The Role of PU.1 in the Regulation of Lymphoid and Myeloid Hematopoietic Progenitors

  • Edward W. Scott
Part of the Contemporary Immunology book series (CONTIM)


Mammalian development begins with a single totipotent cell that undergoes an ordered process of differentiation to form a complex multicellular organism. The hematopoietic system is an accessible model system with which to study differentiation into distinct lineages. The hematopoietic stem cell (HSC) retains its pluripotent differentiative capacity throughout the lifespan of an organism. Homeostasis is maintained by a constant, ordered, and tightly regulated developmental cascade. Hematopoietic stem cells differentiate through a hierarchical array of multipotent and monopotent progenitor cells to form all cell types of the blood and lymph, including lymphocytes, granulocytes, monocytes, erythrocytes, and megakaryocytes. The regulatory pathways that control hematopoiesis consist of several interconnected mechanisms. One level of regulation is the transcriptional control of hematopoietic specific gene expression. Other mechanisms that regulate homeostasis involve the interaction of soluble hematopoietic growth factors with their cognate cell-surface receptors, and cell/cell interactions within the hematopoietic microenvironment.


Fetal Liver Hematopoietic Progenitor Myeloid Lineage Hematopoietic Lineage Hematopoietic Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Olson, E. N., Brennan, T. J., Chakraborty, T., Cheng, T. C., Cserjesi, P., Edmondson, D., James, G., and Li, L. (1991) Molecular control of myogenesis: antagonism between growth and differentiation. Mol. Cell. Biochem. 104, 7 - 13.Google Scholar
  2. 2.
    Orkin, S. (1996) Development of the Hematopoietic system. Curr. Opinion Genet. Dev. 6, 597 - 602.CrossRefGoogle Scholar
  3. 3.
    Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D., and Hayakawa, K. (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213 - 1225.PubMedCrossRefGoogle Scholar
  4. 4.
    Rothenberg, E. V. (1992) The development of functionally responsive T cells. Adv. Immunol. 51, 85 - 214.PubMedCrossRefGoogle Scholar
  5. 5.
    Harrison, D. E. (1992) Evaluating functional abilities of primitive hematopoietic stem cell populations. Curr. Topics Microbiol. Immunol. 177, 13 - 30.CrossRefGoogle Scholar
  6. 6.
    Spangrude, G. J. (1992) The pre-spleen colony-forming unit assay: measurement of spleen colony-forming unit regeneration. Curr. Topics Microbiol. Immunol. 177, 31 - 39.CrossRefGoogle Scholar
  7. 7.
    Dexter, T. M. and Spooncer, E. (1987) Growth and differentiation in the hematopoietic system. Ann. Rev. Cell Biol. 3, 423 - 441.PubMedCrossRefGoogle Scholar
  8. 8.
    Cumano, A., Kee, B. L., Ramsden, D. A., Marshall, A., Paige, C. J., and Wu, G. E. (1994) Development of B lymphocytes from lymphoid committed and uncommitted progenitors. Immunol. Rev. 137, 5 - 33.PubMedCrossRefGoogle Scholar
  9. 9.
    Cumano, A. and Paige, C. J. (1992) Enrichment and characterization of uncommitted B-cell precursors from fetal liver at day 12 of gestation. EMBO J. 11, 593 - 601.PubMedGoogle Scholar
  10. 10.
    Cumano, A., Paige, C. J., Iscove, N. N., and Brady, G. (1992) Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356, 612 - 615.PubMedCrossRefGoogle Scholar
  11. 11.
    Muller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzak, E. (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1, 291 - 301.PubMedCrossRefGoogle Scholar
  12. 12.
    Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L., and Schuh, A. C. (1995) Failure of blood-island formation and vasculogenesis in Flk-1—deficient mice. Nature 376, 62 - 66.Google Scholar
  13. 13.
    Porcher, C., Swat, W., Rockwell, K., Fujiwara, Y., Alt, F. W., and Orkin, S. H. (1996) The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47 - 57.PubMedCrossRefGoogle Scholar
  14. 14.
    Robb, L., Lyons, I., Li, R., Hartley, L., Kontgen, F., Harvey, R. P., Metcalf, D., and Begley, C. G. (1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. USA 92, 7075 - 7079.Google Scholar
  15. 15.
    Morrison-Graham, K. and Takahashi, Y. (1993) Steel factor and c-kit receptor: from mutants to a growth factor system. Bioessays 15, 77.PubMedCrossRefGoogle Scholar
  16. 16.
    Lieschke, G. J. (1997) CSF-deficient mice: what have they taught us? Ciba Foundation Symposium 204, 60-74; discussion 74 - 7.Google Scholar
  17. 17.
    Arroyo, A., Wang, J., Rayburn, H., and Hynes, R. (1996) Differential requirements for alpha-4 integrins during fetal and adult hematopoiesis. Cell 85, 997 - 1008.PubMedCrossRefGoogle Scholar
  18. 18.
    Pevny, L., Simon, M. C., Robertson, E. J., Klien, W. H., Tsai, S. F., D’Agati, V., Orkin, S. H., and Costantini, F. (1991) Erythroid differentiation in chimeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257 - 260.Google Scholar
  19. 19.
    Tsai, F. Y., Keller, G., Kuo, F. C., Weiss, M., Chen, J., Rosenblatt, M., Alt, F. W., and Orkin, S. H. (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221 - 226.PubMedCrossRefGoogle Scholar
  20. 20.
    Pandolfi, P. P., Roth, M. E., Karis, A., Leonard, M. W., Dzierzak, E., Grosveld, F. G., Engel, J. D., and Lindenbaum, M. H. (1995) Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis [see comments]. Nature Genetics 11, 40 - 44.Google Scholar
  21. 21.
    Mucenski, M. L., Mclain, K., Kier, A. B., Swerdlow, S. H., Schreiner, C. M., Miller, T. A., Pietryga, D. W., Scott, W. J., and Potter, S. S. (1991) A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677 - 689.PubMedCrossRefGoogle Scholar
  22. 22.
    Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., and Downing, J. R. (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321 - 330.Google Scholar
  23. 23.
    Zhang, D., Zhang, P., Wang, N., Hetherington, C., Darlington, G., and Tenen, D. (1997) Absence of colony-stimulating factor singnaling and neutrophil development in CCAAT enhancer binding protein a-deficient mice. Proc. Natl. Acad. Sci USA 94, 569 - 574.PubMedCrossRefGoogle Scholar
  24. 24.
    Orkin, S. (1995) Transcription factors and hematopoietic development. J. Biol. Chem. 270, 4955 - 4958.PubMedCrossRefGoogle Scholar
  25. 25.
    Shivdasani, R. A. and Orkin, S. H. (1996) The transcriptional control of hematopoiesis. Blood 87, 4025 - 4039.PubMedGoogle Scholar
  26. 26.
    Tenen, D., Hromas, R., Licht, J., and Zhang, D. (1997) Transcription factors, normal myeloid development, and leukemia. Blood 90, 489 - 519.Google Scholar
  27. 27.
    McNagny, K. M. and Graf, T. (1996) Acute avian leukemia viruses as tools to study hematopoietic cell differentiation. Current Topics Microbiol. Immunol. 212, 143 - 162.CrossRefGoogle Scholar
  28. 28.
    Macleod, K., Leprince, D., and Stehelin, D. (1992) The ets gene family. Trends Biochem. Sci. 17, 251 - 256.PubMedCrossRefGoogle Scholar
  29. 29.
    Wasylyk, B., Hahn, S. L., and Giovane, A. (1993) The Ets family of transcription factors [published erratum appears in Eur J Biochem 1993 Aug 1;215(3):907]. Eur. J. Biochem. 211, 7 - 18.Google Scholar
  30. 30.
    Degnan, B. M., Degnan, S. M., Naganuma, T., and Morse, D. E. (1993) The ets multigene family is conserved throughout the Metazoa. Nucleic Acids Res. 21, 3479 - 3484.PubMedCrossRefGoogle Scholar
  31. 31.
    Reddy, E. S. and Rao, V. N. (1988) Structure, expression and alternative splicing of the human c-ets-1 proto-oncogene. Oncogene Res. 3, 239 - 246.PubMedGoogle Scholar
  32. 32.
    Watson, D. K., McWilliams, M. J., Lapis, P., Lautenberger, J. A., Schweinfest, C. W., and Papas, T. S. (1988) Mammalian ets-1 and ets-2 genes encode highly conserved proteins. Proc. Natl. Acad. Sci. USA 85, 7862 - 7866.Google Scholar
  33. 33.
    Ben-David, Y. and Bernstein, A. (1991) Friend virus-induced erythroleukemia and the multistage nature of cancer. Cell 66, 831 - 834.PubMedCrossRefGoogle Scholar
  34. 34.
    Ben-David, Y., Giddens, E. B., Letwin, K., and Bernstein, A. (1991) Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Del). 5, 908 - 918.CrossRefGoogle Scholar
  35. 35.
    Metz, T. and Graf, T. (1991) Fusion of the nuclar oncoproteins v-Myb and v-Ets is required for the leukemogenicity of E26 virus. Cell 66, 95 - 105.PubMedCrossRefGoogle Scholar
  36. 36.
    Goebl, M. G. (1990) The PU.1 transcription factor is the product of the putative oncogene Spi-1. Cell 61, 1165 - 1166.PubMedCrossRefGoogle Scholar
  37. 37.
    Moreau-Gachelin, F., Tavitian, A., and Tambourin, P. (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukemias. Nature 331, 277 - 280.PubMedCrossRefGoogle Scholar
  38. 38.
    Schuetze, S., Stenberg, P. E., and Kabat, D. (1993) The Ets-related transcription factor PU.1 immortalizes erythroblasts. Mol. Cell. Biol. 13, 5670 - 5678.PubMedGoogle Scholar
  39. 39.
    Delgado, M. D., Hallier, M., Meneceur, P., Tavitian, A., and Moreau-Gachelin, F. (1994) Inhibition of Friend cells proliferation by spi-1 antisense oligodeoxynucleotides. Oncogene 9, 1723 - 1727.PubMedGoogle Scholar
  40. 40.
    Schuetze, S., Paul, R., Gliniak, B. C., and Kabat, D. (1992) Role of the PU.1 transcription factor in controlling differentiation of Friend erythroleukemia cells. Mol. Cell. Biol. 12, 2967 - 2975.PubMedGoogle Scholar
  41. 41.
    Huang, M., Takac, M., Kozak, C. A., and Jolicoeur, P. (1995) The murine AIDS defective provirus acts as an insertional mutagen in its infected target B cells. J. Virol. 69, 4069 - 4078.PubMedGoogle Scholar
  42. 42.
    Dolcetti, R., Gloghini, A., De Vita, S., Vaccher, E., De Re, V., Tirelli, U., Carbone, A., and Boiocchi, M. (1995) Characteristics of EBV-infected cells in HIV-related lymphadenopathy: implications for the pathogenesis of EBV-associated and EBV-unrelated lymphomas of HIVseropositive individuals. Int. J. Cancer 63, 652 - 659.PubMedCrossRefGoogle Scholar
  43. 43.
    Leblond, V., Sutton, L., Dorent, R., Davi, F., Bitker, M. O., Gabarre, J., Charlotte, F., Ghoussoub, J. J., Fourcade, C., Fischer, A., and et al. (1995) Lymphoproliferative disorders after organ transplantation: a report of 24 cases observed in a single center. J. Clin. Oncol. 13, 961 - 968.PubMedGoogle Scholar
  44. 44.
    Hanto, D. W. (1995) Classification of Epstein-Barr virus-associated posttransplant lymphoproliferative diseases: implications for understanding their pathogenesis and developing rational treatment strategies. Ann. Rev. Med. 46, 381 - 394.PubMedCrossRefGoogle Scholar
  45. 45.
    Vousden, K. H. and Farrell, P. J. (1994) Viruses and human cancer. Bri. Medi. Bull. 50, 560 - 581.Google Scholar
  46. 46.
    Johannsen, E., Koh, E., Mosialos, G., Tong, X., Kieff, E., and Grossman, S. R. (1995) Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J. Virol. 69, 253 - 262.Google Scholar
  47. 47.
    Laux, G., Adam, B., Strobl, L. J., and Moreau-Gachelin, F. (1994) The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J. 13, 5624 - 5632.PubMedGoogle Scholar
  48. 48.
    Klemsz, M. J., McKercher, S. J., Celada, A., Van Beveren, C., and Maki, R. A. (1990) The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61, 113 - 124.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen, H. M., Zhang, P., Voso, M. T., Hohaus, S., Gonzalez, D. A., Glass, C. K., Zhang, D. E., and Tenen, D. G. (1995) Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B. Blood 85, 2918 - 2928.PubMedGoogle Scholar
  50. 50.
    Galson, D. L., Hensold, J. O., Bishop, T. R., Schalling, M., D’Andrea, A. D., Jones, C., Auron, P. E., and Housman, D. E. (1993) Mouse beta-globin DNA-binding protein B1 is identical to a proto-oncogene, the transcription factor Spi-1/PU.1, and is restricted in expression to hematopoietic cells and the testis. Mol. Cell. Biol. 13, 2929 - 2941.PubMedGoogle Scholar
  51. 51.
    Hromas, R., Orazi, A., Neiman, R. S., Maki, R., Van Beveran, C., Moore, J., and Klemsz, M. (1993) Hematopoietic lineage-and stage-restricted expression of the ETS oncogene family member PU. 1. Blood 82, 2998 - 3004.Google Scholar
  52. 52.
    Voso, M. T., Burn, T. C., Wulf, G., Lim, B., Leone, G., and Tenen, D. G. (1994) Inhibition of hematopoiesis by competitive binding of transcription factor PU. 1. Proc. Natl. Acad. Sci. USA 91, 7932 - 7936.PubMedCrossRefGoogle Scholar
  53. 53.
    Hagemeier, C., Bannister, A. J., Cook, A., and Kouzarides, T. (1993) The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc. Natl. Acad. Sci. USA 90, 1580 - 1584.PubMedCrossRefGoogle Scholar
  54. 54.
    Nagulapalli, S., Pongubala, J., and Atchison, M. (1995) Multiple proteins physically interact with PU.1. J. Immunol. 155, 4330 - 4338.PubMedGoogle Scholar
  55. 55.
    Pongubala, J. M., Nagulapalli, S., Klemsz, M. J., McKercher, S. R., Maki, R. A., and Atchison, M. L. (1992) PU.1 recruits a second nuclear factor to a site important for immunoglobulin kappa 3’ enhancer activity. Mol. Cell. Biol. 12, 368 - 378.PubMedGoogle Scholar
  56. 56.
    Moreau-Gachelin, F., Ray, D., Mattei, M., Tambourin, P., and Tavitian, A. (1989) The putative oncogene Spi-1: murine chromosomal localization and transcriptional activation in murine acute erythroleukemias. Oncogene 4, 1449 - 1456.PubMedGoogle Scholar
  57. 57.
    Kodandapani, R., Pio, F., NI, C., Piccialli, G., Klemsz, M., McKercher, S., Maki, R., and Ely, K. (1996) A new pattern for helix-turn-helix recognition revealed by the PU.1 ets-domain-DNA complex. Nature 380, 456 - 459.PubMedCrossRefGoogle Scholar
  58. 58.
    Klemsz, M. and Maki, R. (1996) Activation of transcription by PU.1 requires both acidic and glutamine domains. MCB 16, 390 - 397.PubMedGoogle Scholar
  59. 59.
    Rodgers, S., Wells, R., and Rechsteiner, M. (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364 - 368.CrossRefGoogle Scholar
  60. 60.
    Eisenbeis, C. F., Singh, H., and Storb, U. (1995) Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dey. 9, 1377 - 1387.CrossRefGoogle Scholar
  61. 61.
    Eisenbeis, C. F., Singh, H., and Storb, U. (1993) PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2-4 enhancer. Mol. Cell. Biol. 13, 6452 - 6461.PubMedGoogle Scholar
  62. 62.
    Pongubala, J. M., Van Beveren, C., Nagulapalli, S., Klemsz, M. J., McKercher, S. R., Maki, R. A., and Atchison, M. L. (1993) Effect of PU.1 phosphorylation on interaction with NF-EM5 and transcriptional activation. Science 259, 1622 - 1625.PubMedCrossRefGoogle Scholar
  63. 63.
    Ray, D., Bosselut, R., Ghysdael, J., Mattei, M. G., Tavitian, A., and Moreau-Gachelin, F. (1992) Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU. 1. Mol. Cell. Biol. 12, 4297 - 4304.PubMedGoogle Scholar
  64. 64.
    Ray-Gallet, D., Mao, C., Tavitian, A., and Moreau-Gachelin, F. (1995) DNA binding specificities of Spi-1/PU.1 and Spi-B transcription factors and identification of a Spi-1/Spi-B binding site in the c-fes/c-fps promoter. Oncogene 11, 303 - 313.PubMedGoogle Scholar
  65. 65.
    Weintraub, S., Chow, K., Luo, R., Zhang, S., He, S., and Dean, D. (1995) Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375, 812 - 815.PubMedCrossRefGoogle Scholar
  66. 66.
    Nagulapalli, S., Pongubala, J. M. R., and Atchison, M. L. (1995) Multiple proteins physically interact with PU. 1. JI 155, 4330.Google Scholar
  67. 67.
    Nelsen, B., Tian, G., Erman, B., Gregoire, J., Maki, R., Graves, B., and Sen, R. (1993) Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ET S-domain proteins. Science 261, 82 - 86.PubMedCrossRefGoogle Scholar
  68. 68.
    Feldhaus, A. L., Mbangkollo, D., Arvin, K. L., Klug, C. A., and Singh, H. (1992) BLyF, a novel cell-type and stage-specific regulator of the B-lymphocyte gene mb-1. Mol. Cell. Biol. 12, 1126 - 1133.PubMedGoogle Scholar
  69. 69.
    Hagman, J. and Grosschedl, R. (1992) An inhibitory carboxyl-terminal domain in Ets-1 and Ets2 mediates differential binding of Ets family factors to promoter sequences of the mb-1 gene. Proc. Natl. Acad. Sci. USA 89, 8889 - 8893.PubMedCrossRefGoogle Scholar
  70. 70.
    Shin, M. K. and Koshland, M. E. (1993) Ets-related protein PU.1 regulates expression of the immunoglobulin J-chain gene through a novel Ets-binding element. Genes Dey. 7, 2006 - 2015.CrossRefGoogle Scholar
  71. 71.
    Hiramatsu, R., Akagi, K., Matsuoka, M., Kingsbury, L., David, C., Hardy, R. R., Yamamura, K., and Sakano, H. (1995) The 3’ Enhancer Region Determines the B/T Specificity and Pro-B/ Pre-B Specificity of Immunoglobulin VKJK Joining. Cell 83, 1113 - 1123.Google Scholar
  72. 72.
    Pongubala, J. and Atchison, M. (1997) PU.1 can participate in an active enhancer complex without its transcriptional activation domain. Proc. Natl. Acad. Sci. USA 94, 127 - 132.PubMedCrossRefGoogle Scholar
  73. 73.
    Robertson, E. J. (1987) Teratocarcinomas and embryonic stem cells a practical approach. IRL Press, Oxford.Google Scholar
  74. 74.
    Scott, E. W., Simon, M. C., Anastasi, J., and Singh, H. (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573 - 1577.PubMedCrossRefGoogle Scholar
  75. 75.
    Scott, E., Fisher, R., Olson, M., Kehrli, E., Simon, M., and Singh, H. (1997) PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity 6, 437 - 447.Google Scholar
  76. 76.
    Olson, M. C., Scott, E. W., Hack, A. A., Su, G. H., Tenen, D. G., Singh, H., and Simon, M. C. (1995) PU.1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation. Immunity 3, 703 - 714.PubMedCrossRefGoogle Scholar
  77. 77.
    Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., and Grosveld, F. (1995) Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375, 316 - 318.PubMedCrossRefGoogle Scholar
  78. 78.
    Perkins, A., Sharpe, A., and Orkin, S. (1995) Lethal 13-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375, 318 - 322.PubMedCrossRefGoogle Scholar
  79. 79.
    Hirayama, F., Shih, J. P., Awgulewitsch, A., Warr, G. W., Clark, S. C., and Ogawa, M. (1992) Clonal proliferation of murine lymphohemopoietic progenators in culture. Proc. Natl. Acad. Sci. USA 89, 5907 - 5911.PubMedCrossRefGoogle Scholar
  80. 80.
    Kee, B. L., Cumano, A., Iscove, N. N., and Paige, C. J. (1994) Stromal cell independent growth of bipotent B cell-macrophage precursors from murine fetal liver. Intl. Immunol. 6, 401 - 407.CrossRefGoogle Scholar
  81. 81.
    McKercher, S., Torbett, B., Anderson, K., Henkel, G., Vestal, D., Baribault, H., Klemsz, M., Feeney, A., Wu, G., Paige, C., and Maki, R. (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO 15, 5647 - 5658.Google Scholar
  82. 82.
    Tondravi, M., McKercher, S., Anderson, K., Erdmann, J., Quiroz, M., Maki, R., and Teitelbaum, S. (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81 - 84.PubMedCrossRefGoogle Scholar
  83. 83.
    Jacks, T., Fazeli, A., Schmitt, E. M., Bronson, R. T., Goodell, M. A., and Weinberg, R. A. (1992) Effects of an Rb mutation in the mouse. Nature 359, 295 - 300.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee, E. Y., Chang, C. Y., Hu, N., Wang, Y. J., Lai, C. C., Herrup, K., Lee, W. H., and Bradley, A. (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288 - 294.PubMedCrossRefGoogle Scholar
  85. 85.
    Williams, B. O., Schmitt, E. M., Remington, L., Bronson, R. T., Albert, D. M., Weinberg, R. A., and Jacks, T. (1994) Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J. 13, 4251 - 4259.PubMedGoogle Scholar
  86. 86.
    Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V. (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13, 473 - 486.PubMedGoogle Scholar
  87. 87.
    Doetschman, T., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands, and myocardium. J. Embryo!. Exp. Morphol. 87, 27 - 45.Google Scholar
  88. 88.
    Henkel, G., McKercher, S., Yamamoto, H., Anderson, K., Oshima, R., and Maki, R. (1996) PU.1 but not Ets-2 is essential for macrophage development from embryonic stem cells. Blood 88, 2917 - 2926.PubMedGoogle Scholar
  89. 89.
    Weiss, M., YU, C., and Orkin, S. (1997) Erythroid-specific properties of transcription factr GATA-1 revealed by phenotypic rescue of a gene targeted cell line. Mol. Cell. Biol. 17, 1642 - 1651.PubMedGoogle Scholar
  90. 90.
    Hu, M., Krause, D., Greaves, M., Sharkis, S., Dexter, M., Heyworth, C., and Enver, T. (1997) Multilineage gene expression precedes commitment in the hematopoietic system. Genes Dev. 11, 774 - 785.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Edward W. Scott

There are no affiliations available

Personalised recommendations