T-Cell Development from Hematopoietic Stem Cells

  • Koichi Akashi
  • Motonari Kondo
  • Annette M. Schlageter
  • Irving L. Weissman
Part of the Contemporary Immunology book series (CONTIM)


The central cells of the immune system include three major populations of lymphocytes with distinct antigen recognition receptors: T-cells, B-cells, and natural killer (NK) cells. All lymphocyte populations, as well as other blood cell types, are derived from hematopoietic stem cells (HSC). HSC have been successfully isolated and characterized from mice (1–5) and humans (6–9).


Severe Combine Immune Deficiency Single Positive Cell Common Lymphoid Progenitor Severe Combine Immune Deficiency Mouse Natural Killer Cell Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morrison, S. J. and Weissman, I. L. (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673.PubMedCrossRefGoogle Scholar
  2. 2.
    Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996) Long-term lymphohematopoietic reconstitution by a single CD34- low/negative hematopoietic stem cell. Science 273, 242–245.PubMedCrossRefGoogle Scholar
  3. 3.
    Spangrude, G. J., Heimfeld, S., and Weissman, I. L. (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Spangrude, G. J. and Scollay, R. (1990) Differentiation of hematopoietic cells in irradiated mouse thymic lobes. J. Immunol. 145, 3661–3668.PubMedGoogle Scholar
  5. 5.
    Visser, J. W. M., Gauman, J. G. J., Mulder, A. H., Eliason, J. F., and de Leeuw, A. W. (1984) Isolation of murine pluripotent hemopoietic stem cells. J. Exp. Med. 59, 1576–1590.Google Scholar
  6. 6.
    Andrews, R. G., Singer, J. W., and Bernstein, I. D. (1986) Monoclonal antibody 12–8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood 67, 842–845.PubMedGoogle Scholar
  7. 7.
    Baum, C. M., Weissman, I. L., Tsukamoto, A. S., Buckle, A. M., and Peault, B. (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci USA 89, 2804–2808.PubMedCrossRefGoogle Scholar
  8. 8.
    DiGiusto, D., Chen, S., Combs, J., Webb, S., Namikawa, R., Tsukamoto, A., Chen, B. P., and Galy, A. H. (1994) Human fetal bone marrow early progenitors for T, B, and myeloid cells are found exclusively in the population expressing high levels of CD34. Blood 84, 421–432.PubMedGoogle Scholar
  9. 9.
    Strauss, L. C., Rowley, S. D., La Russa, V. F., Sharkis, S. J., Stuart, R. K., and Civin, C. I. (1986) Antigenic analysis of hematopoiesis. V. Characterization of My-10 antigen expression by normal lymphohematopoietic progenitor cells. Exp. Hematol. 14, 878–886.PubMedGoogle Scholar
  10. 10.
    Siminovitch, L., McCulloch, E., and Till, J. 1963. The distribution of colony-forming cells among spleen colonies. J. Cell Comp. Physiol. 62, 327–336.CrossRefGoogle Scholar
  11. 11.
    Ogawa, M. (1993) Differentiation and proliferation of hematopietic stem cells. Blood 81, 2844–2853.PubMedGoogle Scholar
  12. 12.
    Thomas, E. D. (1991) Frontiers in bone marrow transplantation. Blood Cells 17, 259–267.PubMedGoogle Scholar
  13. 13.
    Till, J. and McCulloch, E. (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 1419–1430.CrossRefGoogle Scholar
  14. 14.
    Wu, A., Till, J., Siminovitch, L., and McCulloch, E. (1968) Cytological evidence for a relationship between normal hematopoietic colony-forming cells and cells of the lymphoid system. J. Exp. Med. 127, 455–467.PubMedCrossRefGoogle Scholar
  15. 15.
    Till, J. and McCulloch, E. (1963) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. USA 51, 29–36.CrossRefGoogle Scholar
  16. 16.
    Metcalf, D. and Moore, M. A. S. (1971) Hematopoietic Cells. New York, Elsevier.Google Scholar
  17. 17.
    Helman, S., Botnick, L. E., Hannon, E. C., and Vigneulle, R. M. (1978) Proliferative capacity of murine hematopoietic stem cells. Proc. Natl. Acad. Sci. USA. 75, 490–494.CrossRefGoogle Scholar
  18. 18.
    Micklem, H., and Ogden, D. (1976) Ageing of haematopoietic stem cell populations in the mouse, in Stem Cells of Renewing Cell Populations ( Cairnie, A., Lala, P., and Osmond, D., eds.). Academic, New York, pp. 331–341.CrossRefGoogle Scholar
  19. 19.
    Ikuta, K., Uchida, N., Friedman, J., and Weissman, I. L. (1992) Lymphocyte development from stem cells. Annu. Rev. Immunol. 10, 759–783.PubMedCrossRefGoogle Scholar
  20. 20.
    Morrison, S. J., Uchida, N., and Weissman, I. L. (1995) The biology of hematopoietic stem cells. Ann. Rev. Cell Dev. Biol. 11, 35–71.CrossRefGoogle Scholar
  21. 21.
    Smith, L. G., Weissman, I. L., and Heimfeld, S. (1991) Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc. Natl. Acad. Sci USA 88, 2788–2792.PubMedCrossRefGoogle Scholar
  22. 22.
    Morrison, S. J., Wandycz, A. M., Hemmati, H. D., Wright, D. E., and Weissman, I. L. (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929–1939.PubMedGoogle Scholar
  23. 23.
    Bertoncello, I. Hodgson, G. S., and Bradley, T. R. (1985) Multiparameter analysis of transplantable hemopoietic stem cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine-123 fluorescence. Exp. Hematol. 13 999–1006.Google Scholar
  24. 24.
    Mulder, A. H. and Visser, J. W. M. (1987) Separation and functional analysis of bone marrow cells separated by Rhodamine-123 fluorescence. Exp. Hematol. 15, 99–104.PubMedGoogle Scholar
  25. 25.
    Ploemacher, R. E. and Brons, R. H. C. (1989) Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: Evidence for a pre-CFU-S cells. Exp. Hematol. 17, 263–266.PubMedGoogle Scholar
  26. 26.
    Lundblad, V. and Wright, W. E. (1996) Telomeres and telomerase: a simple picture becomes complex. Cell 87, 369–375.PubMedCrossRefGoogle Scholar
  27. 27.
    Morrison, S. J., Prowse, K. R., Ho, P., and Weissman, I. L. (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216.PubMedCrossRefGoogle Scholar
  28. 28.
    Williams, D. E., de Vries, P., Namen, A. E., Widmer, M. B., and Lyman, S. D. (1992) The steel factor. Dey. Biol. 151, 368–376.Google Scholar
  29. 29.
    Ogawa, M., Matsuzaki, Y., Nishikawa, S., Hayashi, S., Kunisada, T., Sudo, T., Kina, T., Nakauchi, H., and Nishikawa, S. (1991) Expression and function of c-kit in hemopoietic progenitor cells. J. Exp. Med. 174, 63–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Ikuta, K. and Weissman, I. L. (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl. Acad. Sci USA 89, 1502–1506.PubMedCrossRefGoogle Scholar
  31. 31.
    Wineman, J. P., Nishikawa, S., and Muller-Sieburg, C. E. (1993) Maintenance of high levels of pluripotent hematopoietic stem cells in vitro: effect of stromal cells and c-kit. Blood 81, 365–372.PubMedGoogle Scholar
  32. 32.
    Matthews, W., Jordan, C. T., Wiegand, G. W., Pardoll, D. and Lemischka, I. R. (1991) A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Ce1165 1143–1152.Google Scholar
  33. 33.
    Rosnet, O., Marchetto, S., de Lapeyriere, O., and Birnbaum, D. (1991) Murine F1t3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene 6, 1641–1650.PubMedGoogle Scholar
  34. 34.
    Hannum, C., Culpepper, J., Campbell, D., McClanahan, T., Zurawski, S., Bazan, J. F., Kastelein, R., Hudak, S., Wagner, J., Mattson, J., et al. (1994) Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 368, 643–648.Google Scholar
  35. 35.
    Lyman, S. D., James, L., Vanden Bos, T., de Vries, P., Brasel, K., Gliniak, B., Hollingsworth, L. T., Picha, K. S., McKenna, H. J., Splett, R. R., et al. (1993) Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75, 1157–1167.PubMedCrossRefGoogle Scholar
  36. 36.
    Shalaby, F., Ho, J., Stanford, W. L., Fischer, K. D., Schuh, A. C., Schwartz, L., Bernstein, A., and Rossant, J. (1997) A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–990.Google Scholar
  37. 37.
    Mackarehtschian, K., Hardin, J. D., Moore, K. A., Boast, S., Goff, S. P., and Lemischka, I. R. (1995) Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3, 147–161.PubMedCrossRefGoogle Scholar
  38. 38.
    Varmus, H., Padgett, T., Heasley, S., Simon, G., and Bishop, J. 1977. Cellular functions are required for the synthesis and integrantion of avian sarcoma virus-specific DNA. Cell 11, 307–319.PubMedCrossRefGoogle Scholar
  39. 39.
    Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A., and Weissman, I. L. (1996) The aging of hematopoietic stem cells. Nat. Med. 2, 1011–1016.PubMedCrossRefGoogle Scholar
  40. 40.
    Miyajima, A., Kitamura, T., Harada, N., Yokota, T., and Arai, K. (1992) Cytokine receptors and signal transduction. Annu. Rev. Immunol. 10, 295–331.PubMedCrossRefGoogle Scholar
  41. 41.
    McKinstry, W. J., Li, C. L., Rasko, J. E., Nicola, N. A., Johnson, G. R., and Metcalf, D. (1997) Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 89, 65–71.PubMedGoogle Scholar
  42. 42.
    Nakayama, K., Nakayama, K., Negishi, I., Kuida, K., Sawa, H., and Loh, D. Y. (1994) Targeted disruption of Bc1–2 alpha beta in mice, occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc. Natl. Acad. Sci USA 91, 3700–3704.PubMedCrossRefGoogle Scholar
  43. 43.
    Veis, D. J., Sorenson, C. M., Shutter, J. R., and Korsmeyer, S. J. (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240.PubMedCrossRefGoogle Scholar
  44. 44.
    Matsuzaki, Y., Nakayama, K., Nakayama, K., Tomita, T., Isoda, M., Loh, D. Y., and Nakauchi, H. (1997) Role of bc1–2 in the development of lymphoid cells from the hematopoietic stem cell. Blood 89, 853–862.PubMedGoogle Scholar
  45. 45.
    Motoyama, N., Wang, F., Roth, K. A., Sawa, H., Nakayama, K., Nakayama, K., Negishi, I., Senju, S., Zhang, Q., Fujii, S., et al. (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510.PubMedCrossRefGoogle Scholar
  46. 46.
    Craig, W., Kay, R., Cutler, R. L., and Lansdorp, P. M. (1993) Expression of Thy-1 on human hematopoietic progenitor cells. J. Exp. Med. 177, 1331–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Uchida, N., Combs, J., Chen, S., Zanjani, E., Hoffman, R., and Tsukamoto, A. (1996) Primitive human hematopoietic cells displaying differential efflux of the rhodamine 123 dye have distinct biological activities. Blood 88, 1297–1305.PubMedGoogle Scholar
  48. 48.
    Udomsakdi, C., Eaves, C. J., Sutherland, H. J., and Lansdorp, P. M. (1991) Separation of functionally distinct subpopulations of primitive human hematopoietic cells using rhodamine-123. Exp. Hematol. 19, 338–342.PubMedGoogle Scholar
  49. 49.
    Namikawa, R., Kaneshima, H., Lieberman, M., Weissman, I. L., and McCune, J. M. (1988) Infection of the SCID-hu mouse by HIV-1. Science 242, 1684–1686.Google Scholar
  50. 50.
    McCune, J. M., Namikawa, R., Kaneshima, H., Shultz, L. D., Lieberman, M., and Weissman, I. L. (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241, 1632–1639.PubMedCrossRefGoogle Scholar
  51. 51.
    Kraft, D. L., Weissman, I. L., and Waller, E. K. (1993) Differentiation of CD3–4–8– human fetal thymocytes in vivo: characterization of a CD3–4+8– intermediate. J. Exp. Med. 178, 265 – 277.PubMedCrossRefGoogle Scholar
  52. 52.
    Lapidot, T., Pflumio, F., Doedens, M., Murdoch, B., Williams, D. E., and Dick, J. E. (1992) Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255, 1137–1141.PubMedCrossRefGoogle Scholar
  53. 53.
    Berenson, R. J., Bensinger, W. I., Hill, R. S., Andrews, R. G., Garcia-Lopez, J., Kalamasz, D. F., Still, B. J., Spitzer, G., Buckner, C. D., Bernstein, I. D., et al. (1991) Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 77, 1717–1722.PubMedGoogle Scholar
  54. 54.
    Marin, G. H., Dal Cortivo, L., Cayuela, J. M., Marolleau, J. P., Pautier, P., Cojean-Zelek, I., Brice, P., Makke, J., Benbunan, M., and Gisselbrecht, C. (1997) Peripheral blood stem cell CD34+ autologous transplant in relapsed follicular lymphoma. Hematol. Cell Ther. 39, 33–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Archimbaud, E., Philip, I., Coiffier, B., Michallet, M., Salles, G., Sebban, C., Roubi, N., Lopez, F., Bessueille, L., Mazars, P., Juttner, C., Atkinson, K., and Philip, T. (1996) CD34+Thyl+Linperipheral blood stem cells (PBSC) transplantation after high dose therapy for patients with multiple myeloma. Blood 88, 595a.Google Scholar
  56. 56.
    Dexter, T. M. and Spooncer, E. (1987) Growth and differentiation in the hemopoietic system. Annu. Rev. Cell. Biol. 3, 423–441.PubMedCrossRefGoogle Scholar
  57. 57.
    Weissman, I. L. (1994) Stem cells, clonal progenitors, and commitment to the three lymphocyte lineages: T, B, and NK cells. Immunity 1, 529–531.PubMedCrossRefGoogle Scholar
  58. 58.
    Wu, L., Antica, M., Johnson, G. R., Scollay, R., and Shortman, K. (1991) Developmental potential of the earliest precursor cells from the adult mouse thymus. J. Exp. Med. 174, 1617–1627.PubMedCrossRefGoogle Scholar
  59. 59.
    Matsuzaki, Y., Gyotoku, J., Ogawa, M., Nishikawa, S., Katsura, Y., Gachelin, G., andNakauchi, H. (1993) Characterization of c-kit positive intrathymic stem cells that are restricted to lymphoid differentiation. J. Exp. Med. 178, 1283–1292.PubMedCrossRefGoogle Scholar
  60. 60.
    Aihara, Y., Buhring, H. -J., Aihara, M., and Klein, J. (1986) An attempt to produce “pre-T” cell hybridomas and to identify their antigens. Eur. J. Immunol. 16, 1391–1399.PubMedCrossRefGoogle Scholar
  61. 61.
    Antica, M., Wu, L., Shortman, K., and Scollay, R. (1994) Thymic stem cells in mouse bone marrow. Blood 84, 111–117.PubMedGoogle Scholar
  62. 61a.
    Kondo, M., Weissman, I. L., and Akashi, K. (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672.PubMedCrossRefGoogle Scholar
  63. 62.
    Hakoda, M., Hirai, Y., Shimba, H., Kusunoki, Y., Kyoizumi, S., Kodama, Y., and Akiyama, M. (1989) Cloning of phenotypically different human lymphocytes originating from a single stem cell. J. Exp. Med. 169, 1265–1276.PubMedCrossRefGoogle Scholar
  64. 63.
    Sanchez, M. J., Muench, M. O., Roncarolo, M. G., Lanier, L. L., and Phillips, J. H. (1994) Identification of a common T/natural killer cell progenitor in human fetal thymus. J. Exp. Med. 180, 569–576.PubMedCrossRefGoogle Scholar
  65. 64.
    Gore, S. D., Kastan, M. B., and Civin, C. I. (1991) Normal human bone marrow precursors that express terminal deoxynucleotidyl transferase include T-cell precursors and possible lymphoid stem cells. Blood 77, 1681–1690.PubMedGoogle Scholar
  66. 65.
    LeBien, T. W. and McCormack, R. T. (1989) The common acute lymphoblastic leukemia antigen (CD10)-emancipation from a functional enigma. Blood 73, 625–635.PubMedGoogle Scholar
  67. 66.
    Galy, A., Travis, M., Cen, D., and Chen, B. (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473.PubMedCrossRefGoogle Scholar
  68. 67.
    Klinken, S. P., Alexander, W. S., and Adams, J. M. (1988) Hemopoietic lineage switch: v-raf oncogene converts Eµ-myc transgenic B cells into macrophages. Cell 53, 857–867.PubMedCrossRefGoogle Scholar
  69. 68.
    Cumano, A., Paige, C. J., Iscove, N. N., and Brady, G. (1992) Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356, 612–615.PubMedCrossRefGoogle Scholar
  70. 69.
    Hirayama, F., Shih, J. P., Awgulewitsch, A., Warr, G. W., Clark, S. C., and Ogawa, M. (1992) Clonal proliferation of murine lymphohemopoietic progenitors in culture. Proc. Natl. Acad. Sci USA 89, 5907–5911.PubMedCrossRefGoogle Scholar
  71. 70.
    Gale, R. P. and Ben Bassat, I. (1987) Hybrid acute leukaemia. Br J Haematol. 65, 261–264.PubMedCrossRefGoogle Scholar
  72. 71.
    Barlogie, B., Epstein, J., Selvanayagam, P., and Alexanian, R. (1989) Plasma cell myeloma: new biological insights and advances in therapy. Blood 73, 865–879.Google Scholar
  73. 72.
    Akashi, K., Harada, M., Shibuya, T., Fukagawa, K., Kimura, N., Sagawa, K., Yoshikai, Y., Teshima, T., Kikuchi, M., and Niho, Y. (1991) Simultaneous occurrence of myelomonocytic leukemia and multiple myeloma: involvement of common leukemic progenitors and their developmental abnormality of “lineage infidelity.” J. Cell Physiol. 148, 446–456.PubMedCrossRefGoogle Scholar
  74. 73.
    Akashi, K., Taniguchi, S., Nagafuji, K., Harada, M., Shibuya, T., Hayashi, S., Gondo, H., and Niho, Y. (1993) B-lymphoid/myeloid stem cell origin in Ph-positive acute leukemia with myeloid markers. Leuk. Res. 17, 549–555.PubMedCrossRefGoogle Scholar
  75. 74.
    Akashi, K., Shibuya, T., Harada, M., Morioka, E., Oshima, K., Kimura, N., Takeshita, M., Kurokawa, M., Kikuchi, M., and Niho, Y. (1990) Acute ‘bilineal-biphenotypic’ leukaemia. Br. J. Haematol. 74, 402–407.PubMedCrossRefGoogle Scholar
  76. 75.
    Hershfield, M. S., Kurtzberg, J., Harden, E., Moore, J. O., Whang-Peng, J., and Haynes, B. F. (1984) Conversion ofa stem cell leukemia from a T-lymphoid to a myeloid phenotype induced by the adenosine deaminase inhibitor 2’- deoxycoformycin. Proc. Natl. Acad. Sci USA. 81, 253–257.PubMedCrossRefGoogle Scholar
  77. 76.
    Murphy, S. B., Stass, S., Kalwinsky, D., and Rivera, G. (1983) Phenotypic conversion of acute leukaemia from T-lymphoblastic to myeloblastic induced by therapy with 2’-deoxycoformycin. Br. J. Haematol. 55, 285–293.PubMedCrossRefGoogle Scholar
  78. 77.
    Griesinger, F., Arthur, D. C., Brunning, R., Parkin, J. L., Ochoa, A. C., Miller, W. J., Wilkowski, C. W., Greenberg, J. M., Hurvitz, C., and Kersey, J. H. (1989) Mature T-lineage leukemia with growth factor-induced multilineage differentiation. J. Exp. Med. 169, 1101–1120.PubMedCrossRefGoogle Scholar
  79. 78.
    Kurtzberg, J., Waldmann, T. A., Davey, M. P., Bigner, S. H., Moore, J. O., Hershfield, M. S., and Haynes, B. F. (1989) CD7+, CD4-, CD8- acute leukemia, a syndrome of malignant pluripotent lymphohematopoietic cells. Blood 73, 381–390.PubMedGoogle Scholar
  80. 79.
    Greaves, M. F., Chan, L. C., Furley, A. J., Watt, S. M., and Molgaard, H. V. (1986) Lineage promiscuity in hemopoietic differentiation and leukemia. Blood 67, 1–11.Google Scholar
  81. 80.
    McCulloch, E. A. (1987) Lineage infidelity or lineage promiscuity? Leukemia 1, 235.PubMedGoogle Scholar
  82. 81.
    Ihle, J. N., Witthuhn, B. A., Quelle, F. W., Yamamoto, K., and Silvennoinen, O. (1995) Signaling through the hematopoietic cytokine receptors. Annu. Rev. Immunol. 13, 369–398.Google Scholar
  83. 82.
    Watowich, S. S., Wu, H., Socolovsky, M., Klingmuller, U., Constantinescu, S. N., and Lodish, H. F. (1996) Cytokine receptor signal transduction and the control of hematopoietic cell development. Ann. Rev. Cell Dey. Biol. 12, 91–128.CrossRefGoogle Scholar
  84. 83.
    Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R., and Weissman, I. L. (1997) Bc1–2 rescues T lymphopoiesis in interleukin 7 receptor-deficient mice. Cell 89, 1033–1041.PubMedCrossRefGoogle Scholar
  85. 84.
    Fairbairn, L. J., Cowling, G. J., Reipert, B. M., and Dexter, T. M. (1993) Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 74, 823–832.PubMedCrossRefGoogle Scholar
  86. 85.
    Kondo, M., Akashi, K., Domen, J., Sugamura, K., and Weissman, I. L. (1997) Bc1–2 rescues T lymphopoiesis, but not B or NK cell development in the common cytokine receptor g chain deficient mice. Immunity 17, 2026–2030.Google Scholar
  87. 86.
    Lagasse, E. and Weissman, I. L. (1997) Enforced expression of Bc1–2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89, 1–20.CrossRefGoogle Scholar
  88. 87.
    Wu, H. Liu, X., Jaenisch, R., and Lodish, H. F. (1995) Generation of committed erythroid BFUE and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83 59–67.Google Scholar
  89. 88.
    Giri, J. G., Ahdieh, M., Eisenman, J., Shanebeck, K., Grabstein, K., Kumaki, S., Namen, A., Park, L. S., Cosman, D., and Anderson, D. (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830.PubMedGoogle Scholar
  90. 89.
    Kimura, Y., Takeshita, T., Kondo, M., Ishii, N., Nakamura, M., Van Snick, J., and Sugamura, K. (1995) Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int. Immunol. 7, 115–120.PubMedCrossRefGoogle Scholar
  91. 90.
    Kondo, M., Takeshita, T., Higuchi, M., Nakamura, M., Sudo, T., Nishikawa, S., and Sugamura, K. (1994) Functional participation of the IL-2 receptor gamma chain in IL-7 receptor complexes. Science 263, 1453–1454.PubMedCrossRefGoogle Scholar
  92. 91.
    Kondo, M., Takeshita, T., Ishii, N., Nakamura, M., Watanabe, S., Arai, K., and Sugamura, K. (1993) Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262, 1874–1877.PubMedCrossRefGoogle Scholar
  93. 92.
    Noguchi, M., Nakamura, Y., Russell, S. M., Ziegler, S. F., Tsang, M., Cao, X., and Leonard, W. J. (1993) Interleukin-2 receptor gamma chain, a functional component of the interleukin-7 receptor. Science 262, 1877–1880.PubMedCrossRefGoogle Scholar
  94. 93.
    Russell, S. M., Keegan, A. D., Harada, N., Nakamura, Y., Noguchi, M., Leland, P., Friedmann, M. C., Miyajima, A., Puri, R. K., Paul, W. E., et al. (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262, 1880–1883.PubMedCrossRefGoogle Scholar
  95. 94.
    Takeshita, T., Asao, H., Ohtani, K., Ishii, N., Kumaki, S., Tanaka, N., Munakata, H., Nakamura, M., and Sugamura, K. (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257, 379–382.PubMedCrossRefGoogle Scholar
  96. 95.
    Noguchi, M., Yi, H., Rosenblatt, H. M., Filipovich, A. H., Adelstein, S., Modi, W. S., McBride, O. W., and Leonard, W. J. (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157.PubMedCrossRefGoogle Scholar
  97. 96.
    Puck, J. M., Deschenes, S. M., Porter, J. C., Dutra, A. S., Brown, C. J., Willard, H. F., and Henthorn, P. S. (1993) The interleukin-2 receptor gamma chain maps to Xg13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum. Mol. Genet. 2, 1099–1104.PubMedCrossRefGoogle Scholar
  98. 97.
    Asao, H., Tanaka, N., Ishii, N., Higuchi, M., Takeshita, T., Nakamura, M., Shirasawa, T., and Sugamura, K. (1994) Interleukin 2-induced activation ofJAK3, possible involvement in signal transduction for c-myc induction and cell proliferation. FEBS Lett. 351, 201–206.PubMedCrossRefGoogle Scholar
  99. 98.
    Miyazaki, T., Kawahara, A., Fujii, H., Nakagawa, Y., Minami, Y., Liu, Z. J., Oishi, I., Silvennoinen, O., Witthuhn, B. A., Ihle, J. N., et al. (1994) Functional activation of Jakl and Jak3 by selective association with IL- 2 receptor subunits. Science 266, 1045–1047.PubMedCrossRefGoogle Scholar
  100. 99.
    Russell, S. M., Johnston, J. A., Noguchi, M., Kawamura, M., Bacon, C. M., Friedmann, M., Berg, M., McVicar, D. W., Witthuhn, B. A., Silvennoinen, O., et al. (1994) Interaction of IL-2R beta and gamma c chains with Jakl and Jak3: implications for XSCID and XCID. Science 266, 1042–1045.PubMedCrossRefGoogle Scholar
  101. 100.
    Macchi, P. Villa, A., Gillani, S., Sacco, M. G., Frattini, A., Porta, F., Ugazio, A. G., Johnston, J. A., Candotti, F., O’ Shea, J. J., et al. (1995) Mutations ofJak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377 65–68.Google Scholar
  102. 101.
    Russell, S. M., Tayebi, N., Nakajima, H., Riedy, M. C., Roberts, J. L., Aman, M. J., Migone, T. S., Noguchi, M., Markert, M. L., Buckley, R. H., et al. (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800.PubMedCrossRefGoogle Scholar
  103. 102.
    Cao, X., Shores, E. W., Hu-Li, J., Anver, M. R., Kelsall, B. L., Russell, S. M., Drago, J., Noguchi, M., Grinberg, A., Bloom, E. T., et al. (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2, 223–238.PubMedCrossRefGoogle Scholar
  104. 103.
    DiSanto, J. P., Rieux-Laucat, F., Dautry-Varsat, A., Fischer, A., and de Saint Basile, G. (1994) Defective human interleukin 2 receptor gamma chain in an atypical X chromosome-linked severe combined immunodeficiency with peripheral T cells. Proc. Natl. Acad. Sci USA 91, 9466–9470.PubMedCrossRefGoogle Scholar
  105. 104.
    Ohbo, K., Suda, T., Hashiyama, M., Mantani, A., Ikebe, M., Miyakawa, K., Moriyama, M., Nakamura, M., Katsuki, M., Takahashi, K., Yamamura, K., and Sugamura, K. (1996) Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87, 956–967.PubMedGoogle Scholar
  106. 105.
    He, Y. W. and Malek, T. R. (1996) Interleukin-7 receptor alpha is essential for the development of gamma delta + T cells, but not natural killer cells. J. Exp. Med. 184, 289–293.PubMedCrossRefGoogle Scholar
  107. 106.
    Maki, K., Sunaga, S., and Ikuta, K. (1996) The V-J recombination of T cell receptor-gamma genes is blocked in interleukin-7 receptor-deficient mice. J. Exp. Med. 184, 2423–2427.PubMedCrossRefGoogle Scholar
  108. 107.
    Peschon, J. J., Morrissey, P. J., Grabstein, K. H., Ramsdell, F. J., Maraskovsky, E., Gliniak, B. C., Park, L. S., Ziegler, S. F., Williams, D. E., Ware, C. B., et al. (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960.Google Scholar
  109. 108.
    von Freeden-Jeffry, U., Vieira, P., Lucian, L. A., McNeil, T., Burdach, S. E., and Murray, R. (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526.Google Scholar
  110. 109.
    Suzuki, H., Duncan, G. S., Takimoto, H., and Mak, T. W. (1997) Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J. Exp. Med. 185, 499–505.PubMedCrossRefGoogle Scholar
  111. 110.
    Kundig, T. M., Schorle, H., Bachmann, M. F., Hengartner, H., Zinkernagel, R. M., and Horak, I. (1993) Immune responses in interleukin-2-deficient mice. Science 262, 1059–1061.PubMedCrossRefGoogle Scholar
  112. 111.
    Nosaka, T., van Deursen, J. M., Tripp, R. A., Thierfelder, W. E., Witthuhn, B. A., McMickle, A. P., Doherty, P. C., Grosveld, G. C., and Ihle, J. N. (1995) Defective lymphoid development in mice lacking Jak3. Science 270, 800–802.PubMedCrossRefGoogle Scholar
  113. 112.
    Park, S. Y., Saijo, K., Takahashi, T., Osawa, M., Arase, H., Hirayama, N., Miyake, K., Nakauchi, H., Shirasawa, T., and Saito, T. (1995) Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3, 771–782.Google Scholar
  114. 113.
    Thonús, D. C., Gurniak, C. B., Tivol, E., Sharpe, A. H., and Berg, L. J. (1995) Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270, 794–797.CrossRefGoogle Scholar
  115. 114.
    Yoshida, H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T., Shultz, L. D., and Nishikawa, S. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.Google Scholar
  116. 115.
    Corcoran, A. E., Smart, F. M., Cowling, R. J., Crompton, T., Owen, M. J., and Venkitaraman, A. R. (1996) The interleukin-7 receptor alpha chain transmits distinct signals for proliferation and differentiation during B lymphopoiesis. EMBO J. 15, 1924–1932.PubMedGoogle Scholar
  117. 116.
    Reichman-Fried, M., Bosma, M. J., and Hardy, R. R. (1993) B-lineage cells in mu-transgenic scid mice proliferate in response to IL-7 but fail to show evidence of immunoglobulin light chain gene rearrangement. Int. Immunol. 5, 303–310.PubMedCrossRefGoogle Scholar
  118. 117.
    Spanopoulou, E., Roman, C. A., Corcoran, L. M., Schlissel, M. S., Silver, D. P., Nemazee, D., Nussenzweig, M. C., Shinton, S. A., Hardy, R. R., and Baltimore, D. (1994) Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-l-deficient mice. Genes Dev. 8, 1030–1042.Google Scholar
  119. 118.
    Young, F., Ardman, B., Shinkai, Y., Lansford, R., Blackwell, T. K., Mendelsohn, M., Rolink, A., Melchers, F., and Alt, F. W. (1994) Influence of immunoglobulin heavy-and light-chain expression on B-cell differentiation. Genes Dev. 8, 1043–1057.Google Scholar
  120. 119.
    Lagasse, E. and Weissman, I. L. (1994) bc1–2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J. Exp. Med. 179, 1047–1052.Google Scholar
  121. 120.
    Lowenthal, R. M. and Marsden, K. A. (1997) Myelodysplastic syndromes. Int. J. Hematol. 65, 319–338.PubMedCrossRefGoogle Scholar
  122. 121.
    Van den Berghe, H. and Michaux, L. (1997) 5q-, twenty-five years later: a synopsis. Cancer Genet. Cytogenet. 94, 1–7.Google Scholar
  123. 122.
    Akashi, K., Harada, M., Shibuya, T., Eto, T., Takamatsu, Y., Teshima, T., and Niho, Y. (1991) Effects of interleukin-4 and interleukin-6 on the proliferation of CD34+ and CD34- blasts from acute myelogenous leukemia. Blood 78, 197–204.PubMedGoogle Scholar
  124. 123.
    Akashi, K., Shibuya, T., Harada, M., Takamatsu, Y., Uike, N., Eto, T., and Niho, Y. (1991) Interleukin 4 suppresses the spontaneous growth of chronic myelomonocytic leukemia cells. J. Clin. Invest. 88, 223–230.PubMedCrossRefGoogle Scholar
  125. 124.
    Geissler, K., Ohler, L., Fodinger, M., Virgolini, I., Leimer, M., Kabrna, E., Kollars, M., Skoupy, S., Bohle, B., Rogy, M., and Lechner, K. (1996) Interleukin 10 inhibits growth and granulocyte/ macrophage colony-stimulating factor production in chronic myelomonocytic leukemia cells. J. Exp. Med. 184, 1377–1384.Google Scholar
  126. 125.
    Oehler, L., Foedinger, M., Koeller, M., Kollars, M., Reiter, E., Bohle, B., Skoupy, S., Fritsch, G., Lechner, K., and Geissler, K. (1997) Interleukin-10 inhibits spontaneous colony-forming unit-granulocyte-macrophage growth from human peripheral blood mononuclear cells by suppression of endogenous granulocyte-macrophage colony-stimulating factor release. Blood 89, 1147–1153.PubMedGoogle Scholar
  127. 126.
    Winandy, S., Wu, P., and Georgopoulos, K. (1995) A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83, 289–299.PubMedCrossRefGoogle Scholar
  128. 127.
    Ting, C. N., Olson, M. C., Barton, K. P., and Leiden, J. M. (1996) Transcription factor GATA3 is required for development of the T-cell lineage. Nature 384, 474–478.PubMedCrossRefGoogle Scholar
  129. 128.
    Urbanek, P., Wang, Z. Q., Fetka, I., Wagner, E. F., and Busslinger, M. (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking PaxS/BSAP. Cell 79, 901–912.PubMedCrossRefGoogle Scholar
  130. 129.
    Lin, H. and Grosschedl, R. (1995) Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267.PubMedCrossRefGoogle Scholar
  131. 130.
    Bain, G., Maandag, E. C., Izon, D. J., Amsen, D., Kruisbeek, A. M., Weintraub, B. C., Krop, I., Schlissel, M. S., Feeney, A. J., van Roon, M., et al. (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892.Google Scholar
  132. 131.
    Zhuang, Y., Soriano, P., and Weintraub, H. (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884.PubMedCrossRefGoogle Scholar
  133. 132.
    Georgopoulos, K., Bigby, M., Wang, J. -H., Molnar, A., Wu, P., Winandy, S., and Sharpe, A. (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156.PubMedCrossRefGoogle Scholar
  134. 133.
    Georgopoulos, K., Moore, D. D., and Derfler, B. (1992) Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258, 808–812.PubMedCrossRefGoogle Scholar
  135. 134.
    Porcher, C., Swat, W., Rockwell, K., Fujiwara, Y., Alt, F. W., and Orkin, S. H. (1996) The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57.PubMedCrossRefGoogle Scholar
  136. 135.
    Robb, L., Elwood, N. J., Elefanty, A. G., Kontgen, F., Li, R., Barnett, L. D., and Begley, C. G. (1996) The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J. 15, 4123–4129.PubMedGoogle Scholar
  137. 136.
    Robb, L., Lyons, I., Li, R., Hartley, L., Kontgen, F., Harvey, R. P., Metcalf, D., and Begley, C. G. (1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci USA. 92, 7075–7079.PubMedCrossRefGoogle Scholar
  138. 137.
    Shivdasani, R. A., Mayer, E. L., and Orkin, S. H. (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434.PubMedCrossRefGoogle Scholar
  139. 138.
    Warren, A. J., Colledge, W. H., Carlton, M. B., Evans, M. J., Smith, A. J., and Rabbitts, T. H. (1994) The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78, 45–5 7.Google Scholar
  140. 139.
    Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., and Downing, J. R. (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330.PubMedCrossRefGoogle Scholar
  141. 140.
    Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., and Speck, N. A. (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci USA 93, 3444–3449.PubMedCrossRefGoogle Scholar
  142. 141.
    Wang, Q., Stacy, T., Miller, J. D., Lewis, A. F., Gu, T. L., Huang, X., Bushweller, J. H., Bories, J. C., Alt, F. W., Ryan, G., Liu, P. P., Wynshaw-Boris, A., Binder, M., Marin-Padilla, M., Sharpe, A. H., and Speck, N. A. (1996) The CBFß subunit is essential for CBFa2 (AML1) function in vivo. Cell 87, 697–708.Google Scholar
  143. 142.
    Miyamoto, T., Nagafuji, K., Akashi, K., Harada, M., Kyo, T., Akashi, T., Takenaka, K., Mizuno, S., Gondo, H., Okamura, T., Dohy, H., and Niho, Y. (1996) Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 87, 4789–4796.PubMedGoogle Scholar
  144. 143.
    Erickson, P. F., Dessev, G., Lasher, R. S., Philips, G., Robinson, M., and Drabkin, H. A. (1996) ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood 88, 1813–1823.PubMedGoogle Scholar
  145. 144.
    Yergeau, D. A., Hetherington, C. J., Wang, Q., Zhang, P., Sharpe, A. H., Binder, M., Marin-Padilla, M., Tenen, D. G., Speck, N. A., and Zhang, D. E. (1997) Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat. Genet. 15, 303–306.PubMedCrossRefGoogle Scholar
  146. 145.
    Wu, L., Scollay, R., Egerton, M., Pearse, M., Spangrude, G. J., and Shortman, K. (1991) CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349, 71–74.PubMedCrossRefGoogle Scholar
  147. 146.
    Adkins, B., Mueller, C., Okada, C. Y., Reichert, R. A., Weissman, I. L., and Spangrude, G. J. (1987) Early events in T-cell maturation. Annu. Rev. Immunol. 5, 325–365.PubMedCrossRefGoogle Scholar
  148. 147.
    Anderson, G., Moore, N. C., Owen, J. J., and Jenkinson, E. J. (1996) Cellular interactions in thymocyte development. Annu. Rev. Immunol. 14, 73–99.Google Scholar
  149. 148.
    Weissman, I. L. (1994) Developmental switches in the immune system. Cell 76 (2), 207–218.PubMedCrossRefGoogle Scholar
  150. 149.
    Wu, L., Li, C. L., and Shortman, K. (1996) Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med. 184, 903–911.PubMedCrossRefGoogle Scholar
  151. 150.
    Galy, A. H. and Spits, H. (1991) IL-1, IL-4, and IFN-y differentially regulate cytokine production and cell surface molecule expression in cultured human thymic epithelial cells. J. Immunol. 147, 3823–3830.PubMedGoogle Scholar
  152. 151.
    Le, P. T., Lazorick, S., Whichard, L. P., Haynes, B. F., and Singer, K. H. (1991) Regulation of cytokine production in the human thymus: epidermal growth factor and transforming growth factor alpha regulate mRNA levels of interleukin 1 alpha (IL-1 alpha), IL-1 beta, and IL-6 in human thymic epithelial cells at a post-transcriptional level. J. Exp. Med. 174, 1147–1157.PubMedCrossRefGoogle Scholar
  153. 152.
    Le, P. T., Lazorick, S., Whichard, L. P., Yang, Y. C., Clark, S. C., Haynes, B. F., and Singer, K. H. (1990) Human thymic epithelial cells produce IL-6, granulocyte-monocyte-CSF, and leukemia inhibitory factor. J. Immunol. 145, 3310–3315.PubMedGoogle Scholar
  154. 153.
    Namen, A. E., Lupton, S., Hjerrild, K., Wignall, J., Mochizuki, D. Y., Schmierer, A., Mosley, B., March, C. J., Urdal, D., and Gillis, S. (1988) Stimulation of B-cell progenitors by cloned murine interleukin-7 Nature 333, 571–573.PubMedCrossRefGoogle Scholar
  155. 154.
    Rodewald, H. R., Kretzschmar, K., Swat, W., and Takeda, S. (1995) Intrathymically expressed c-kit ligand (stem cell factor) is a major factor driving expansion of very immature thymocytes in vivo. Immunity 3, 313–319.PubMedCrossRefGoogle Scholar
  156. 155.
    Adkins, B., Gandour, D., Strober, S., and Weissman, I. (1988) Total lymphoid irradiation leads to transient depletion of the mouse thymic medulla and persistent abnormalities among medullary stromal cells. J. Immunol. 140, 3373–3379.PubMedGoogle Scholar
  157. 156.
    Adkins, B., Tidmarsh, G. F., and Weissman, I. L. (1988) Normal thymic cortical epithelial cells developmentally regulate the expression of a B-lineage transformation-associated antigen. Immunogenetics 27, 180–186.PubMedCrossRefGoogle Scholar
  158. 157.
    Saint-Ruf, C., Ungewiss, K., Groettrup, M., Bruno, L., Fehling, H. J., and von Boehmer, H. (1994) Analysis and expression of a cloned pre-T cell receptor gene. Science 266, 1208–1212.PubMedCrossRefGoogle Scholar
  159. 158.
    Bikoff, E. K., Huang, L. Y., Episkopou, V., van Meerwijk, J., Germain, R. N., and Robertson, E. J. (1993) Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain expression. J. Exp. Med. 177, 1699–1712.PubMedCrossRefGoogle Scholar
  160. 159.
    Gosgrove, D., Gray, D., Dierich, A., Kaufman, J., Lemeur, M., Benoist, C., and Mathis, D. (1991) Mice lacking MHC class II molecules. Cell 66, 1051–1066.CrossRefGoogle Scholar
  161. 160.
    Grusby, M. J., Johnson, R. S., Papaioannou, V. E., and Glimcher, L. H. (1991) Depletion of CD4+ T cells in major histocompatibility complex class II- deficient mice. Science 253, 1417–1420.PubMedCrossRefGoogle Scholar
  162. 161.
    Viville, S., Neefjes, J., Lotteau, V., Dierich, A., Lemeur, M., Ploegh, H., Benoist, C., and Mathis, D. (1993) Mice lacking the MHC class II-associated invariant chain. Cell 72, 635–648.PubMedCrossRefGoogle Scholar
  163. 162.
    Koller, B. H., Marrack, P., Kappler, J. W., and Smithies, O. (1990) Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230.Google Scholar
  164. 163.
    Zijlstra, M., Bix, M., Simister, N. E., Loring, J. M., Raulet, D. H., and Jaenisch, R. (1990) Beta 2-microglobulin deficient mice lack CD4–8+ cytolytic T cells. Nature 344, 742–746.PubMedCrossRefGoogle Scholar
  165. 164.
    McCormack, W. T., Liu, M., Postema, C., Thompson, C. B., and Turka, L. A. (1993) Excision products of TCR V alpha recombination contain in-frame rearrangements, evidence for continued V(D)J recombination in TCR+ thymocytes. Int. Immunol. 5, 801–804.PubMedCrossRefGoogle Scholar
  166. 165.
    Surh, C. D. and Sprent, J. (1994) T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103.Google Scholar
  167. 166.
    Huesmann, M., Scott B., Kisielow, P., and von Boehmer, H. (1991) Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66, 533–540.PubMedCrossRefGoogle Scholar
  168. 167.
    Shortman, K., Vremec, D., and Egerton, M. (1991) The kinetics of T cell antigen receptor expression by subgroups of CD4+8+ thymocytes: delineation of CD4+8+32+ thymocytes as post-selection intermediates leading to mature T cells. J. Exp. Med. 173, 323–332.PubMedCrossRefGoogle Scholar
  169. 168.
    Lucas, B. and Germain, R. N. (1996) Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477.PubMedCrossRefGoogle Scholar
  170. 169.
    Spain, L. M., Yelon, D., and Berg, L. J. (1994) Do the CD4 and CD8 lineages represent parallel pathways? Sem. Immunol. 6, 213–2120.CrossRefGoogle Scholar
  171. 170.
    Willerford, D. M., Swat, W., and Alt, F. W. (1996) Developmental regulation of V(D)J recombination and lymphocyte differentiation. Curr. Opin. Genet. Dey. 6, 603–609.CrossRefGoogle Scholar
  172. 171.
    McBlane, J. F., van Gent, D. C., Ramsden, D. A., Romeo, C., Cuomo, C. A., Gellert, M., and Oettinger, M. A. (1995) Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83, 387–395.PubMedCrossRefGoogle Scholar
  173. 172.
    van Gent, D. C., Ramsden, D. A., and Gellert, M. (1996) The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85, 107–113.PubMedCrossRefGoogle Scholar
  174. 173.
    Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaioannou, V. E. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877.PubMedCrossRefGoogle Scholar
  175. 174.
    Shinkai, Y., Rathbun, G., Lam, K. P., Oltz, E. M., Stewart, V., Mendelsohn, M., Charron, J., Datta, M., Young, F., Stall, A. M., et al. (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867.PubMedCrossRefGoogle Scholar
  176. 175.
    Schatz, D. G., Oettinger, M. A., and Schlissel, M. S. (1992) V(D)J recombination: molecular biology and regulation. Annu. Rev. Immunol. 10, 359–383.PubMedCrossRefGoogle Scholar
  177. 176.
    Friend, S. L., Hosier, S., Nelson, A., Foxworthe, D., Williams, D. E., and Fan, A. (1994) A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp. Hematol. 22, 321–328.PubMedGoogle Scholar
  178. 177.
    Ray, R. J., Furlonger, C., Williams, D. E., and Paige, C. J. (1996) Characterization ofthymic stromalderived lymphopoietin (TSLP) in murine B cell development in vitro. Eur. J. Immunol. 26, 10–16.PubMedCrossRefGoogle Scholar
  179. 178.
    Zuniga-Pflucker, J. C., Di, J., and Lenardo, M. J. (1995) Requirement for TNF-alpha and IL-1 alpha in fetal thymocyte commitment and differentiation. Science 268, 1906–1909.PubMedCrossRefGoogle Scholar
  180. 179.
    Crompton, T., Outram, S. V., Buckland, J., and Owen, M. J. (1997) A transgenic T cell receptor restores thymocyte differentiation in interleukin-7 receptor alpha chain-deficient mice. Eur. J. Immunol. 27, 100–104.PubMedCrossRefGoogle Scholar
  181. 180.
    Fehling, H. J., Krotkova, A., Saint-Ruf, C., and von Boehmer, H. (1995) Crucial role of the preT-cell receptor alpha gene in development of aß but not y6 T cells. Nature 375, 795–798.PubMedCrossRefGoogle Scholar
  182. 181.
    Molina, T. J., Kishihara, K., Siderovski, D. P., van Ewijk, W., Narendran, A., Timms, E., Wakeham, A., Paige, C. J., Hartmann, K. U., Veillette, A., et al. (1992) Profound block in thymocyte development in mice lacking p561’ Nature 357, 161–164.PubMedCrossRefGoogle Scholar
  183. 182.
    Gratiot-Deans, J., Ding, L., Turka, L. A., and Nunez, G. (1993) bc1–2 proto-oncogene expression during human T cell development: evidence for biphasic regulation. J. Immunol. 151, 83–91.Google Scholar
  184. 183.
    Moore, N. C., Anderson, G., Williams, G. T., Owen, J. J., and Jenkinson, E. J. (1994) Developmental regulation of bcl-2 expression in the thymus. Immunology 81, 115–119.PubMedGoogle Scholar
  185. 184.
    Veis, D. J., Sentman, C. L., Bach, E. A., and Korsmeyer, S. J. (1993) Expression of the Bc1–2 protein in murine and human thymocytes and in peripheral T lymphocytes. J. Immunol. 151, 2546–2554.PubMedGoogle Scholar
  186. 185.
    Godfrey, D. I., Kennedy, J., Suda, T., and Zlotnik, A. (1993) A developmental pathway involving four phenotypically and functionally distinct subsets of CD3–CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252.PubMedGoogle Scholar
  187. 186.
    Kondo, M., Ohashi, Y., Tada, K., Nakamura, M., and Sugamura, K. (1994) Expression of the mouse interleukin-2 receptor gamma chain in various cell populations of the thymus and spleen. Eur. J. Immunol. 24, 2026–2030.PubMedCrossRefGoogle Scholar
  188. 187.
    Sugamura, K., Asao, H., Kondo, M., Tanaka, N., Ishii, N., Nakamura, M., and Takeshita, T. (1995) The common gamma-chain for multiple cytokine receptors. Adv. Immunol. 59, 225–277.PubMedCrossRefGoogle Scholar
  189. 188.
    Schorle, H., Holtschke, T., Hunig, T., Schimpl, A., and Horak, I. (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352, 621–614.PubMedCrossRefGoogle Scholar
  190. 189.
    Kuhn, R., Rajewsky, K., and Muller, W. (1991) Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710.PubMedCrossRefGoogle Scholar
  191. 190.
    Sadlack, B., Kuhn, R., Schorle, H., Rajewsky, K., Muller, W., and Horak, I. (1994) Development and proliferation of lymphocytes in mice deficient for both interleukins-2 and -4. Eur. J. Immunol. 24, 281–284.PubMedCrossRefGoogle Scholar
  192. 191.
    Guidos, C., Ransom, J., Fischer, M., Weissman, I. and Zlotnik, A. (1989) Role of interleukin-4 in T-cell ontogeny, changes in cell surface phenotype and lymphokine production of immature thymocytes after culture with interleukin-4 and phorbol ester. J. Autoimmun. 2 Suppl. 141–153.Google Scholar
  193. 192.
    Rodewald, H. R., Ogawa, M., Haller, C., Waskow, C., and DiSanto, J. P. (1997) Pro-thymocyte expansion by c-kit and the common cytokine receptor gamma chain is essential for repertoire formation. Immunity 6, 265–272.PubMedCrossRefGoogle Scholar
  194. 193.
    Guidos, C. J., Williams, C. J., Wu, G. E., Paige, C. J., and Danska, J. S. (1995) Development of CD4+CD8+ thymocytes in RAG-deficient mice through a T cell receptor beta chain-independent pathway. J. Exp. Med. 181, 1187–1195.PubMedCrossRefGoogle Scholar
  195. 194.
    Jacobs, H. Vandeputte, D., Tolkamp, L., de Vries, E., Borst, J., and Berns, A. (1994) CD3 components at the surface of pro-T cells can mediate pre-T cell development in vivo. Eur. J. Immunol. 24 934–939.Google Scholar
  196. 195.
    Zuniga-Pflucker, J. C., Jiang, D., Schwartzberg, P. L., and Lenardo, M. J. (1994) Sublethal gamma-radiation induces differentiation of CD4-/CD8- into CD4+/CD8+thymocytes without T cell receptor beta rearrangement in recombinase activation gene 2-/- mice. J. Exp. Med. 180, 1517–1521.Google Scholar
  197. 196.
    Nakayama, K. -I., Nakayama, K., Dustin, L. B., and Loh, D. Y. (1995) T-B cell interaction inhibits spontaneous apoptosis of mature lymphocytes in Bcl-2-deficient mice. J. Exp. Med. 182, 1101–1110.PubMedCrossRefGoogle Scholar
  198. 197.
    Veis, D. J., Sorenson, C. M., Shutter, J. R., and Korsmeyer, S. J. (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240.Google Scholar
  199. 198.
    Akashi, K. and Weissman, I. L. (1996) The c-kit+ maturation pathway in mouse thymic T cell development: lineages and selection. Immunity 5, 147–161.PubMedCrossRefGoogle Scholar
  200. 199.
    Linette, G. P., Grusby, M. J., Hedrick, S. M., Hansen, T. H., Glimcher, L. H., and Korsmeyer, S. J. (1994) Bc1–2 is upregulated at the CD4+CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1, 197–205.PubMedCrossRefGoogle Scholar
  201. 200.
    Tao, B. and Fultz, P. N. (1995) Molecular and biological analyses of quasispecies during evolution of a virulent simian immunodeficiency virus, SIVsmmPBj 14. J. Virol. 69, 2031–2037.PubMedGoogle Scholar
  202. 201.
    Grillot, D. A., Merino, R., and Nunez, G. (1995) Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms ofapoptosis but not clonal deletion in transgenic mice. J. Exp. Med. 182, 1973–1983.PubMedCrossRefGoogle Scholar
  203. 202.
    Guidos, C. J. (1996) Positive selection of CD4+ and CD8’ T cells. Curr. Opin. Immunol. 8, 225–232.PubMedCrossRefGoogle Scholar
  204. 203.
    Guidos, C. J., Danska, J. S., Fathman, C. G., and Weissman, I. L. (1990) T cell receptor-mediated negative selection of autoreactive T lymphocyte precursors occurs after commitment to the CD4 or CD8 lineages. J. Exp. Med. 172, 835–846.PubMedCrossRefGoogle Scholar
  205. 204.
    Jameson, S. C., Hogquist, K. A., and Bevan, M. J. (1995) Positive selection of thymocytes. Annu. Rev. Immunol. 13, 93–126.PubMedCrossRefGoogle Scholar
  206. 205.
    von Boehmer, H. (1994) Positive selection of lymphocytes. Cell 76, 219–28.CrossRefGoogle Scholar
  207. 206.
    Lucas, B., Vasseur, F., and Penit, C. (1994) Production, selection, and maturation of thymocytes with high surface density of TCR. J. Immunol. 153, 53–62.PubMedGoogle Scholar
  208. 207.
    Tao, W., Teh, S. J., Melhado, I., Jirik, F., Korsmeyer, S. J., and Teh, H. S. (1994) The T cell receptor repertoire of CD4–8+ thymocytes is altered by overexpression of the BCL-2 protooncogene in the thymus. J. Exp. Med. 179, 145–153.PubMedCrossRefGoogle Scholar
  209. 208.
    Grusby, M. J., Auchincloss, H., Jr., Lee, R., Johnson, R. S., Spencer, J. P., Zijlstra, M., Jaenisch, R., Papaioannou, V. E., and Glimcher, L. H. (1993) Mice lacking major histocompatibility complex class I and class II molecules. Proc. Natl. Acad. Sci USA 90, 3913–3917.Google Scholar
  210. a. Akashi, K., Kondo, M., and Weissman, I. L. (1998) Two distinct pathways of positive selection for thymocytes. Proc. Natl. Acad. Sci. USA in press.Google Scholar
  211. 209.
    Sen-Majumdar, A., Guidos, C., Kina, T., Lieberman, M., and Weissman, I. L. (1994) Characterization of preneoplastic thymocytes and of their neoplastic progression in irradiated C57BL/ Ka mice. J. Immunol. 153, 1581–1592.PubMedGoogle Scholar
  212. 210.
    Mazel, S., Burtrum, D., and Petrie, H. T. (1996) Regulation of cell division cycle progression by bc1–2 expression: a potential mechanism for inhibition of programmed cell death. J. Exp. Med. 183, 2219–2226.PubMedCrossRefGoogle Scholar
  213. 211.
    Vaux, D. L., Cory, S., and Adams, J. M. (1988) Bc1–2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442.PubMedCrossRefGoogle Scholar
  214. 212.
    Strasser, A., Harris, A. W., Corcoran, L. M., and Cory, S. (1994) Bcl-2 expression promotes B- but not T-lymphoid development in scid mice. Nature 368, 457–460.PubMedCrossRefGoogle Scholar
  215. 213.
    Nakajima, H. Shores, E. W., Noguchi, M., and Leonard, W. J. (1997) The common cytokine receptor gamma chain plays an essential role in regulating lymphoid homeostasis. J. Exp. Med. 185 189–195.Google Scholar
  216. 214.
    Sudo, T., Nishikawa, S., Ohno, N., Akiyama, N., Tamakoshi, M., Yoshida, H., and Nishikawa, S. (1993) Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl. Acad. Sci USA 90, 9125–9129.PubMedCrossRefGoogle Scholar
  217. 215.
    Fowlkes, B. J. and Schweighoffer, E. (1995) Positive selection of T cells. Curr. Opin. Immunol. 7, 188–195.PubMedCrossRefGoogle Scholar
  218. 216.
    Winslow, G. M., Marrack, P., and Kappler, J. W. (1994) Processing and major histocompatibility complex binding of the MTV7 superantigen. Immunity 1, 23–33.PubMedCrossRefGoogle Scholar
  219. 217.
    Ohashi, P. S., Pircher, H., Burki, K., Zinkernagel, R. M., and Hengartner, H. (1990) Distinct sequence of negative or positive selection implied by thymocyte T-cell receptor densities. Nature 346, 861–863.PubMedCrossRefGoogle Scholar
  220. 218.
    Sentman, C. L., Shutter, J. R., Hockenberry, D., Kanagawa, O., and Korsmeyer, S. J. (1991) bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879–888.Google Scholar
  221. 219.
    Hazel, T. G., Nathans, D., and Lau, L. F. (1988) A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc. Natl. Acad. Sci. USA 85, 8444–8448.PubMedCrossRefGoogle Scholar
  222. 220.
    Liu, Z. G., Smith, S. W., McLaughlin, K. A., Schwartz, L. M., and Osborne, B. A. (1994) Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 367, 281–284.PubMedCrossRefGoogle Scholar
  223. 221.
    Woronicz, J. D., Calnan, B., Ngo, V., and Winoto, A. (1994) Requirement for the orphan steroid receptor Nur77 in apoptosis of T- cell hybridomas. Nature 367, 277–281.PubMedCrossRefGoogle Scholar
  224. 222.
    Calnan, B. J., Szychowski, S., Chan, F. K., Cado, D., and Winoto, A. (1995) A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 3, 273–282.PubMedCrossRefGoogle Scholar
  225. 223.
    Zhou, T., Cheng, J., Yang, P., Wang, Z., Liu, C., Su, X., Bluethmann, H, and Mountz, J. D. (1996) Inhibition of nur77/nurrl leads to inefficient clonal deletion of self-reactive T cells. J. Exp. Med. 183, 1879–1892.Google Scholar
  226. 224.
    Castro, J. E., Listman, J. A., Jacobson, B. A., Wang, Y., Lopez, P. A., Ju, S., Finn, P. W., and Perkins, D. L. (1996) Fas modulation of apoptosis during negative selection of thymocytes. Immunity 5, 617–627.PubMedCrossRefGoogle Scholar
  227. 225.
    Chan, A. C., Iwashima, M., Turck, C. W., and Weiss, A. (1992) ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR chain. Cell 71, 649–662.PubMedCrossRefGoogle Scholar
  228. 226.
    Samelson, L. E., Phillips, A. F., Luong, E. T., and Klausner, R. D. (1990) Association of the fyn protein-tyrosine kinase with the T-cell antigen receptor. Proc. Natl. Acad. Sci USA 87, 4358–4362.PubMedCrossRefGoogle Scholar
  229. 227.
    Appleby, M. W., Gross, J. A., Cooke, M. P., Levin, S. D., Qian, X., and Perlmutter, R. M. (1992) Defective T cell receptor signaling in mice lacking the thymic isoform of p59fyn. Cell 70, 751–763.PubMedCrossRefGoogle Scholar
  230. 228.
    Stein, P. L., Lee, H. M., Rich, S., and Soriano, P. (1992) pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741–750.Google Scholar
  231. 229.
    Cooke, M. P., Abraham, K. M., Forbush, K. A., and Perlmutter, R. M. (1991) Regulation of T cell receptor signaling by a src family protein-tyrosine kinase (p59fyn). Cell 65, 281–291.Google Scholar
  232. 230.
    Arpaia, E., Shahar, M., Dadi, H., Cohen, A., and Roifman, C. M. (1994) Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell 76, 947–958.Google Scholar
  233. 231.
    Chan, A. C., Kadlecek, T. A., Elder, M. E., Filipovich, A. H., Kuo, W. L., Iwashima, M., Parslow, T. G., and Weiss, A. (1994) ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264, 1599–1601.PubMedCrossRefGoogle Scholar
  234. 232.
    Elder, M. E., Lin, D., Clever, J., Chan, A. C., Hope, T. J., Weiss, A., and Parslow, T. G. (1994) Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264, 1596–1599.PubMedCrossRefGoogle Scholar
  235. 233.
    Veillette, A., Zuniga-Pflucker, J. C., Bolen, J. B., and Kruisbeek, A. M. (1989) Engagement of CD4 and CD8 expressed on immature thymocytes induces activation of intracellular tyrosine phosphorylation pathways. J. Exp. Med. 170, 1671–1680.Google Scholar
  236. 234.
    Wiest, D. L., Yuan, L., Jefferson, J., Benveniste, P., Tsokos, M., Klausner, R. D., Glimcher, L. H., Samelson, L. E., and Singer, A. (1993) Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p561ck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules. J. Exp. Med. 178, 1701–1712.PubMedCrossRefGoogle Scholar
  237. 235.
    Anderson, S. J., Levin, S. D., and Perlmutter, R. M. (1993) Protein tyrosine kinase p561ck controls allelic exclusion of T-cell receptor beta-chain genes. Nature 365, 552–554.PubMedCrossRefGoogle Scholar
  238. 236.
    Chan, I. T., Limmer, A., Louie, M. C., Bullock, E. D., Fung-Leung, W. P., Mak, T. W., and Loh, D. Y. (1993) Thymic selection of cytotoxic T cells independent of CD8 alpha-Lck association. Science 261, 1581–1584.PubMedCrossRefGoogle Scholar
  239. 237.
    Fung-Leung, W. P., Louie, M. C., Limmer, A., Ohashi, P. S., Ngo, K., Chen, L., Kawai, K., Lacy, E., Loh, D. Y., and Mak, T. W. (1993) The lack of CD8 alpha cytoplasmic domain resulted in a dramatic decrease in efficiency in thymic maturation but only a moderate reduction in cytotoxic function of CD8+ T lymphocytes. Eur. J. Immunol. 23, 2834–2840.Google Scholar
  240. 238.
    Killeen, N. and Littman, D. R. (1993) Helper T-cell development in the absence of CD4-p561ck association. Nature 364, 729–732.PubMedCrossRefGoogle Scholar
  241. 239.
    Chan, S. H., Cosgrove, D., Waltzinger, C., Benoist, C., and Mathis, D. (1993) Another view of the selective model of thymocyte selection. Cell 73, 225–236.PubMedCrossRefGoogle Scholar
  242. 240.
    Crump, A. L., Grusby, M. J., Glimcher, L. H., and Cantor, H. (1993) Thymocyte development in major histocompatibility complex-deficient mice: evidence for stochastic commitment to the CD4 and CD8 lineages. Proc. Natl. Acad. Sci USA 90, 10739–10743.PubMedCrossRefGoogle Scholar
  243. 241.
    van Meerwijk, J. P. and Germain, R. N. (1993) Development of mature CD8+ thymocytes: selection rather than instruction? Science 261, 911–915.PubMedCrossRefGoogle Scholar
  244. 242.
    van Meerwijk, J. P., O’Connell, E. M., and Germain, R. N. (1995) Evidence for lineage commitment and initiation of positive selection by thymocytes with intermediate surface phenotypes. J. Immunol. 154, 6314–6323.PubMedGoogle Scholar
  245. 243.
    Lucas, B., Vasseur, F., and Penit, C. (1995) Stochastic coreceptor shut-off is restricted to the CD4 lineage maturation pathway. J. Exp. Med. 181, 1623–1633.PubMedCrossRefGoogle Scholar
  246. 244.
    Lundberg, K., Heath, W., Kontgen, F., Carbone, F. R., and Shortman, K. (1995) Intermediate steps in positive selection: differentiation of CD4+8int TCR’nt thymocytes into CD4–8+TCRh’ thymocytes. J. Exp. Med. 181, 1643–1651.Google Scholar
  247. 245.
    Suzuki, H., Punt, J. A., Granger, L. G., and Singer, A. (1995) Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425.PubMedCrossRefGoogle Scholar
  248. 246.
    Itano, A., Salmon, P., Kioussis, D., Tolaini, M., Corbella, P., and Robey, E. (1996) The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. J. Exp. Med. 183, 731–741.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Koichi Akashi
  • Motonari Kondo
  • Annette M. Schlageter
  • Irving L. Weissman

There are no affiliations available

Personalised recommendations