How Essential is the Pre-T-Cell Receptor?

  • Jan Buer
  • Harald von Boehmer
Part of the Contemporary Immunology book series (CONTIM)


The immune system has the capacity to distinguish and respond specifically to a large variety of antigens. This function is performed mostly by the lymphocytes that form two major cell lineages: the B-cells and T-cells. Cells of the two lymphoid lineages express distinct, but related cell-surface antigen receptors, and thereby recognize different types of antigens. Although the diverse immunoglobulin (Ig) receptors on different B lymphocytes generally can bind to a large variety of different substances, the T-cell receptor (TCR) for antigen is built in such a way that it binds preferentially to major histocompatibility complex (MHC) encoded molecules that present various peptides, which are degradation products of either cell exogenous or cell endogenous proteins. TCR-peptide—MHC recognition regulates immune responses including graft and tumor rejection, antiviral cytolysis, and the recruitment and control of other immune cells such as antibody-producing B-cells. Lymphocyte antigen receptors are composed of two variable glycoprotein subunits: the Ig heavy (IgH) and light chains (IgL) on B-cells and the TCRα and β, or γ and δ chains on T-cells. The genes coding for Ig and TCR chains are formed through somatic rearrangement of V, D, and J gene segments (1,2). During V-D-J recombination, coding gene segments are generally subjected to varying degrees of base deletion, addition, or both (3). As a consequence, V-D-J joining could result either in productive rearrangements that maintain an “open reading frame” throughout the gene or in “out-of-frame,” nonproductive rearrangements. Rearrangement of both TCR and Ig genes requires the expression of recombination activating genes (RAG 1 and RAG2) (4,5). Given its diploid nature, a lymphocyte could theoretically express up to four distinct combinations of antigen receptor chains on its surface. However, each B-cell has only one antibody receptor specificity, a phenomenon referred to as allelic exclusion. In thymocytes developing along the TCRαβ lineage, the situation is different; although virtually all T lymphocytes of the αβ lineage express only one particular TCRβ chain, a significant proportion ofT-cells can express two different a chains at the cell surface (6,7).


Double Positive Cell Recombination Activate Gene Thymocyte Development Allelic Exclusion Double Negative Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tonegawa, S. (1983) Somatic generation of antibody diversity. Nature 302, 575–581.PubMedCrossRefGoogle Scholar
  2. 2.
    Davis, M. M., and Bjorkman, P. J. (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402.PubMedCrossRefGoogle Scholar
  3. 3.
    Lewis, S. M. (1994) The mechanisms of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv. Immunol. 56, 27–150.PubMedCrossRefGoogle Scholar
  4. 4.
    Mombaerts, P. Iacomoni, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papioannou, V. E. (1992a) RAG-1 deficient mice have no mature B and T lymphocytes. Cell 68 869–877.Google Scholar
  5. 5.
    Shinkai, Y., Rathbun, G., Lam, K. P., Oltz, E. M., Steward, V., Mendelsohn, M., Charron, J., Datta, M., Young, F., Stall, A. M., and Alt, F. (1992) RAG-2 deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867.PubMedCrossRefGoogle Scholar
  6. 6.
    Padovan, E., Casorati, G., Dellabona, P., Meyer, S., Brockhaus, M., and Lanzavecchia, A. (1993) Expression of two T cell receptor a chains: dual receptor T cells. Science 262, 422–424.PubMedCrossRefGoogle Scholar
  7. 7.
    Heath, W. R., Carbone, F. R., Bertolino, P., Kelly, J., Cose, S., and Miller, J. F. A. P. (1995) Expression of two a chains on the surface of T cells in T cell receptor transgenic mice. J. Exp. Med. 178, 1807–1811.CrossRefGoogle Scholar
  8. 8.
    Rocha, B., Vassalli, P., and Guy-Grand, D. (1991) The Vß repertoire of mouse gut homodimeric aCD8+ intraepithelial T cell receptor ar lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med. 173, 483–486.PubMedCrossRefGoogle Scholar
  9. 9.
    von Boehmer, H. (1994) Positive selection of lymphocytes. Cell 76, 219–228.CrossRefGoogle Scholar
  10. 10.
    Groettrup. M., Baron, A., Griffiths, R., Palacios, R., and von Boehmenr, H. (1992) T-cell receptor (TCR) ß chain homodimers on the surface of immature but not mature a, y, S chain deficient T-cell lines. EMBO J. 11, 2735–2746.Google Scholar
  11. 11.
    Saint-Ruf, C., Ungewiss, K., Groettrup, M., Bruno, L., Fehling, H. J., and von Boehmer, H. (1994) Analysis and expression of a pre-T cell receptor gene. Science 266, 1208–1212.PubMedCrossRefGoogle Scholar
  12. 12.
    Fehling, H. J., Krotkova, A., Saint-Ruf, C., and von Boehmer, H. (1995) Crucial role of the preT-cell receptor alpha in development of alpha/beta but not gamma/delta T cells. Nature 375, 795–798.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu, L., Scollay, R., Egerton, M., Pearse, M., Spangrude, G. J., and Shortman, K. (1991) CD4 expressed on earliest T-lineage precursor cells in adult murine thymus. Nature 349, 71–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Godfrey, D. I., Kennedy, J., Suda, T., and Zlotnik, A. (1993) A developmental pathway involving four phenotypically and functionally distinct subsets of CD3–CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252.PubMedGoogle Scholar
  15. 15.
    Matsuzaki, Y., Gyotoku, J., Ogawa, M., Nishikawa, S., Katsura, Y., Gachelin, G., andNakauchi, H. (1993) Characterization of c-kit positive intrathymic stem cells that are restricted to lymphoid differentiation. J. Exp. Med. 178, 1283–1292.PubMedCrossRefGoogle Scholar
  16. 16.
    Rodewald, H. R., Moingeon, P., Lucich, J. L., Dosiou, C., Lopez, P., and Reinherz, L. E. (1992) A population of early fetal thymocytes expressing FcyRII/III contains precursors of T lymphocytes and NK cells. Cell 69, 139–150.Google Scholar
  17. 17.
    Ardavin, C., Wu, L., Li, C. L., and Shortman, K. (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763.PubMedCrossRefGoogle Scholar
  18. 18.
    Kisielow, P., and von Boehmer, H. (1995) Development and selection of T cells, facts and puzzles. Adv. Immunol. 58, 87–209.PubMedCrossRefGoogle Scholar
  19. 19.
    Livak, F., Petrie, H. T., Crispe, I. N., and Schatz, D. G. (1995) In-frame TCRS rearrangements play a critical role in the aß/y6 lineage decision. Immunity 2, 617–627.PubMedCrossRefGoogle Scholar
  20. 20.
    Dudley, E., Girardi, M., Owen, M., and Hayday, A. (1995) Alpha beta and gamma delta T cells can share a late common precursor. Curr. Biol. 5, 659–669.PubMedCrossRefGoogle Scholar
  21. 21.
    Kang, J., Baker, J., and Raulet, D. (1995) Evidence that productive rearrangements of TCR gamma genes influence the commitment of progenitor cells differentiate into alpha beta or gamma delta T cells. Eur. J. Immunol. 9, 2706–2709.CrossRefGoogle Scholar
  22. 22.
    Bruno, L., Fehling, H. J., and von Boehmer, H. (1996) The alpha/beta T cell receptor can replace the gamma/delta receptor in the development of the gamma/delta lineage cells. Immunity 5, 343–352.PubMedCrossRefGoogle Scholar
  23. 23.
    Washburn, T., Schweighoffer, E., Gridley, T., Chang, D., Fowlkes, B. J., Cado, D., and Robey, E. (1997) Notch activity influences the aß vs. 76 T cell lineage decision. Cell 88, 833–843.PubMedCrossRefGoogle Scholar
  24. 24.
    Groettrup, M., Ungewiss, K., Azogui, O., Palacios, R., Owen, M. J., Hayday, A. C., and von Boehmer, H. (1993a) A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor beta chain and a 33 kd glycoprotein. Cell 75, 283–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffman, E. S., Passoni, L., Crompton, T., Leu, T. M., Schatz, D. G., Koff, A., Owen, M. J., and Hayday, A. C. (1996) Productive T-cell receptor beta-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 10, 948–962.PubMedCrossRefGoogle Scholar
  26. 26.
    von Boehmer, H. and Fehling, H. J. (1997) Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452.CrossRefGoogle Scholar
  27. 27.
    Penit, C., Lucas, B., and Vasseur, F. (1995) Cell expansion and growth arrest phases during the transition from precursor (CD4-) to immature (CD4+8+) thymocytes in normal and genetically modified mice. J. Immunol. 154, 5103–5105.PubMedGoogle Scholar
  28. 28.
    Uematsu, Y., Ryser, S., Dembic, S. Z., Borgulya, P., Krimpenfort, P. Berns, A., von Boehmer, H., and Steinmetz, M. (1988) In transgenic mice the introduced functional T cell receptor ß gene prevents expression of endogenous ß genes. Cell 52 831–841.Google Scholar
  29. 29.
    von Boehmer, H. 1990. Developmental biology of T cells in T-cell receptor transgenic mice. Annu. Rev. Immunol. 8 531–556.Google Scholar
  30. 30.
    Casanova, J. L., Romero, P., Widman, C., Kourilsky, P., and Maryanski, J. L. (1991) T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire. J. Exp. Med. 174, 1371–1383.PubMedCrossRefGoogle Scholar
  31. 31.
    Borgulya, P., Kishi, H., Uematsu, Y., and von Behmer, H. (1992) Exclusion and inclusion of a and ß T cell receptor alleles. Cell 69, 529–537.PubMedCrossRefGoogle Scholar
  32. 32.
    Malissen, M., Trucy, J., Jouvin-Marche, E., Cazenave, P. A., Scollay, R., and Malissen, B. (1992) Regulation of TCRa and b gene allelic exclusion during T cell development. Immunol. Today 13, 315–322.PubMedCrossRefGoogle Scholar
  33. 32a.
    Shinkai, Y., Koyasu, S., Nakayama, K. I., Murphy, K. M., Loh, D. Y., Reinherz, E. L., and Alt, F. W. (1993) Restoration of T cell development in RAG-2 deficient mice by functional TCR transgenes. Science 259, 822–825.PubMedCrossRefGoogle Scholar
  34. 33.
    Teh, H. S., Kisielow, P., Scott, B., Kishi, H., Uematsu, Y., Bluethmann, H., and von Boehmer, H. (1988) Thymic major histocompatibility complex antigens and the specificity of the aß T cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233.Google Scholar
  35. 34.
    Robey, E., Chang, D., Itano, A., Cado, D., Alexander, H., Lans, D., Weinmaster, G., and Salmon, P. (1996) An activated form of Notch influences the choice be tween CD4 and CD8 T cell lineages. Cell 87, 483–492.PubMedCrossRefGoogle Scholar
  36. 35.
    Malissen, M., Gillet, A., Ardouin, L., Bouvier, G., Trucy, J., Ferrier, P., Vivier, E., and Malissen, B. (1995) Altered T cell development in mice with a targeted mutation of the CD3epsilon gene. EMBO J. 14, 4641–4653.PubMedGoogle Scholar
  37. 36.
    Levelt, C. N., Mombaerts, P. Iglesias, A., Tonegawa, S., and Eichmann, K. (1993) Restoration of early thymocyte differentiation in T-cell receptor ß-chain-deficient mutant mice by trans-membrane signaling through CD3s. Proc. Natl. Acad. Sci. USA 90 11,401–11,405.Google Scholar
  38. 37.
    Levelt, C. N., Mombaerts, P., Wang, B., Kohler, H., Tonegawa, S., Eichmann, K., and Terhorst, C. (1993) Regulation of thymocyte development through CD3, functional dissociation between p56“ and CD3 2, in eraly thymic selection. Immunity 3, 215–222.CrossRefGoogle Scholar
  39. 38.
    Jacobs, H. Vandeputte, D., Tolkamp, L., de Vries, E., Borst, J. and Berns, A. (1994) CD3 components at the surface of pro-T cells can mediate pre-T cell development in vivo. Eur. J. Immunol. 24 934–939.Google Scholar
  40. 39.
    Shinkai, Y., and Alt, F. W. (1994) CDR-mediated signals rescue the development of CD4+8+ thymocytes in RAG2’’’ mice in the absence of TCRß chain expression. Int. Immunol. 6,995–1001.Google Scholar
  41. 40.
    van Oers, N. S. C., von Boehmer, H., and Weiss, A. (1995) The pre-T cell receptor (TCR) complex is functionally coupled to the TCR- subunit. J. Exp. Med. 182, 1585–1590.PubMedCrossRefGoogle Scholar
  42. 41.
    Del Porto, P., Bruno, L., Mattei, M. G., von Boehmer, H., and Saint-Ruf, C. (1995) Cloning and comparitive analysis of the human pre-T cell receptor a-chain gene. Proc. Natl. Acad. Sci. USA 92, 12105–12109.PubMedCrossRefGoogle Scholar
  43. 42.
    Boismenu, R., Rhein, M., Fischer, W. H., and Havran, W. L. (1996) A role for CD81 in early T cell development. Science 271, 198–200.PubMedCrossRefGoogle Scholar
  44. 43.
    Maecker, H. T. and Levy, S. (1997) Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J. Exp. Med. 185, 1505–1510.PubMedCrossRefGoogle Scholar
  45. 44.
    Fehling, H. J., Iritani, B. M., Krotkova, A., Forbush, K. A., Laplace, C., Perlmutter, R. M., and von Boehmer, H. (1997) Restoration of early T cell development in pTa-deficient mice by antiCD3e antibody treatment or with transgenes encoding activated lck or tailless pTa. Immunity 6, 703–714.PubMedCrossRefGoogle Scholar
  46. 45.
    Anderson, S. J., Levin, S. D., and Perlmutter, R. M. (1994) Involvement of the protein tyrosine kinase p56lck in T cell signaling and thymocyte development. Adv. Immunol. 56, 151–178.PubMedCrossRefGoogle Scholar
  47. 46.
    van Oers, N. S. C., Lowin-Kropf, B., Finlay, D., Connolly, K., and Weiss, A. (1996) Alpha/beta T cell development is abolished in mice lacking both lck and fyn protein tyrosine kinases. Immunity 5, 429–436.PubMedCrossRefGoogle Scholar
  48. 47.
    Molina, T. J., Kishihara, K., Siderovski, D. P., van Ewijk, W., Narendran, A., Timms, E., Wakeham, A., Paige, C. J., Hartmann, K. U., Veillette, A., Davidson, D., and Mak, T. W. (1992) Profound block in thymocyte development in mice lacking p561ck. Nature 357, 161–164.PubMedCrossRefGoogle Scholar
  49. 48.
    Levin, S., Anderson, S., Forbush, K., and Perlmutter, R. (1993) A dominant-negative transgene defines a role for p561’ in thymopoiesis. EMBO J. 12, 1671–1680.PubMedGoogle Scholar
  50. 49.
    Mombaerts, P. Anderson, S. J., Perlmutter, R. M., Mak, T. W., and Tonegawa, S. (1994) An activated lck transgene promotes thymocyte development in RAG-1 mutant mice. Immunity 1 261–267.Google Scholar
  51. 50.
    Groves, T., Smiley, P., Cooke, M. P., Forbush, K., Perlmutter, R. M., and Guidos, C. J. (1996) Fyn can partially substitute for lck in T lymphocyte development. Immunity 5, 417–428.PubMedCrossRefGoogle Scholar
  52. 51.
    Weiss, A. and Littman, D. R. (1994) Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274.PubMedCrossRefGoogle Scholar
  53. 52.
    Swat, W., Shinkai, Y., Cheng, H. L., Davidson, L., and Alt, F. W. (1996) Activated ras signals differentiation and expansion of CD4+8+ thymocytes. Proc. Natl. Acad. Sci. USA 93, 4683–4687.PubMedCrossRefGoogle Scholar
  54. 53.
    Crompton, T., Gilmour, K. C., and Owen, M. J. (1996) The MAP kinase pathway controls differentiation from double-negative to double-positive thymocytes. Cell 86, 243–251.PubMedCrossRefGoogle Scholar
  55. 54.
    Bruno, L., Rocha, B., Rolink, A., von Boehmer, H., and Rodewald, H. R. (1995) Intra-and extra-thymic expression of the pre-T cell receptor a gene. Eur. J. Immunol. 25, 1877–1882.Google Scholar
  56. 55.
    Ramiro, A. R., Trigueros, C., Marquez, C., San Milian, J. L., and Toribio, M. L. (1996) Regulation of pre-T cell receptor (pTa-TCR 3) gene expression during human thymic development. J. Exp. Med. 184, 519–530.PubMedCrossRefGoogle Scholar
  57. 56.
    Bruno, L., Res, P., Dessing, M., Cella, M., and Spits, H. (1997) Identification of a committed T cell precursor population in adult human peripheral blood. J. Exp. Med. 185, 875–884.Google Scholar
  58. 57.
    Rajewsky, K. (1996) Clonal selection and learning in the antibody system. Nature 381, 751–758.PubMedCrossRefGoogle Scholar
  59. 58.
    Kishi, H., Borgulya, P., Scott, B., Karjalainen, K., Traunecker, A., Kaufman, J., and von Boehmer, H. (1991) Surface expression of the ß T cell receptor (TCR) chain in the absence of other TCR or CD3 proteins on immature T cells. EMBO J. 10, 93–100.PubMedGoogle Scholar
  60. 59.
    Mombaerts, P., Clark, A. R., Rudnicki, M. A., Iacomini, J., Itohara, S., Lafaille, J. J., Wang, L., Ichikawa, Y., Jaenisch, R., Hooper, M. L., and Tonegawa, S. (1992b) Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360, 225–231.PubMedCrossRefGoogle Scholar
  61. 60.
    Philpott, K. L., Viney, J. L., Kay, G., Rastan, S., Gardiner, E. M., Chae, S., Hayday, A. C., and Owen, M. J. (1992) Lymphoid development in mice lacking T cell receptor alpha/beta-expressing cells. Science 256, 1448–1452.PubMedCrossRefGoogle Scholar
  62. 61.
    Buer, J., Aifantis, I., DiSanto, J. P., Fehling, H. J., and von Boehmer, H. (1997) Role of different T cell receptors in the development of pre-T cells. J. Exp. Med. 185, 1541–1547.Google Scholar
  63. 62.
    Lynch, F. and Shevach, E. M. (1993) Gamma/delta T cells promote CD4 and CD8 expression of SCID thymocytes. Int. Immunol. 8, 991–995.CrossRefGoogle Scholar
  64. 63.
    Shores, E. W., Sharrow, S. O., Uppenkamp, I., and Singer, A. (1990) T cell receptor negative thymocytes from SCID mice can be induced to enter the CD4/CD8 differentiation pathway. Eur. J. Immunol. 20, 69–77.PubMedCrossRefGoogle Scholar
  65. 64.
    Krimpenfort, P., Ossendrop, F., Borst, J., Melief, C., and Berns, A. 1989. T cell depletion in transgenic mice carrying a mutant gene for TCR[3. Nature 341, 742–746.PubMedCrossRefGoogle Scholar
  66. 65.
    Xu, Y., Davidson, L., Alt, F. W., and Baltimore, D. (1996) Function of the pre-T-cell receptor a chain in T-cell development and allelic exclusion at the T-cell receptor ß locus. Proc. Natl. Acad. Sci. USA 93, 2169–2137.PubMedCrossRefGoogle Scholar
  67. 66.
    Storb, U., Pinkert, C., Arp, B., Engler, P., Gollanhon, K., Manz, J., Brady, W., and Brinster, R. L. (1986) Transgenic mice with mu and kappa genes encoding antiphosphorylcholine antibodies. J. Exp. Med. 164, 627–652.PubMedCrossRefGoogle Scholar
  68. 67.
    Nussenzweig, M., Shaw, A., Sinn, E., Danner, D. B., Holmes, K. L., Morse, H. C., and Leder, P. (1988) Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin µ. Science 236, 816–819.CrossRefGoogle Scholar
  69. 68.
    Kitamura, D. and Rajewsky, K. (1992) Targeted disruption of mµ chain membrane exon cuases loss of heavy-chain allelic exclusion. Nature 356, 154–156.PubMedCrossRefGoogle Scholar
  70. 69.
    Karasuyama, H., Rolink, A., Shinkai, Y., Young, F., Alt, F. W., and Melchers, F. (1993) The expression of VpreB/X5 surrogate light chain in early bone marrow precursor B cells of normal and B-cell deficient mice. Cell 77, 133–143.CrossRefGoogle Scholar
  71. 70.
    Loeffert, D., Ehrlich, A., Mueller, W., and Rajewsky, K. (1996) Surrogate light chain expression is equired to establish immunoglobulin heavy chain allelic exclusion during early B cell development. Immunity 4, 133–144.CrossRefGoogle Scholar
  72. 71.
    Krotkova, A., von Boehmer, H., and Fehling, H. J. (1997) Allelic exclusion in pTa-deficient mice: no evidence for cell surface expression of two T cell receptor (TCR)-ß chains, but less efficient inhibition of endogenous V13-*(D)J13 rearrangements in the presence of a functional TCR-ß transgene. J. Exp. Med. 186, 767–775.PubMedCrossRefGoogle Scholar
  73. 72.
    Aifandis, I. Buer, J., von Boehmer, H., and Azogui, 0. (1997) Essential role of the pre-T-cell receptor in allelic exclusion of the T-cell receptor ß locus. Immunity J. 7 601–607.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jan Buer
  • Harald von Boehmer

There are no affiliations available

Personalised recommendations