Stem Cell Transplants for Hematopoietic Malignancies

  • Susan C. Guba
  • Bart Barlogie
Part of the Contemporary Immunology book series (CONTIM)


The purpose of this chapter is to identify clinical models or approaches that can be exploited to improve the curability of hematopoietic malignancies. The chapter begins by identifying tumor and host factors that the clinician must consider when identifying a specific clinical approach for a specific patient that ultimately will determine the curability of that particular tumor. The remaining sections in the chapter focus on strategies to approach hematopoietic malignancies, particularly those that may be either palliated or cured as a result of their inherent responsiveness to at least high-dose chemotherapy. These approaches include the goals, limitations, and timing of dose-intensive therapy, which are utilized to maximize tumor response and which may be required to provide curative therapy. Subsequently, there is a discussion of strategies to decrease the incidence of relapse. Such strategies include both ex vivo and in vivo mechanisms to eliminate minimal residual disease (e.g., autograft manipulation by purging or positive selection of normal stem cells; graft-vs-tumor effects, tumor vaccines, cytokine modulation). The authors hope that this chapter will suggest that early intensive therapy for patients with potentially curable malignancies should be a new paradigm for future clinical trials.


Multiple Myeloma Acute Myeloid Leukemia Cord Blood Minimal Residual Disease Chronic GVHD 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dastugue, N., Lafage-Pochitaloff, M., Leroux, D., Payen, C., Bernard, P., Huguet-Rigal, F., Stoppa, A., Marit, G., Molina, L., Michallet, M., et al. (1995) Prognostic significance of karyotype in de novo adult acute myeloid leukemia. The BGMT Group Leukemia 9, 1491–1498.PubMedGoogle Scholar
  2. 2.
    Mrozek, K., Heinonen, K., de la Chapelle, A., and Bloomfield, C. (1997) Clinical significance of cytogenetics in acute myeloid leukemia. Sem. Oncol. 24, 17–31.Google Scholar
  3. 3.
    Armitage, J. (1997) The development of bone marrow transplantation as a treatment for patients with lymphoma-Twentieth Richard and Hinda Rosenthal Foundation Award Lecture. Clin. Cancer Res. 3, 829–836.PubMedGoogle Scholar
  4. 4.
    Guba, S., Vesole, D., Jagannath, S., Bracy, D., Barlogie, B., and Tricot, G. (1997) Peripheral stem cell mobilization and engraftment in patients over age 60. Bone Marrow Transplant 20, 1–3.Google Scholar
  5. 5.
    Savarese, D., Hsieh, C.-C., and Steward, F. (1997) Clinical impact of chemotherapy dose escalation in patients with hematologic malignancies and solid tumors. J. Clin. Oncol. 15, 2981–2995.PubMedGoogle Scholar
  6. 6.
    Siu, L. and Tannock, I. (1997) Chemotherapy dose escalation: case unproven. J. Clin. Oncol. 15, 2765–2768.PubMedGoogle Scholar
  7. 7.
    Biggs, J., Szer, J., Crilley, P., Atkinson, K., Downs, K., Dodds, A., Concannon, A., Avalos, B., Tutschka, P., Kapoor, N., Brodsky, I., Topolsky, D., Bulova, S., and Copelan, E. (1992) Treatment of chronic myeloid leukemia with allogeneic bone marrow transplantation after preparation with BuCy2. Blood 80, 1352–1357.PubMedGoogle Scholar
  8. 8.
    Buckner, C., Clift, R., Appelbaum, F., and Thomas, E. (1992) A randomized study comparing two transplant regimens for CML in chronic phase. Blood 80, 72a.Google Scholar
  9. 9.
    Copeland, E., Grever, M., Kapoor, N., and Tutschka, P. (1989) Marrow transplantation following busulfan and cyclophosphamide for chronic myelogenous leukemia in accelerated or blastic phase. Br. J. Haematol. 71, 487–491.CrossRefGoogle Scholar
  10. 10.
    Santos, G. (1993) Busulfan and cyclophosphamide versus cyclophosphamide and total body irradiation for marrow transplantation in chronic myelogenous leukemia-a review. Leuk. Lymphoma 11, 201–204.PubMedCrossRefGoogle Scholar
  11. 11.
    Petersen, F., Appelbaum, F., Hill, R., Fisher, L., Bigelow, C., Sanders, J., Sullivan, K., Bensinger, W., Witherspoon, R., Storb, R., Clift, R., Fefer, A., Priss, O., Weiden, P., Singer, J., Thomas, E., and Buckner, C. (1990) Autologous marrow transplantation for malignant lymphoma: a report of 101 cases from Seattle. J. Clin. Oncol. 8, 638–647.PubMedGoogle Scholar
  12. 12.
    Philip, T., Armitage, J., Spitzer, G., Chauvin, F., Jagannath, S., Cahn, J., Colombat, P., Goldstone, A., Gorin, N., Flesh, M., Laporte, J.-P., Maraninchi, D.,Pico, J., Bosly, A., AndersonGoogle Scholar
  13. C., Schots, R., Bion, P., Cabanillas, F., and Dicke, K. (1987) High-dose therapy and autologous bone marrow transplantation after failure of conventional chemotherapy in adults with intermediate-grade or high-grade non-Hodgkin’s lymphoma. N. Engl. J. Med. 316, 1493–1498.CrossRefGoogle Scholar
  14. 13.
    Vose, J., Armitage, J., Bierman, P., Weisenburger, D., Hutchins, M., Dowling, M., MoravecGoogle Scholar
  15. D., Sorensen, S., Okerbloom, J., Bascom, G., Howe, D., Johnson, P., Langdon, R., Mailliard, J., Pevnick, W., Westberg, M., and Kessinger, A. (1989) Salvage therapy for relapsed or refractory non-Hodgkin’s lymphoma utilizing autologous bone marrow transplantation. Am. J. Med. 87, 285–288.PubMedCrossRefGoogle Scholar
  16. 14.
    Jagannath, S., Vesole, D., Glenn, L., Crowley, J., and Barlogie, B. (1992) Low-risk intensive therapy for multiple myeloma with combined autologous bone marrow and blood stem cell support. Blood 80, 1666–1672.PubMedGoogle Scholar
  17. 15.
    Tricot, G., Jagannath, S., Vesole, D., Crowley, J., and Barlogie, B. (1995) Relapse of multiple myeloma after autologous transplantation: survival outcome after salvage. Bone Marrow Transplant 16, 7–11.PubMedGoogle Scholar
  18. 16.
    Govindarajan, R., Jagannath, S., Flick, J., Vesole, D., Sawyer, J., Barlogie, B., and Tricot, G. (1996) Preceding standard therapy is the likely cause of MDS after autotransplants for multiple myeloma. Br. J. Haematol. 95, 349–353.PubMedCrossRefGoogle Scholar
  19. 17.
    Tricot, G., Jagannath, S., Vesole, D., Nelson, J., Tindle, S., Miller, L., Cheson, B., Crowley, J., and Barlogie, B. (1995) Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment of 225 patients. Blood 85, 588–596.PubMedGoogle Scholar
  20. 18.
    Philip, T., Guglielmi, C., Hagenbeek, A., Somers, R., Van deer Lelie, H., Bron, D., Sonneveld, P., Gisselbrecht, C., Cahn, J., Harousseau, J., Coiffier, B., Biron, P., Mandelli, F., and Chauvin, F. (1995) Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N. Engl. J. Med. 333, 1540–1545.PubMedCrossRefGoogle Scholar
  21. 19.
    Barlogie, B., Jagannath, S., and Tricot, G. (1998) Advances in the treatment of multiple myeloma, in Advances in Internal Medicine, vol. 43 ( Schrier, R., Abboud, F., Baxter, J., and Fauci, A., eds.), Mosby, St. Louis, MO, 279–320.Google Scholar
  22. 20.
    Barlogie, B., Jagannath, S., Vesole, D., Naucke, S., Cheson, B., Mattox, S., Bracy, D., Salmon, S., Jacobson, J., Crowley, J., and Tricot, G. (1997) Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma. Blood 89, 789–793.PubMedGoogle Scholar
  23. 21.
    Gribben, J. and Nadler, L. (1993) Monitoring minimal residual disease. Sem. Oncol. 20, 143–155.Google Scholar
  24. 22.
    Gribben, J., Neuberg, D., Freedman, A., Gimmi, C., Pesek, K., Barber, M., Saporito, L., Woo, S., Coral, F., Spector, N., Rabinowe, S., Grossbard, M., Ritz, J., and Nadler, L. (1993) Detection of polymerase chain reaction of residual cells with the bc1–2 translocation is associated withGoogle Scholar
  25. increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood 81 3449–3457.Google Scholar
  26. 23.
    Freedman, A., Gribben, J., Neuberg, D., Mauch, P., Soiffer, R., Anderson, K., Pandite, L., Robertson, M., Kroon, M., Ritz, J., and Nadler, L. (1996) High-dose therapy and autologous bone marrow transplantation in patients with follicular lymphoma during first remission. Blood 88, 2780–2786.PubMedGoogle Scholar
  27. 24.
    Gribben, J., Neuberg, D., Barber, M., Moore, J., Pesek, K., Freedman, A., and Nadler, L. (1994) Detection of residual lymphoma cells by polymerase chain reaction in peripheral blood is significantly less predictive for relapse than detection in bone marrow. Blood 83, 3800–3807.PubMedGoogle Scholar
  28. 25.
    Gorin, N., Aegerter, P., Auvert, B., Meloni, G., Goldstone, A., Burnett, A., Carella, A., Korbling, M., Herve, P., Maraninchi, D., Lowenberg, R., Verdonck, L., de Planque, M, Hermans, J., Helbig, W., Porcellini, A., Rizzoli, V., Alesandrino, E., Franklin, I., Reiffers, J., Colleselli, P., and Goldman, J. (1990) Autologous bone marrow transplantation for acute myelocytic leukemia in first remission: a European survey of the role of marrow purging. Blood 75, 1606–1614.PubMedGoogle Scholar
  29. 26.
    Douay, L., Hu, C., Giarratana, M., Bouchet, S., Conlon, J., Capizzi, R., and Gorin, N. (1995) Amifostine improves the antileukemic therapeutic index ofmafosfamide: implications for bone marrow purging. Blood 86, 2849–2855.PubMedGoogle Scholar
  30. 27.
    Brenner, M., Rill, D., Moen, R., Krance, R., Heslop, H., Mirro, J. J., Anderson, W., and Ihle, J. (1994) Gene marking and autologous bone marrow transplantation [Review]. Ann. NY Acad. Sci. 716, 204–214.PubMedCrossRefGoogle Scholar
  31. 28.
    Brenner, M., Rill, D., Moen, R., Krance, R., Mirro, J. J., Anderson, W., and Ihle, J. (1993) Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 341, 85, 86.Google Scholar
  32. 29.
    Heslop, H., Rooney, C., Rill, D., Krance, R., and Brenner, M. (1996) Use of gene marking in bone marrow transplantation. Cancer Detect. Prey. 20, 108–113.Google Scholar
  33. 30.
    Barnett, M., Eaves, C., Phillips, G., Kalousek, D., Klingemann, K., Landsdorp, P., Reece, D., Shepherd, J., Shaw, G., and Eaves, A. (1989) Successful autografting in chronic myeloid leukemia after maintenance of marrow in culture. Bone Marrow Transplant 4, 345–351.PubMedGoogle Scholar
  34. 31.
    Coulombel, L., Kalousek, D., Eaves, C., Gupta, C., and Eaves, A. (1983) Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N. Engl. J. Med. 308, 1493–1498.PubMedCrossRefGoogle Scholar
  35. 32.
    Udomsakdi, C., Eaves, C., Swolin, B., Reid, D., Barnett, M., and Eaves, A. (1992) Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level. Proc. Natl. Acad. Sci. USA 89, 6192–6196.PubMedCrossRefGoogle Scholar
  36. 33.
    Gazitt, Y., Reading, C., Hoffman, R., Wickrema, A., Vesole, D., Jagannath, S., Condino, J., Lee, B., Barlogie, B., and Tricot, G. (1995) Purified CD34+ Lin-Thy+ stem cells do not contain clonal myeloma cells. Blood 86, 381–389.PubMedGoogle Scholar
  37. 34.
    Tricot, G. (1997) Multiparameter cell sorting of PBSC. VI International Workshop on Multiple Myeloma, Boston.Google Scholar
  38. 35.
    Ratanatharathorn, V., Uberti, J., Karanes, C., Abella, E., Lum, L., Momin, F., Cummings, G., and Sensenbrenner, L. (1994) Prospective comparative trial of autologous versus allogeneic bone marrow transplantation in patients with non-Hodgkin’ s lymphoma. Blood 84, 1050–1055.PubMedGoogle Scholar
  39. 36.
    Takai, S., Tateno, M., Hirano, T., Kondo, N., Hirose, S., and Yoshiki, T. (1993) Increased IgE level as a marker of host-versus-graft disease: inhibition of this HVGD with a monoclonal antibody to IL-4. Cell. Immunol. 149, 1–10.PubMedCrossRefGoogle Scholar
  40. 37.
    Ushiyama, C., Hirano, T., Miyajima, H., Okumura, K., Ovary, Z., and Hashimoto, H. (1995) Anti-IL-4 antibody prevents graft-versus-host disease in mice after bone marrow transplantation. J. Immunol. 154, 2687–2696.PubMedGoogle Scholar
  41. 38.
    Weiss, L., Lubin, I., Factorowich, I., Lapidot, Z., Reich, S., Reisner, Y., and Slavin, S. (1994) Effective graft-versus-leukemia effects independent of graft-versus-host disease after T cell-depleted allogeneic bone marrow transplantation in a murine model of B cell leukemia/lymphoma. J. Immunol. 153, 2562–2567.PubMedGoogle Scholar
  42. 39.
    Horowitz, M., Gale, R., Sondel, P., Goldman, J., Kersey, J., Kolb, H.-J., Rimm, A, Ringden, O., Rozman, C., Speck, B., Truitt, R., Zwaan, F., and Bortin, M. (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562.PubMedGoogle Scholar
  43. 40.
    Kolb, H.-J., Schattenberg, A., Goldman, J., Hertenstein, B., Jacobsen, N., Arcese, W., Ljungman, P., Ferrant, A., Verdonck, L., Niederwieser, D., van Rhee, F., Mittermueller, J., de Witte, T., Holler, E., and Ansari, H. for the European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86, 2041–2050.PubMedGoogle Scholar
  44. 41.
    Gluckman, E., Rocha, V., Boyer-Chammard, A., Locatelli, F., Arcese, W., Pasquini, R., Ortega, J., Souillet, G., Ferreira, E., Laporte, J.-P., Fernandez, M., and Chastang, C. (1997) Outcome of cord-blood transplantation from related and unrelated donors. N. Engl. J. Med. 337, 373–381.PubMedCrossRefGoogle Scholar
  45. 42.
    Rubinstein, P., Carrier, C., Adamson, J., Migliaccio, A., Berkowitz, R., Kurtzberg, J., Scaradavou, A., and Stevens, C. (1996) New York Blood Center’s Program for unrelated placental/umbilical cord blood (PCB) transplantation: 243 transplants in the first 3 years. Blood 88, 142a.Google Scholar
  46. 43.
    Harris, D. (1994) Cord blood transplantation: implications for graft vs. host disease and graft vs. leukemia. Blood Cells 20, 560–565.PubMedGoogle Scholar
  47. 44.
    Harris, D. (1995) In vitro and in vivo assessment of the graft-versus-leukemia activity of cord blood. Bone Marrow Transplant 15, 17–23.PubMedGoogle Scholar
  48. 45.
    Keever, C., Abu-Hajir, M., Graf, W., McFadden, P., Prichard, P., O’Brien, J., and Flomberg, N. (1995) Characterization of the alloreactivity and anti-leukemia reactivity of cord blood mononuclear cells. Bone Marrow Transplant 15, 407–419.PubMedGoogle Scholar
  49. 46.
    Charak, B., Brynes, R., Groshen, S., Chen, S.-C., and Mazumder, A. (1990) Bone marrow transplantation with interleukin-2 activated bone marrow followed by interleukin-2 therapy for acute myeloid leukemia in mice. Blood 76, 2187–2190.PubMedGoogle Scholar
  50. 47.
    Heslop, H., Gottlieb, D., Bianchi, A., Meager, A., Prentice, H. Mehta, A., Hoffbrand, A., and Brenner, M. (1989) In vivo induction of gamma interferon and tumor necrosis factor by interleukin-2 infusion following intensive chemotherapy or autologous marrow transplantation. Blood 74 1374–1380.Google Scholar
  51. 48.
    Chrobak, L., Podzimek, K., Pliskova, L., Kerekes, Z., Zak, P., Voglova, J., Spacek, J., and Palicka, V. (1996) Serum soluble IL-2 receptor as a reliable and noninvasive marker of disease activity in patients with hairy cell leukemia. Neoplasm 43, 321–325.Google Scholar
  52. 49.
    Srivastava, M., Srivastava, A., and Srivastava, B. (1994) Soluble interleukin-2 receptor, soluble CD8 and soluble intercellular adhesion molecule-1 levels in hematologic malignancies. Leukemia Lymphoma 12, 241–251.PubMedCrossRefGoogle Scholar
  53. 50.
    Upadhyaya, G., Guba, S., Sih, S., Feinberg, A., Talpaz, M., Kantarjian, H., Deisseroth, A., and Emerson, S. (1991) Interferon-alpha restores the deficient expression of the cytoadhesion molecule lymphocyte function antigen-3 by chronic myelogenous leukemia progenitor cells. J. Clin. Invest. 88, 2131–2136.PubMedCrossRefGoogle Scholar
  54. 51.
    Selleri, C., Sato, T., Del Vecchio, L., Luciano, L., Barrett, A., Rotoli, B., Young, N., and Maciejewski, J. (1997) Involvement of Fas-mediated apoptosis in the inhibitory effects of interferon-a in chronic myelogenous leukemia. Blood 89, 957–964.PubMedGoogle Scholar
  55. 52.
    Chauhan, D., Kharbanda, S., Ogata, A., Urashima, M., Teoh, G., Robertson, M., Kufe, D., and Anderson, K. (1997) Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood 89, 227–234.PubMedGoogle Scholar
  56. 53.
    McCormack, E., Borzillo, G., Ambrosino, C., Mak, G., Hamablet, L., Qu, G., and Haley, J. (1997) Transforming growth factor-beta3 protection of epithelial cells from cycle-selective chemotherapy in vitro. Biochem. Pharmacol. 53, 1149–1159.PubMedCrossRefGoogle Scholar
  57. 54.
    Bonini, C., Ferrari, G., Verzeletti, S., Servida, P., Zappone, E., Ruggieri, L., Ponzoni, S., Mavilio, F., Traversari, C., and Bordignon, C. (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724.PubMedCrossRefGoogle Scholar
  58. 55.
    Cohen, J., Boyer, O., Salomon, B., Onclercq, R., Charlotte, F., Bruel, S., Boisserie, G., and Klatzmann, D. (1997) Prevention of graft-versus-host disease in mice using a suicide gene expressed in T lymphocytes. Blood 89, 4636–4645.PubMedGoogle Scholar
  59. 56.
    Munshi, N., Govindarajan, R., Drake, R., Ding, L., Iyer, R., Saylors, R., Kornbluth, J., Marcus, S., Chiang, Y., Ennist, D., Kwak, L., Reynolds, C., Tricot, G., and Barlogie, B. (1997) Thymidine kinase (TK) gene-transduced human lymphocytes can be highly purified, remain fully functional, and are killed efficiently with ganciclovir. Blood 89, 1334–1340.PubMedGoogle Scholar
  60. 57.
    Munshi, N., Jagannath, S., Vesole, D., Desikan, K., Barlogie, B., and Tricot, G. (1996) Graft vs. myeloma effect: Thymidine kinase (TK) gene transduced lymphocyte infusion following allogeneic transplantation in myeloma. Blood 88, 244a.Google Scholar
  61. 58.
    Henslee-Downey, P., Abhyankar, S., Parrish, R., Pati, A., Goddar, K., Neglia, W., et al. (1997) Use of partially mismatched donors extends access to allogeneic marrow transplant. Blood 89, 3864–3872.PubMedGoogle Scholar
  62. 59.
    Bloomfield, C., Lawrence, D., Arthur, D., Berg, D., Schiffer, C., and Mayer, R. (1994) Curative impact of intensification with high-dose cytarabine (HiDAC) in acute myeloid leukemia (AML) varies by cytogenetic group. Blood 84, 11la.Google Scholar
  63. 60.
    Cattoretti, G., Chang, C.-C., Cechova, K., Zhang, J., Ye, B., Falini, B., Louie, D., Offit, K., Chaganti, R., and Dalla-Favera, R. (1995) BCL-6 protein is expressed in germinal-center B cells. Blood 86, 45–53.Google Scholar
  64. 61.
    Clark, S., Mclaughlin, J., Crist, W., Changlin. R., and Witte, O. (1987) Unique forms of the abl tyrosine kinase distinguish Ph-positive CML from Ph-positive ALL. Science 235, 85–88.Google Scholar
  65. 62.
    deThe, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., and Dejean, A. (1991) The PML/RARa fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684.CrossRefGoogle Scholar
  66. 63.
    Erickson, P., Gao, J., Chang, K.-S., Look, T., Whisenant, E., Raimondi, S., Lasher, R., Trujillo, H., Rowley, H., and Drabkin, H. (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML 1 /ETO, with similarity to Drosophila segmentation gene, runt. Blood 80, 1825–1831.PubMedGoogle Scholar
  67. 64.
    Haioun, C., Lepage, E., Gisselbrecht, C., Bastion, Y., Coiffier, B., Brice, P., Bosly, A., Dupriez, B., Nouvel, C., Tilly, H., Lederlin, P., Biron, P., Briere, J., Gaulard, P., and Reyes, F., for the Groupe d’Etudes des Lymphomes de l’Adulte. (1997) Benefit of autologous bone marrow transplantation over sequential chemotherapy in poor-risk aggressive non-Hodgkin’s lymphoma: updated results of the prospective study LNH87–2. J. Clin. Oncol. 15, 1131–1137.Google Scholar
  68. 65.
    Kakizuka, A., Miller, W., Umesono, K., Warrel, R., Frankel, S., Murty, V., Dmitrovsky, E., and Evans, R. (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor, PML. Cell 66, 663–674.PubMedCrossRefGoogle Scholar
  69. 66.
    Keating, M., Cork, A., Broach, Y., Smith, T., Walters, R., McCredie, K., Trujillo, J., and Freireich, E. (1987) Toward a clinically relevant cytogenetic classification of acute myelogenous leukemia. Leukemia Res. 11, 119–133.CrossRefGoogle Scholar
  70. 67.
    Kelliher, M., Knott, A., Mclaughlin, J., Witte, O., and Rosenberg, N. (1991) Differences in oncogenic potency but not target cell specificity distinguish the two forms of the BCR/ABL oncogene. Mol. Cell. Biol. 11, 4710–4716.PubMedGoogle Scholar
  71. 68.
    Levine, E., Arthur, D., Frizzera, G., Peterson, B., Hurd, D., and Bloomfield, C. (1985) There are differences in cytogenetic abnormalities among histologic subtypes of the non-Hodgkin’s lymphomas. Blood 66, 1414–1422.PubMedGoogle Scholar
  72. 69.
    Liu, P., Tarle, S., Hajra, A., Claxton, D., Marlton, P., Freedman, M., Siciliano, M., and Collins, F. (1993) Fusion between transcription factor CBF13/PEBP213 and myosin heavy chain in acute myeloid leukemia. Science 261, 1041–1044.PubMedCrossRefGoogle Scholar
  73. 70.
    Marosi, C., Koller, U., Koller-Weber, E., Schwarzinger, I., Schneider, B., Jager, U., Vahls, P., Nowotny, H., Pirc-Danoewinata, H., Steger, G., Kreiner, G., Wagner, B., Lechner, K., Lutz, D., Bettelheim, P., and Haas, O. (1992) Prognostic impact of karyotype and immunologic phenotype in 125 adult patients with de novo AML. Cancer Genet. Cytogenet. 61, 14–25.PubMedCrossRefGoogle Scholar
  74. 71.
    Meyers, S., Downing, J., and Hiebert, S. (1993) Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence specific DNA binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol. Cell. Biol. 13, 6336–6345.PubMedGoogle Scholar
  75. Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., and Ohki, M. (1991) t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 88 10,431–10,434.Google Scholar
  76. 73.
    Offit, K., Wong, G., Filippa, D., Tao, Y., and Chaganti, R. (1991) Cytogenetic analysis of 434 consecutively ascertained specimens of non-Hodgkin’s lymphoma: clinical correlations. Blood 77, 1508–1515.PubMedGoogle Scholar
  77. 74.
    Rimokh, R., Berger, F., Delsol, G., Digonnet, I., Rouault, J., Tigaud, J., Gadoux, M., Coiffier, B., Bryon, C. B, P., and Magaud, J. (1994) Detection of the chromosomal translocation t(11;14) by polymerase chain reaction in mantle cell lymphomas. Blood 83, 1871–1875.Google Scholar
  78. 75.
    Swansbury, G., Lawler, S., Alimena, G., Arthur, D., Berger, R., Van Den Berghe, H., Bloomfield, C., de la Chappelle, A., Dewald, G., Garson, 0., Hagemeijer, A., Mitelman, F., Rowley, J., and Sakurai, M. (1994) Long-term survival in acute myelogenous leukemia: a second follow-up of the fourth international workshop on chromosomes in leukemia. Cancer Genet. Cytogenet. 73, 1–7.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Susan C. Guba
  • Bart Barlogie

There are no affiliations available

Personalised recommendations