Self-Renewal of Stem Cells

The Intrinsic Timetable Model
  • Peter M. Lansdorp
Part of the Contemporary Immunology book series (CONTIM)


Most blood cells have a limited life-span, and it is estimated that an adult human needs to produce between 1011 and 1012 mature blood cells per day to compensate for the daily loss of differentiated end cells. Ultimately, this enormous production of cells is derived from a population of hematopoietic stem cells that may need some form of self-renewal to sustain steady-state hematopoiesis and to reconstitute blood cell production following marrow injury.


Stem Cell Hematopoietic Stem Cell Telomere Length Fetal Liver Asymmetric Cell Division 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCulloch, E. A. and Till, J. E. (1960) The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat. Res 13, 115–125.PubMedCrossRefGoogle Scholar
  2. 2.
    Till, J. E., McCulloch, E. A., and Siminovitch, L. (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. USA 51, 29–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Magli, M. C., Iscove, N. N., and Odartchenko, N. (1982) Transient nature of early haematopoietic spleen colonies. Nature 295, 527–529.PubMedCrossRefGoogle Scholar
  4. 4.
    Ploemacher, R. E. and Brons, R. H. C. (1989) Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: Evidence for a pre-CFU-S cell. Exp. Hematol 17, 263–266.PubMedGoogle Scholar
  5. 5.
    Jones, R. J., Wagner, J. E., Celano, P., Zicha, M. S., and Sharkis, S. J. (1990) Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347, 188–189.PubMedCrossRefGoogle Scholar
  6. 6.
    Szilvassy, S. J. and Cory, S. (1993) Phenotypic and functional characterization of competitive long-term repopulating hematopoietic stem cells enriched from 5-fluorouracil-treated murine marrow. Blood 81, 2310–2320.PubMedGoogle Scholar
  7. 7.
    Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C., and Eaves, C. J. (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl. Acad. Sci. USA 87, 8736–8740.Google Scholar
  8. 8.
    Lansdorp, P. M., Dragowska, W., and Mayani, H. (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J. Exp. Med 178, 787–791.PubMedCrossRefGoogle Scholar
  9. 9.
    Rebel, V. I., Miller, C. L., Thornbury, G. R, Dragowska, W. H., Eaves, C. J., and Lansdorp, P. M. (1996) A comparison of long-term repopulating hematopoietic stem cells in fetal liver and adult bone marrow from the mouse. Exp. Hematol 24, 638–648.Google Scholar
  10. 10.
    Rebel, V. I., Miller, C. L., Eaves, C. J., and Lansdorp, P. M. (1996) The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their adult bone marrow counterparts. Blood 87, 3500–3507.PubMedGoogle Scholar
  11. 11.
    Rebel, V.I., Miller, C. L., Spinelli, J. J., Thomas, T. E., Eaves, C. J., and Lansdorp, P. M. (1995) Nonlinear effects of radiation dose on donor-cell reconstitution by limited numbers of purified stem cells. Biol. Blood Marrow Transplant 1, 32–39.PubMedGoogle Scholar
  12. 12.
    Ogawa, M. (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853.PubMedGoogle Scholar
  13. 13.
    Dexter, T. M., Heyworth, C. M., Spooncer, E., and Ponting, I. L. O. (1990) The role of growth factors in self-renewal and differentiation of haemopoietic stem cells. Philos. Trans. R. Soc. Lond. Biol 327, 85–98.Google Scholar
  14. 14.
    Metcalf, D. (1991) Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: Influence of colony-stimulating factors. Proc. Natl. Acad. Sci. USA 88,11, 310–11, 314.Google Scholar
  15. 15.
    Fairbairn, L. J., Cowling, G. J., Reipert, B. M., and Dexter, T. M. (1993) Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 74, 823–832.PubMedCrossRefGoogle Scholar
  16. 16.
    Mayani, H., Dragowska, W., and Lansdorp, P. M. (1993) Lineage commitment in human hemopoiesis involves asymmetric cell division of multipotent progenitors and does not appear to be influenced by cytokines. J. Cell Physiol 157, 579–586.Google Scholar
  17. 17.
    Sauvageau, G., Lansdorp, P. M., Eaves, C. J., Hogge, D. E., Dragowska, W. H, Reid, D. S., Largman, C., Lawrence, H. J., and Humphries, R. K. (1994) Differential expression ofhomeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl. Acad. Sci. USA 91, 12,223–12,227.Google Scholar
  18. 18.
    Sauvageau, G., Thorsteinsdottir, U., Eaves, C. J., Lawrence, H. J., Largman, C., Lansdorp, P M., and Humphries, R. K. (1995) Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9, 1753–1765.Google Scholar
  19. 19.
    Lemischka, I. R., Raulet, D. H., and Mulligan, R. C. (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927.PubMedCrossRefGoogle Scholar
  20. 20.
    Fraser, C. C., Szilvassy, S. J., Eaves, C. J., and Humphries, R. K. (1992) Proliferation of totipotent hematopoietic stem cells in vitro with retention of long-term competitive in vivo reconstituting ability. Proc. Natl. Acad. Sci. USA 89, 1968–1972.PubMedCrossRefGoogle Scholar
  21. 21.
    Keller, G. and Snodgrass, R. (1990) Life span of multipotential hematopoietic stem cells in vivo. J. Exp. Med 171, 1407–1418.PubMedCrossRefGoogle Scholar
  22. 22.
    Lansdorp, P. M. (1995) Developmental changes in the function of hematopoietic stem cells. Exp. Hematol 23, 187–191.PubMedGoogle Scholar
  23. 23.
    Pawliuk, R., Eaves, C., and Humphries, R. K. (1996) Evidence of both ontogeny and transplant dose-regulated expansion of hematopoietic stem cells in vivo. Blood 88, 2852–2858.PubMedGoogle Scholar
  24. 24.
    Harley, C. B. (1995) Telomeres and Aging. in Telomeres. Blackburn, E. H. and Greider, C. W. (Eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 247–265.Google Scholar
  25. 25.
    Harley, C. B., Kim, N. W., Prowse, K. R., Weinrich, S. L., Hirsch, K. S., West, M. D., Bacchetti, S., Hirte, H. W., Counter, C. M., Greider, C. W., Wright, W. E., and Shay, J. W. (1994) Telomerase, cell immortality, and cancer. Cold Spring Harbor Symp. Quant. Biol. 59, Cold Spring Harbor, NY, pp. 307–315.Google Scholar
  26. 26.
    Blackburn, E. H. (1994) Telomeres: no end in sight. Cell 77, 621–623.PubMedCrossRefGoogle Scholar
  27. 27.
    Zakian, V. A. (1995) Telomeres: Beginning to understand the end. Science 270, 1601–1607.PubMedCrossRefGoogle Scholar
  28. 28.
    Vaziri, H., Dragowska, W., Allsopp, R. C., Thomas, T. E., Harley, C. B., and Lansdorp, P. M. (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA 91, 9857–9860.PubMedCrossRefGoogle Scholar
  29. 29.
    Lansdorp, P. M. (1995) Telomere length and proliferation potential of hematopoietic stem cells. J. Cell Sci 108, 1–6.PubMedGoogle Scholar
  30. 30.
    Morrison, S. J., Prowse, K. R., Ho, P., and Weissman, I. L. (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216.Google Scholar
  31. 31.
    Holt, S. E., Shay, J. W., and Wright, W. E. (1996) Refining the telomere-telomerase hypothesis of aging and cancer. Nature Biotechnol. 14, 834–837.CrossRefGoogle Scholar
  32. 32.
    Autexier, C. and Greider, C. W. (1996) Telomerase and cancer: revisiting the telomere hypothesis. Trends Biochem. Sci 21, 387–391.PubMedGoogle Scholar
  33. 33.
    Hiyama, K., Hirai, Y., Kyoizumi, S., Akiyama, M., Hiyama, E., Piatyszek, M. A., Shay, J. W., Ishioka, S., and Yamakido, M. (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol 155, 3711–3715.PubMedGoogle Scholar
  34. 34.
    Chiu, C-P., Dragowska, W., Kim, N. W., Vaziri, H., Yui, J., Thomas, T. E., Harley, C. B., and Lansdorp, P. M. (1996) Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14, 239–248.PubMedCrossRefGoogle Scholar
  35. 35.
    Yui, J., Chiu, C-P., and Lansdorp, P. M. (1998) Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood,in press.Google Scholar
  36. 36.
    Weng, N-P., Levine, B. L., June, C. H., and Hodes, R. J. (1996) Regulated expression of telomerase activity in human T lymphocyte development and activation. J. Exp. Med 183, 2471–2479.PubMedCrossRefGoogle Scholar
  37. 37.
    Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460.Google Scholar
  38. 38.
    Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D. K., and Allshire, R. C. (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868.PubMedCrossRefGoogle Scholar
  39. 39.
    Lansdorp, P. M., Verwoerd, N. P., van de Rijke, F. M., Dragowska, V., Little, M-T., Dirks, R. W., Raap, A. K., and Tanke, H. J. (1996) Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet 5, 685–691.PubMedCrossRefGoogle Scholar
  40. 40.
    Lansdorp, P. M., Poon, S., Chavez, E., Dragowska, V., Zijlmans, M., Bryan, T., Reddel, R., Egholm, M., Bacchetti, S., and Martens, U. (1997) Telomeres in the hematopoietic system. CIBA Foundation Symposium No. 211. Telomeres and Telomerase (in press).Google Scholar
  41. 41.
    Counter, C. M., Botelho, F. M., Wang, P., Harley, C. B., and Bacchetti, S. (1994) Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J. Virol 68, 3410–3414.PubMedGoogle Scholar
  42. 42.
    Monteiro, J., Batliwalla, F., Ostrer, H., and Gregersen, P. K. (1996) Shortened telomeres in clonally expanded CD28–CD8+ T cells imply a replicative history that is distinct from their CD28+CD8+ counterparts. J. Immunol 156, 3587–3590.PubMedGoogle Scholar
  43. 43.
    Wolthers, K. C., Wisman, B. G., Otto, S. A., de Roda Husman, A. M., Schaft, N., de Wolf, F., Goudsmit, J., Coutinho, R. A., van der Zee, A. G., Meyaard, L., and Miedema, F. (1996) T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 274, 1543–1547.PubMedCrossRefGoogle Scholar
  44. 44.
    Zakian, V. A. (1996) Structure, function, and replication of Saccharomyces cerevisiae telomeres. Annu. Rev. Genet 30, 141–172.PubMedCrossRefGoogle Scholar
  45. 45.
    Greider, C. W. (1996) Telomere length regulation. Annu. Rev. Biochem 65, 337–365.PubMedCrossRefGoogle Scholar
  46. 46.
    Chong, L., van Steensel, B., Broccoli, D., Erdjument-Bromage, H., Hanish, J., Tempst, P., and de Lange, T. (1995) A human telomeric protein. Science 270, 1663–1667.PubMedCrossRefGoogle Scholar
  47. 47.
    van Steensel, B. and de Lange, T. (1997) Control of telomere length by the human telomeric protein TRF 1. Nature 385, 740–743.PubMedCrossRefGoogle Scholar
  48. 48.
    Mirabella, A. and Gartenberg, M. R. (1997) Yeast telomeric sequences function as chromosomal anchorage points in vivo. EMBO J. 16, 523–533.Google Scholar
  49. 49.
    Wotton, D. and Shore, D. (1997) A novel Rap 1 p-interacting factor, Rif2p, cooperates with Rifip to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760.CrossRefGoogle Scholar
  50. 50.
    Moretti, P, Freeman, K., Coodly, L., and Shore, D. (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 8, 2257–2269.Google Scholar
  51. 51.
    Marcand, S., Buck, S. W., Moretti, P., Gilson, E., and Shore, D. (1996) Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rapl protein. Genes Dev. 10, 1297–1309.PubMedCrossRefGoogle Scholar
  52. 52.
    Makarov, V. L., Hirose, Y., and Langmore, J. P. (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657–666.Google Scholar
  53. 53.
    Nugent, C. I., Hughes, T. R., Lue, N. F., and Lundblad, V. (1996) Cdc 13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252.PubMedCrossRefGoogle Scholar
  54. 54.
    Fang, G. and Cech, T. R. (1993) Characterization of a G-quartet formation reaction promoted by the 0-subunit of the Oxytricha telomere-binding protein. Biochemistry 32, 11, 646–11, 657.Google Scholar
  55. 55.
    Wellinger, R. J., Ethier, K., Labrecque, P., and Zakian, V. A. (1996) Evidence for a new step in telomere maintenance. Cell 85, 423–433.PubMedCrossRefGoogle Scholar
  56. 56.
    Feng, J., Funk, W. D., Wang, S-S., Weinrich, S. L., Avilion, A. A., Chiu, C-P., Adams, R. R., Chang, E., Allsopp, R. C., Yu, J., Le, S., West, M. D., Harley, C. B., Andrews, W. H., Greider, C. W., and Villeponteau, B. (1995) The RNA component of human telomerase. Science 269, 1236–1241.PubMedCrossRefGoogle Scholar
  57. 57.
    Lingner, J., Hughes, T. R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T. R. (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567.PubMedCrossRefGoogle Scholar
  58. 58.
    Collins, K., Kobayashi, R., and Greider, C. W. (1995) Purification of tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell 81, 677–686.PubMedCrossRefGoogle Scholar
  59. 59.
    Lingner, J. and Cech, T. R. (1996) Purification of telomerase from Euplotes aediculatus: requirement of a primer 3’ overhang. Proc. Natl. Acad. Sci. USA 93, 10,712–10, 717.Google Scholar
  60. 60.
    Nakayama, J., Saito, M., Nakamura, H., Matsuura, A., and Ishikawa, F. (1997) TLP1, A gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 88, 1–20.CrossRefGoogle Scholar
  61. 61.
    Rosendaal, M., Hodgson, G. S., and Bradley, T. R. (1979) Organization of haemopoietic stem cells: The generation-age hypothesis. Cell Tissue Kinet. 12, 17–29.PubMedGoogle Scholar
  62. 62.
    Horvitz, H. R. and Herskowitz, I. (1992) Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237–255.PubMedCrossRefGoogle Scholar
  63. 63.
    Amon, A. (1996) Mother and daughter are doing fine: asymmetric cell division in yeast. Cell 84, 651–654.PubMedCrossRefGoogle Scholar
  64. 64.
    Hirata, J., Nakagoshi, H., Nabeshima, Y., and Matsuzaki, F. (1995) Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377, 627–630.Google Scholar
  65. 65.
    Potten, C. S. and Loeffler, M. (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 10, 1001–1020.Google Scholar
  66. 66.
    Rebel, V. I. and Lansdorp, P. M. (1996) Culture of purified stem cells from fetal liver results in loss of in vivo repopulating potential. J. Hematother 5, 25–37.PubMedCrossRefGoogle Scholar
  67. 67.
    Slagboom, P. E., Droog, S., and Boomsma, D. I. (1994) Genetic determination of telomere size in humans: A twin study of three age groups. Am. J. Hum. Genet 55, 876–882.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Peter M. Lansdorp

There are no affiliations available

Personalised recommendations