radiologic assessment of bone density. 1. The clinical and radiological problem of thin bones. Br J Radiol 34: 683–692.PubMedCrossRefGoogle Scholar
  13. 13.
    Mack PB, Brown WN, Trapp HD (1949) The quantitative evaluation of bone density. Am J Roentgenol Rad Ther 61: 808–825.Google Scholar
  14. 14.
    Vose GP, Mack PB (1963) Roentgenologic assessment of femoral neck density as related to fracturing. Am J Roentgenol Rad Ther Nucl Med 89: 1296–1301.Google Scholar
  15. 15.
    Cummings SR, Black DM, Nevitt MC, et al. (1993) Bone density at various sites for prediction of hip fractures. Lancet 341: 72–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Mazess RB (1983) Noninvasive methods for quantitating trabecular bone. In: Avioli LV, ed. The Osteoporotic Syndrome, New York: Grune and Stratton, pp. 85–114.Google Scholar
  17. 17.
    Mack PB, O’Brien AT, Smith JM, Bauman AW (1939) A method for estimating degree of mineralization of bones from tracings of roentgenograms. Science 89: 467.PubMedCrossRefGoogle Scholar
  18. 18.
    Mack PB, Vogt FB (1971) Roentgenographic bone density changes in astronauts during representative Apollo space flight. Am J Roentgenol Rad Ther Nucl Med 113: 621–633.Google Scholar
  19. 19.
    Cosman F, Herrington B, Himmelstein S, Lindsay R. (1991) Radiographic absorptiometry: a simple method for determination of bone mass. Osteoporosis Int 2: 34–38.CrossRefGoogle Scholar
  20. 20.
    Yates AJ, Ross PD, Lydick E, Epstein RS (1995) Radiographic absorptiometry in the diagnosis of osteoporosis. Am JMed 98: 41S - 47S.Google Scholar
  21. 21.
    Yang S, Hagiwara S, Engelke K, et al. (1994) Radiographic absorptiometry for bone mineral measurement of the phalanges: precision and accuracy study. Radiology 192: 857–859.PubMedGoogle Scholar
  22. 22.
    Kleerekoper M, Nelson DA, Flynn MJ, Pawluszka AS, Jacobsen G, Peterson EL (1994) Comparison ofradiographic absorptiometry with dual-energy X-ray absorptiometry and quantitative computed tomography in normal older white and black women. J Bone Miner Res 9: 1745–1749.PubMedCrossRefGoogle Scholar
  23. 23.
    Mussolino ME, Looker AC, Madans JH, Edelstein D, Walker RE, Lydick E, Epstein RS, Yates AJ (1997) Phalangeal bone density and hip fracture risk. Arch Intern Med 157: 433–438.PubMedCrossRefGoogle Scholar
  24. 24.
    Cameron JR, Sorenson G (1963) Measurements of bone mineral in vivo: an improved method. Science 142: 230–232.PubMedCrossRefGoogle Scholar
  25. 25.
    Vogel JM (1987) Application principles and technical considerations in SPA. In: Genant HK, ed. Osteoporosis Update 1987, San Francisco: University of California Printing Services, pp. 219–231.Google Scholar
  26. 26.
    Johnston CC (1983) Noninvasive methods for quantitating appendicular bone mass. In: Avioli LV, ed. The Osteoporotic Syndrome, New York: Grune and Stratton, pp. 73–84.Google Scholar
  27. 27.
    Barden HS, Mazess RB (1989) Bone densitometry of the appendicular and axial skeleton. Top Geriatric Rehabil 4: 1–12.Google Scholar
  28. 28.
    Kimmel PL (1984) Radiologic methods to evaluate bone mineral content. Ann Intern Med 100: 908–911.Google Scholar
  29. 29.
    Steiger P, Genant HK (1987) The current implementation of single-photon absorptiometry in commercially available instruments. In: Genant HK, ed. Osteoporosis Update 1987, San Francisco: University of California Printing Services, pp. 233–240.Google Scholar
  30. 30.
    Chesnut CH (1993) Noninvasive methods for bone mass measurement. In: Avioli L, ed. The Osteoporotic Syndrome, 3rd ed., New York: Wiley-Liss, pp. 77–87.Google Scholar
  31. 31.
    Gardsell P, Johnell O, Nilsson BE (1991) The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years. Calcif Tissue Int 49: 90–94.PubMedCrossRefGoogle Scholar
  32. 32.
    Hui SL, Slemenda CW, Johnston CC (1989) Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 111: 355–361.PubMedGoogle Scholar
  33. 33.
    Ross PD, Davis JW, Vogel JM, Wasnich RD (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46: 149–161.PubMedCrossRefGoogle Scholar
  34. 34.
    Melton LJ, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8: 1227–1233.PubMedCrossRefGoogle Scholar
  35. 35.
    Black DM, Cummings SR, Genant HK, Nevin MC, Palermo L, Browner W (1992) Axial and appendicular bone density predict fracture in older women. J Bone Miner Res 7: 633–638.PubMedCrossRefGoogle Scholar
  36. 36.
    Nord RH (1987) Technical considerations in DPA. In: Genant HK, ed. Osteoporosis Update 1987, San Francisco: University of California Printing Services, pp. 203–212.Google Scholar
  37. 37.
    Dunn WL, Wahner HW, Riggs BL (1980) Measurement of bone mineral content in human vertebrae and hip by dual photon absorptiometry. Radiology 136: 485–487.PubMedGoogle Scholar
  38. 38.
    Reed GW (1966) The assessment of bone mineralization from the relative transmission of 241Am and 137Cs radiations. Phys Med Biol 11: 174.Google Scholar
  39. 39.
    Roos B, Skoldbom H (1974) Dual photon absorptiometry in lumbar vertebrae. I. Theory and method. Acta Radiol Ther Phys Biol 13: 266–290.PubMedGoogle Scholar
  40. 40.
    Mazess RB, Ort M, Judy P (1970) Absorptiometric bone mineral determination using 153Gd. In: Cameron JR, ed. Proceedings of Bone Measurements Conference, U.S. Atomic Energy Commission, pp. 308–312.Google Scholar
  41. 41.
    Wilson CR, Madsen M (1977) Dichromatic absorptiometry of vertebral bone mineral content. Invest Radiol 12: 180–184.PubMedCrossRefGoogle Scholar
  42. 42.
    Madsen M, Peppler W, Mazess RB (1976) Vertebral and total body bone mineral content by dual photon absorptiometry. Calcif Tissue Res 2: 361–364.Google Scholar
  43. 43.
    Wahner WH, Dunn WL, Mazess RB, et al. (1985) Dual-photon Gd-153 absorptiometry of bone. Radiology 156: 203–206.PubMedGoogle Scholar
  44. 44.
    Lindsay R, Fey C, Haboubi A (1987) Dual photon absorptiometric measurements of bone mineral density increase with source life. Calcif Tissue Int 41: 293–294.PubMedCrossRefGoogle Scholar
  45. 45.
    Cummings SR, Black DB (1986) Should perimenopausal women be screened for osteoporosis? Ann Intern Med 104: 817–823.PubMedGoogle Scholar
  46. 46.
    Drinka PJ, DeSmet AA, Bauwens SF, Rogot A (1992) The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int 50: 507–510.PubMedCrossRefGoogle Scholar
  47. 47.
    Curry TS, Dowdey JE, Murry RC (1990) Christensen’s Physics of Diagnostic Radiology. Philadelphia: Lea and Febiger.Google Scholar
  48. 48.
    Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N (1992) Lateral dual-energy radiography: artifact error from rib and pelvic bone. J Bone Miner Res 7: 97–101.PubMedCrossRefGoogle Scholar
  49. 49.
    Louis O, Van Den Winkel P, Covens P, Schoutens A, Osteaux M (1992) Dual-energy X-ray absorptiometry of lumbar vertebrae: relative contribution of body and posterior elements and accuracy in relation with neutron activation analysis. Bone 13: 317–320.PubMedCrossRefGoogle Scholar
  50. 50.
    Lees B, Stevenson JC (1992) An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry. Osteoporosis Int 2: 146–152.CrossRefGoogle Scholar
  51. 51.
    Kelly TL, Slovik DM, Schoenfeld DA, Neer RM (1988) Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 76: 839–844.CrossRefGoogle Scholar
  52. 52.
    Holbrook TL, Barrett-Connor E, Klauber M, Sartoris D (1991) A population-based comparison of quantitative dual-energy X-ray absorptiometry with dual-photon absorptiometry of the spine and hip. Calcif Tissue Int 49: 305–307.PubMedCrossRefGoogle Scholar
  53. 53.
    Pouilles JM, Tremollieres F, Todorovsky N, Ribot C (1991) Precision and sensitivity of dual-energy X-ray absorptiometry in spinal osteoporosis. J Bone Miner Res 6: 997–1002.PubMedCrossRefGoogle Scholar
  54. 54.
    Laskey MA, Crisp AJ, Cole TJ, Compston JE (1992) Comparison of the effect of different reference data on Lunar DPX and Hologic QDR-1000 dual-energy X-ray absorptiometers. Br J Radiol 65: 1124–1129.PubMedCrossRefGoogle Scholar
  55. 55.
    Pocock NA, Sambrook PN, Nguyen T, Kelly P, Freund J, Eisman J (1992) Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of Lunar and Hologic instruments. J Bone Miner Res 7: 1081–1084.PubMedCrossRefGoogle Scholar
  56. 56.
    Lai KC, Goodsitt MM, Murano R, Chesnut CC (1992) A comparison of two dual-energy X-ray absorptiometry systems for spinal bone mineral measurement. Calcif Tissue Int 50: 203–208.PubMedCrossRefGoogle Scholar
  57. 57.
    Kalender WA (1992) Effective dose values in bone mineral measurements by photonabsorptiometry and computed tomography. Osteoporosis Int 2: 82–87.CrossRefGoogle Scholar
  58. 58.
    Faulkner KG, Cummings SR, Black D, Palermo L, Gluer C, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8: 1211–1217.PubMedCrossRefGoogle Scholar
  59. 59.
    Kelly TL, Crane G, Baran DT (1994) Single X-ray absorptiometry of the forearm: precision, correlation, and reference data. Calcif Tissue Int 54: 212–218.PubMedCrossRefGoogle Scholar
  60. 60.
    Ruegsegger P, Elsasser U, Anliker M, Gnehn H, Kind H, Prader A (1976) Quantification of bone mineralisation using computed tomography. Radiology 121: 93–97.PubMedGoogle Scholar
  61. 61.
    Genant HK, Cann CE, Ettinger B, Gorday GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97: 699–705.PubMedGoogle Scholar
  62. 62.
    Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4: 493–500.PubMedCrossRefGoogle Scholar
  63. 63.
    Genant HK, Block JE, Steiger P, Gluer C (1987) Quantitative computed tomography in the assessment of osteoporosis. In: Genant HK, ed. Osteoporosis Update 1987, San Francisco: University of California Printing Services.Google Scholar
  64. 64.
    Laval-Jeantet AM, Roger B, Bouysse S, Bergot C, Mazess RB (1986) Influence of vertebral fat content on quantitative CT density. Radiology 159: 463–466.PubMedGoogle Scholar
  65. 65.
    Reinhold W, Adler CP, Kalender WA, Lente R (1991) Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography. Skeletal Radiol 20: 25–29.Google Scholar
  66. 66.
    Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. JPathol Bacteriol 94: 274–291.Google Scholar
  67. 67.
    Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12: 545–551.PubMedCrossRefGoogle Scholar
  68. 68.
    Cann CE (1987) Quantitative computed tomography for bone mineral analysis: technical considerations. In: Genant HK, ed. Osteoporosis Update 1987, San Francisco: University of California Printing Services, pp. 131–144.Google Scholar
  69. 69.
    Sartoris DJ, Andre M, Resnick C, Resnick D (1986) Trabecular bone density in the proximal femur: quantitative CT assessment. Radiology 160: 707–712.PubMedGoogle Scholar
  70. 70.
    Reiser UJ, Genant HK (1984) Determination of bone mineral content in the femoral neck by quantitative computed tomography. 70th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Washington, DC.Google Scholar
  71. 71.
    Gallagher C, Golgar D, Mahoney P, McGill J (1985) Measurement of spine density in normal and osteoporotic subjects using computed tomography: relationship of spine density to fracture threshold and fracture index. J Comput Assist Tomogr 9: 634–635.CrossRefGoogle Scholar
  72. 72.
    Raymaker JA, Hoekstra O, Van Putten J, Kerkhoff H, Duursma SA (1986) Osteoporosis fracture prevalence and bone mineral mass measured with CT and DPA. Skeletal Radiol 15: 191–197.CrossRefGoogle Scholar
  73. 73.
    Reinbold WD, Reiser UJ, Harris ST, Ettinger B, Genant HK (1986) Measurement of bone mineral content in early postmenopausal and postmenopausal osteoporotic women. A comparison of methods. Radiology 160: 469–478.PubMedGoogle Scholar
  74. 74.
    Sambrook PN, Bartlett C, Evans R, Hesp R, Katz D, Reeve J (1985) Measurement of lumbar spine bone mineral: a comparison of dual photon absorptiometry and computed tomography. Br J Radiol 58: 621–624.PubMedCrossRefGoogle Scholar
  75. 75.
    Genant HK, Ettinger B, Harris ST, Block JE, Steiger P (1988) Quantitative computed tomography in assessment of osteoporosis. In: Riggs BL, Melton LJ, eds. Osteoporosis: Etiology, Diagnosis and Management, New York: Raven, pp. 221–249.Google Scholar
  76. 76.
    Richardson ML, Genant HK, Cann CE, et al. (1985) Assessment of metabolic bone disease by quantitative computed tomography. Clin Orth Rel Res 195: 224–238.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Sydney Lou Bonnick
    • 1
  1. 1.Texas Woman’s UniversityDentonUSA

Personalised recommendations