Advertisement

Adhesion Receptors in Allergic Disease

  • Andrew Wardlaw
Chapter

Abstract

The inflammatory process in allergic disease is characterized by a distinct pattern of leukocyte accumulation, in particular increased numbers of activated eosinophils, T-lymphocytes, and monocytes with a relative paucity of neutrophils. Leukocyte migration through endothelium has been shown to be a staged process in which the cells are initially lightly tethered to the endothelium under flow conditions and roll along its surface. This is followed by cell activation, thought to be mediated by a soluble chemotactic stimulus that allows a firmer bond to develop between the leucocyte and the endothelial cell, which results in successful adhesion and transmigration (Fig. 1) (1). The steps occur in series so that each is essential for transmigration to occur. This means that selectivity can be introduced at each of the steps, resulting in considerable diversity in the pattern of signals at any one inflammatory site. It also means that migration can be modulated at each of the steps, offering a range of targets for pharmacological inhibition.

Keywords

Atopic Dermatitis Human Umbilical Vein Endothelial Cell Allergy Clin Immunol Allergen Challenge Adhesion Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Springer TA (1994) Traffic signals for lymphocyte re-circulation and leukocyte emigration: the multistep paradigm. Cell 76: 310.CrossRefGoogle Scholar
  2. 2.
    Bevilacqua MP (1993) Endothelial leukocyte adhesion molecules. Annu Rev Immunol 11: 767–804.PubMedCrossRefGoogle Scholar
  3. 3.
    Rosen SD (1993) Cell surface lectins in the immune system. Semin Immunol 5: 237–247.PubMedCrossRefGoogle Scholar
  4. 4.
    Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA (1987) Identification of an inducible endothelial leukocyte adhesion molecule ELAM-1. Proc Natl Acad Sci USA 84: 9238–9242.PubMedCrossRefGoogle Scholar
  5. 5.
    Geng JG, Bevilacqua MP, Moore KL, McIntyre TM, Prescott SM, Kim JM, Bliss GA, Zimmerman GA, McEver RP (1990) Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343: 757–760.PubMedCrossRefGoogle Scholar
  6. 6.
    Khew-Goodall Y, Butcher CM, Litwin MS, Newlands S, Korpelainen EI, Noack LM, Berndt MC, Lopez AF, Gamble JR, Vadas MA (1996) Chronic expression of P-selectin on endothelial cells stimulated by the T cell cytokine interleukin 3. Blood 87: 1432–1438.PubMedGoogle Scholar
  7. 7.
    Yao L, Pan J, Setiadi H, Patel KD, McEver RP (1996) Interleukin 4 or oncostatin induces a prolonged increase in P-selectin mRNA and protein in human endothelial cells. J Exp Med 184: 81–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Kishimoto TK, Jutila MA, Butcher EC (1990) Identification of a human peripheral lymph node homing receptor; a rapidly down regulated adhesion molecule. Proc Natl Acad Sci USA 87: 2244–2248.PubMedCrossRefGoogle Scholar
  9. 9.
    Springer TA, Lasky LA (1991) Sticky sugars for selectins. Nature 349: 425–434.CrossRefGoogle Scholar
  10. 10.
    Ley K, Tedder TF (1995) Leukocyte interactions with vascular endothelium. New insights into selectin mediated attachment and rolling. J Immunol 155: 525–528.Google Scholar
  11. 11.
    Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD (1996) Susceptibility to infection and altered hematopoiesis in mice deficient in both P and E-selectins. Cell 84: 563–574.PubMedCrossRefGoogle Scholar
  12. 12.
    Lasky LA, Singer MS, Dowbenko D, et al. (1992) An endothelial ligand for L-selectin is a novel mucin like molecule. Cell 69: 927–938.PubMedCrossRefGoogle Scholar
  13. 13.
    Baumheuter S, Singer MS, Henzel W, Hemmerich S, Renz H, Rosen SD, Lasky LA (1993) Binding of L-selectin to the vascular sialomucin CD34. Science 262: 436–438.CrossRefGoogle Scholar
  14. 14.
    Berg EL, McEvoy LM, Berlin C, Bargatze RF, Butcher EC (1993) L-selectin mediated lymphocyte rolling on MAdCAM-1. Nature 366: 695–698.PubMedCrossRefGoogle Scholar
  15. 15.
    Sako D, Chang XJ, Barone KM (1993) Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75: 1179.PubMedCrossRefGoogle Scholar
  16. 16.
    Sako D, Comess KM, Barone KM, Camphausen RT, Cumming DA, Shaw GD (1995) A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell 83: 323–331.PubMedCrossRefGoogle Scholar
  17. 17.
    Berg EL, Yoshin T, Rott LS (1991) The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J Exp Med 174: 1461–1466.PubMedCrossRefGoogle Scholar
  18. 18.
    Alon R, Rossiter H, Wang X, Springer TA, Kupper TS (1994) Distinct cell surface ligands mediate T-lymphocyte attachment and rolling on P and E-selectin under physiological flow. J Cell Biol 127: 1485–1495.PubMedCrossRefGoogle Scholar
  19. 19.
    Steegmaler M, Levinovitz A, Isenmann S, Borges E, Lenter M, Kocher HP, Kleuser B, Vestweber D (1995) The E-selectin ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature 373: 615–620.CrossRefGoogle Scholar
  20. 20.
    Picker LJ, Warnock RA, Bums AR, Doerschuk CM, Berg EL, Butcher EC (1991) The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66: 921–933.PubMedCrossRefGoogle Scholar
  21. 21.
    Hynes RO (1992) Integrins: versatility, modulation and signalling in cell adhesion. Cell 69: 11–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Hogg H, Berlin C (1995) Structure and function of adhesion receptors in leukocyte trafficking. Immunol Today 16: 327–330.PubMedCrossRefGoogle Scholar
  23. 23.
    Krensky AM, Sanchez-Madrid F, Robbins E, Nagy J, Springer TA, Burakoff SJ (1983) The functional significance, distribution and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions. J Immunol 131: 611–616.PubMedGoogle Scholar
  24. 24.
    Arnaout MA, Colten HR (1984) Complement C3 receptors: structure and function. Mol Immunol 21: 1191–1199.PubMedCrossRefGoogle Scholar
  25. 25.
    Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1 and p150,95 glycoproteins. Annu Rev Med 38: 175–194.PubMedCrossRefGoogle Scholar
  26. 26.
    Beller DI, Springer TA, Schreiber RD (1982) Anti-Mac-1 selectivity inhibits the mouse and human type three complement receptor. J Exp Med 156: 1006–1009.CrossRefGoogle Scholar
  27. 27.
    Russell DG, Wright SD (1988) Complement receptor type 3 (CR3) binds to an arg-gly-asp containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. J Exp Med 168: 279–292.PubMedCrossRefGoogle Scholar
  28. 28.
    Anderson DC, Miller LJ, Schmalsteig FC, Rothlein R, Springer TA (1986) Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocytic functions: structure-function assessments employing sub-unit specific monoclonal antibodies. J Immunol 137: 15–27.PubMedGoogle Scholar
  29. 29.
    Wallis WJ, Hickstein DD, Schwartz BR, June CH, Ochs HD, Beatty PG, Klebanoff SJ, Harlan JM (1986) Monoclonal antibody-defined functional epitopes on the adhesion promoting glycoprotein complex (Cdw18) of human neutrophils. Blood 67: 1007–1013.PubMedGoogle Scholar
  30. 30.
    Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature (Lond) 343: 170–173.CrossRefGoogle Scholar
  31. 31.
    Elices MJ, Osbourn L, Takada Y, et al. (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60: 577–584.PubMedCrossRefGoogle Scholar
  32. 32.
    Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL, Brenner MB (1994) Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the aE137 integrin. Nature 372: 190–193.PubMedCrossRefGoogle Scholar
  33. 33.
    Erle DJ, Briskin MJ, Butcher ED, Garcia-Pardo A, Lazarovits AI, Tidswell M (1994) Expression and function of the MAdCAM-1 receptor integrin a4/ß7 on human leukocytes. J Immunol 153: 517–528.PubMedGoogle Scholar
  34. 34.
    Berlin C, Bargatze RF, Campbell JJ, von Adrian UH, Szabo MC, Hasslen SR, Nelson EL, Berg EL, Ferlandsen SL, Butcher EC (1995) œ4 integrin mediates lymphocyte attachment and rolling under physiologic flow. Cell 80: 413–422.Google Scholar
  35. 35.
    Kassner AR, Carr MW, Finger EB, Hemler ME, Springer TA (1995) The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol 128: 1243–1253.PubMedCrossRefGoogle Scholar
  36. 36.
    Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA (1986) Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry and function of natural adherence molecule (ICAM-1). J Immunol 137: 245–254PubMedGoogle Scholar
  37. 37.
    Simmons D, Makgoba MW, Seed B (1988) ICAM-1 an adhesion ligand of LFA-1 is homologous to the neural cell adhesion molecule NCAM. Nature 331: 624–627PubMedCrossRefGoogle Scholar
  38. 38.
    Makgoba MW, Sanders ME, Ginther GE, et al. (1988) ICAM-1 a ligand for LFA-1 dependent adhesion of B, T and myeloid cells. Nature 331: 86–88.PubMedCrossRefGoogle Scholar
  39. 39.
    Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA (1990) ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 111, 3129–3139.PubMedCrossRefGoogle Scholar
  40. 40.
    Berendt AR, Simmons DL, Tansy J, Newbold CI, Marsh K (1989) Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341: 57–59.PubMedCrossRefGoogle Scholar
  41. 41.
    Greve JM, Davies G, Meyer AM, Forte CP, Yost SC, Marlow CW, Kamarck ME, McClelland A (1989) A major human rhinovirus receptor is ICAM-1. Cell 56: 839–847.PubMedCrossRefGoogle Scholar
  42. 42.
    Tomassini JE, Graham D, DeWitt CM, Lineberger DW, Rodkey JA, Colonno RJ (1989) cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule-1. Proc Natl Acad Sci USA 86: 4907–4911.Google Scholar
  43. 43.
    Miller J, Knorr R, Ferrone M, Houdei R, Garcon S, Dustin ML (1995) Intercellular adhesion molecule-1 dimerisation and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med 182: 1231–1241PubMedCrossRefGoogle Scholar
  44. 44.
    Pober JS, Gimbrone MA Jr, Lapierre LA, Mendrick DL, Fiers W, Rothlein R, Springer TA (1986) Overlapping patterns of activation by human endothelial cells by interleukin-1, tumor necrosis factor and immune interferon. J Immunol 137: 1893–1896.PubMedGoogle Scholar
  45. 45.
    Staunton DE, Dustin ML, Springer TA (1989) Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339: 61–64PubMedCrossRefGoogle Scholar
  46. 46.
    de Fougerolles AR, Stacker SA, Schwarting R, Springer TA (1991) Characterisation of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med 174: 253–267.PubMedCrossRefGoogle Scholar
  47. 47.
    de Fougerolles AR, Springer TA (1992) Intercellular adhesion molecule 3, a third adhesion counter receptor for lymphocyte function-associated molecule-1 on resting lymphocytes. J Exp Med 175: 185–190.PubMedCrossRefGoogle Scholar
  48. 48.
    Thornhill MH, Wellicome SM, Mahiouz DL, Lanchbury JS, Kyan-Aung U, Haskard DO (1991) Tumor necrosis factor combines with IL-4 or IFN-a to selectively enhance endothelial cell adhesiveness for T-cells. J Immunol 146: 592.PubMedGoogle Scholar
  49. 49.
    Bochner BS, Klunk DA, Sterbinsky SA, Coffman RL, Schleimer RP (1995) IL-13 selectively induces vascular cell adhesion molecule-1 expression in human endothelial cells. J Immunol 154: 799–803.PubMedGoogle Scholar
  50. 50.
    Schwartz BR, Wayner EA, Carlos TM, Ochs HD, Harlan JM (1990) Identification of surface proteins mediating adherence of CD11/18-deficient lymphoblastoid cells to cultured endothelium. J Clin Invest 85: 2019–2022.Google Scholar
  51. 51.
    Walsh GM, Hartnell A, Mermod JJ, Kay AB, Wardlaw AJ (1991) Human eosinophil, but not neutrophil adherence to IL-1 stimulated HUVEC is a4b1 (VLA-4) dependent. J Immunol 146: 3419–3423.PubMedGoogle Scholar
  52. 52.
    Bochner BS, Lusckinskas FW, Gimbrone MA, Newman W, Sterbinsky A, Derse-Anthony CP, Klunk D, Schleimer RP (1991) Adhesion of human basophils and eosinophils to IL-1 activated human vascular endothelial cells: contribution of endothelial cell adhesion molecules. J Exp Med 173: 1552.CrossRefGoogle Scholar
  53. 53.
    Dobrina A, Menegazzi R, Carlos TM, Nardon E, Cramer R, Zacchi T, Harlan JM, Patriarca P (1991) Mechanisms of eosinophil adherence to cultured vascular endothelial cells: eosinophils bind to the cytokine induced endothelial ligand vascular cell adhesion molecule-1 via the very late antigen-4 receptor. J Clin Invest 88: 20.PubMedCrossRefGoogle Scholar
  54. 54.
    Weller PF, Rand TH, Golez SE, Chi-Rosso G, Lobb RR (1991) Human eosinophil adherence to vascular endothelium mediated by binding to vascular cell adhesion molecule-1 and endothelial leukocyte adhesion molecule-1. Proc Natl Acad Sci USA 88: 7430.PubMedCrossRefGoogle Scholar
  55. 55.
    Campanero MR, Puliod R, Ursa MA, Rodriguez-Moya M, de Landazuri MO, Sanchez-Madrid F (1990) An alternative leukocyte adhesion mechanism, LFA-1/ICAM-1 independent, triggered through the human VLA-4 integrin. J Cell Biol 110: 2157–2165.PubMedCrossRefGoogle Scholar
  56. 56.
    Hemler ME (1988) Adhesive protein receptors on haemopoietic cells. Immunol Today 9: 109–113.PubMedCrossRefGoogle Scholar
  57. 57.
    Shyjan AM, Bertagnolli M, Kenney CJ, Briskin Mi (1996) Human mucosal addressin cell adhesion molecule-1 (MAdCAM-1) demonstrates structural and functional similarities to the a4(37-integrin binding domains of murine MAdCAM-1, but extreme divergence of mucin-like sequences. J Immunol 156: 2851–2857PubMedGoogle Scholar
  58. 58.
    Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzman B, Weissman IL, Hamann A, Butcher EC (1993) a4137 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74: 185–195.Google Scholar
  59. 59.
    Newman PJ, Berndt MC, Gorski J, White GC, Lyman S, Paddock C, Muller WA (1990) PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247: 1219–1222PubMedCrossRefGoogle Scholar
  60. 60.
    Muller WA, Ratti CM, McDonnell SL, Cohn ZA (1989) A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J Exp Med 170: 399–414.PubMedCrossRefGoogle Scholar
  61. 61.
    Liao F, Huynh HK, Eiroa A, Greene T, Polizzi E, Muller WA (1995) Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J Exp Med 182: 1337–1343.PubMedCrossRefGoogle Scholar
  62. 62.
    Kyan-Aung U, Haskard DO, Poston RN, Thornhill MH, Lee TH (1991) Endothelial leukocyte adhesion molecule-1 and intercellular adhesion molecule-1 mediated the adhesion of eosinophils to endothelial cells in vitro and are expressed by endothelium in allergic cutaneous inflammation in vivo. J Immunol 146: 521–528.PubMedGoogle Scholar
  63. 63.
    Leung YM, Pober JS, Cotran RS (1991) Expression of endothelial-leukocyte adhesion molecule-1 in elicited late phase allergic reactions. J Clin Invest 87: 1805–1809.Google Scholar
  64. 64.
    Bentley AM, Durham SR, Robinson DS, Menz G, Storz C, Cromwell O, Kay AB, Wardlaw AJ (1993) Expression of endothelial and leukocyte adhesion molecules, intercellular adhesion molecule-1, E-selectin and vascular cell adhesion molecule-1 in the bronchial mucosa in steady state and allergen induced asthma. J Allergy Clin Immunol 92: 857–868.PubMedCrossRefGoogle Scholar
  65. 65.
    Montefort S, Gratziou C, Goulding D, Polosa R, Haskard DO, Howart PH, Holgate ST, Caroll M (1993) Upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J Clin Invest 93: 1411–1421.CrossRefGoogle Scholar
  66. 66.
    Murphy G, Leventhal L, Zweiman B (1994) Endothelial CD62 and E-selectin expression in developing late-phase IgE mediated skin reactions. J Allergy Clin Immunol 93: 183 (abstract).Google Scholar
  67. 67.
    Lee B-J, Nacleiro RM, Bochner BS, Taylor RM, Lim MC, Baroody FM (1994) Nasal challenge with allergen upregulates the local expression of vascular endothelial adhesion molecules. J Allergy Clin Immunol 94: 1006–1016.PubMedCrossRefGoogle Scholar
  68. 68.
    Montefort S, Roche WR, Howarth PH, Djukanovic R, Gratziou C, Carroll M, Smith L, Britten KM, Haskard D, Lee TH, et al. (1992) Intercellular adhesion molecule-1 (ICAM-1) and endothelial leucocyte adhesion molecule-1 (ELAM-1) expression in the bronchial mucosa of normals and asthmatic subjects. Eur Respir J 5: 815–823.PubMedGoogle Scholar
  69. 69.
    Ohkawara Y, Yamauchi K, Maruyama N, Hoshi H, Ohno I, Honma M, Tanno Y, Tamura G, Shirato K, Ohtani H (1995) In situ expression of the cell adhesion molecules in bronchial tissues from asthmatics with air flow limitation: in vivo evidence of VCAM-1/VLA-4 interaction in selective eosinophil infiltration. Am J Respir Cell Mol Biol 12: 4–12.PubMedGoogle Scholar
  70. 70.
    Gosset P, Tillie-Leblond I, Janin A, Marquette CH, Copin MC, Wallaert B, Tonnel AB (1995) Expression of E-selectin, ICAM-1 and VCAM-1 on bronchial biopsies from allergic and non-allergic asthmatic patients. Int Arch Allergy Immunol 106: 69–77.PubMedCrossRefGoogle Scholar
  71. 71.
    Fukuda T, Fukushima Y, Numao T, Ando N, Arima M, Nakajima H, Sagara H, Adachi T, Motojima S, Makino S (1996) Role of interleukin-4 and vascular cell adhesion molecule-1 in selective eosinophil migration into the airways in allergic asthma. Am J Respir Cell Mol Biol 14: 84–94.PubMedGoogle Scholar
  72. 72.
    Montefort S, Feather IH, Wilson SJ (1992) The expression of leukocyte endothelial adhesion molecules is increased in perennial allergic rhinitis. Am J Respir Cell Mol Biol 7: 393–398.PubMedGoogle Scholar
  73. 73.
    Symon FA, Walsh GM, Watson SR, Wardlaw M (1994) Eosinophil adhesion to nasal polyp endothelium is P-selectin dependent. J Exp Med 180: 371–376.PubMedCrossRefGoogle Scholar
  74. 74.
    Jahnsen FL, Haraldsen G, Aanesen JP, Haye R, Brandtzeg P (1995) Eosinophil infiltration is related to increased expression of vascular cell adhesion molecule-1 in nasal polyps. Am J Respir Cell Mol Biol 12: 624–632.PubMedGoogle Scholar
  75. 75.
    Wakita H, Sakamoto T, Tokura Y, Takigawa W (1994) E-selectin and vascular cell adhesion molecule 1 as critical adhesion molecules for infiltration of T lymphocytes and eosinophils in atopic dermatitis. J Cutan Pathol 21: 33–99.PubMedCrossRefGoogle Scholar
  76. 76.
    Maestrelli P, diStefano A, Occari P, Turato G, Milani G, Pivirotto F, Mapp CE, Fabbri LM, Saetta M (1995) Cytokines in the airway mucosa of subjects with asthma induced by toluene diisocyanate. Am J Respir Crit Care Med 151: 607–612.PubMedGoogle Scholar
  77. 77.
    Smith CH, Barker JNWN, Morris RW, MacDonald DM, Lee TH (1993) Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J Immunol 151: 3274–82.PubMedGoogle Scholar
  78. 78.
    Vignola AM, Campbell AM, Chanez P, Lacoste P, Michel FB, Godard P, Bousquet J (1993) HLA-DR and ICAM-1 expression on bronchial epithelial cells in asthma and chronic bronchitis. Am Rev Respir Dis 147: 529–534.PubMedGoogle Scholar
  79. 79.
    Manolitsas ND, Trigg CJ, McAulay AE, Wang JH, Jordan SE, D’Ardenne Ai, Davies Ri (1994) The expression of intercellular adhesion molecule-1 and the 131-integrins in asthma. Eur Respir J 7: 1439–1444.PubMedCrossRefGoogle Scholar
  80. 80.
    Ciprandi G, Pronzato C, Ricca V, Passalacqua G, Bagnasco M, Canonica GW (1994) Allergen specific challenge induces intercellular adhesion molecule-1 (ICAM-1/CD54) expression on nasal epithelial cells in allergic subjects. Relationship with early and late inflammatory phenomena. Am J Respir Crit Care Med 150: 1653–1659.Google Scholar
  81. 81.
    Ciprandi G, Buscaglia S, Pesce GP, Villaggio B, Bagnesco M, Canonica GW (1993) Allergic subjects express intracellular adhesion molecule 1 (ICAM-i or CD54) on epithelial cells of conjunctiva after allergen challenge. J Allergy Clin Immunol 91: 783–792PubMedCrossRefGoogle Scholar
  82. 82.
    Gearing AJ, Newman W (1993) Circulating adhesion molecules in disease. Immunol Today 14: 506–512PubMedCrossRefGoogle Scholar
  83. 83.
    Montefort S, Lai CKW, Kapahi P, Leung J, Lai KN, Chan HS, Haskard DO, Howarth PH, Holgate ST (1994) Circulating adhesion molecules in asthma. Am J Respir Crit Care Med 149: 1149–1152.PubMedGoogle Scholar
  84. 84.
    Kobayashi T, Hashimoto S, Imai K, Amemiya E, Yamaguchi M, Yachi A, Horie T (1994) Elevation of serum soluble intercellular adhesion molecule-1 (sICAM-1) and sE-selectin levels in bronchial asthma. Clin Exp Immunol 96: 110–115.PubMedCrossRefGoogle Scholar
  85. 85.
    Koizumi A, Hashimoto S, Kobayashi T, Imai K, Yachi A, Hone T (1995) Elevation of serum soluble vascular cell adhesion molecule-1 (sVCAM-1) levels in bronchial asthma. Clin Exp Immunol 101: 468–473.PubMedCrossRefGoogle Scholar
  86. 86.
    Kowalzick L, Kleinheinz A, Neuber K, Weichenthal M, Kohler I, Ring J (1995) Elevated serum levels of soluble adhesion molecules ICAM-1 and ELAM-1 in patients with severe atopic eczema and influence of UVA-1 treatment. Dermatology 190: 14–18.PubMedCrossRefGoogle Scholar
  87. 87.
    Georas SN, Liu MC, Newman W, Beall LD, Stealey BA, Bochner BS (1992) Altered adhesion molecule expression and endothelial cell activation accompany the recruitment of human granulocytes to the lung after segmental antigen challenge. Am J Respir Cell Mol Biol 7: 261–269.PubMedGoogle Scholar
  88. 88.
    Takahashi N, Liu MC, Proud D, Yu, X-Y, Hasegawa S, Spannhake EW (1994) Soluble intercellular adhesion molecule-1 in bronchoalveolar lavage fluid of allergic subjects following segmental antigen challenge. Am J Respir Crit Care Med 150: 704–709.PubMedGoogle Scholar
  89. 89.
    Zangrilli JG, Shaver JR, Cirelli RA, Cho SK, Garlisi CG, Falcone A, Cuss FM, Fish JE, Peters SP (1995) sVCAM-1 levels after segmental allergen challenge correlates with eosinophil influx, IL-4 and IL-5 production and the late pahse response. Am J Respir Crit Care Med 151: 1346–1353.Google Scholar
  90. 90.
    Wardlaw AJ, Walsh GM, Symon FA (1994) Mechanisms of eosinophil and basophil migration. Allergy 49: 797–807.PubMedCrossRefGoogle Scholar
  91. 91.
    Bochner BS, Schleimer RP (1994) The role of adhesion molecules in human eosinophil and basophil recruitment. J Allergy Clin Immunol 94: 427–438.PubMedCrossRefGoogle Scholar
  92. 92.
    Knol EF, Kansas GS, Tedder TF, Schleimer RP, Bochner BS (1993) Human eosinophils use L-selectin to bind to endothelial cells under non static conditions. J Allergy Clin Immunol 91: 334.Google Scholar
  93. 93.
    Smith JB, Kunjummen RD, Kishimoto TK, Anderson DC (1992) Expression and regulation of L-selectin on eosinophils from human adults and neonates. Pediatr Res 32: 465–471.PubMedCrossRefGoogle Scholar
  94. 94.
    Georas SN, Liu MC, Newman W, Beall LD, Stealey BA, Bochner BS (1992) Altered adhesion molecule expression and endothelial cell activation accompany the recruitment of human granulocytes to the lung after segmental antigen challenge. Am J Respir Cell Mol Biol 7: 261–269.PubMedGoogle Scholar
  95. 95.
    Wein M, Sterbinsky SA, Bickel CA, Schleimer RP, Bochner BS (1995) Comparison of human eosinophil and neutrophil ligands for P-selectin: Ligands for P-selectin differ from those for E-selectin. Am J Respir Cell Mol Biol 12: 315–319.Google Scholar
  96. 96.
    Bochner BS, Sterbinsky SA, Bickel CA, Werfel S, Wein M, Newman W (1994) Differences between human eosinophils and neutrophils in the function and expression of sialic acid containing counter-ligands for E-selectin. J Immunol 152: 774–782.PubMedGoogle Scholar
  97. 97.
    Symon FA, Lawrence MB, Williamson M, Walsh GM, Watson SR, Wardlaw AJ (1996) Characterisation of the eosinophil P-selectin ligand. J Immunol 157: 1711–1719.PubMedGoogle Scholar
  98. 98.
    Kimani G, Tonnensen MG, Henson PM (1988) Stimulation of eosinophil adherence to human vascular endothelial cell in vitro by platelet activating factor. J Immunol 140: 3161.PubMedGoogle Scholar
  99. 99.
    Lamas AMC, Mulroney CM, Schleimer RP (1988) Studies of the adhesive interaction between purified human eosinophils and cultured vascular endothelial cells. J Immunol 140: 1500.PubMedGoogle Scholar
  100. 100.
    Walsh GM, Hartnell A, Wardlaw AJ, Kurihara K, Sanderson CJ, Kay AB (1990) Il-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils in a leucocyte integrin (CD11/18) dependent manner. Immunology 71: 258–265.PubMedGoogle Scholar
  101. 101.
    Moser R, Fehr J, Olgati L, Bruijnzeel PLB (1992) Migration of primed human eosinophils across cytokine activated endothelial cell monolayers. Blood 79: 2937–2945.PubMedGoogle Scholar
  102. 102.
    Ebisawa M, Bochner BS, Georas SN, Schleimer RP (1992) Eosinophil transendothelial migration induced by cytokines. Role of the endothelial and eosinophil adhesion molecules in IL-lb induced transendothelial migration. J Immunol 149: 4021–4028.Google Scholar
  103. 103.
    Schleimer RP, Sterbinsky SA, Kaiser J, Bickel CA, Klunk DA, Tomioka K, Newman W, Luscinskas FW, Gimbrone MA, McIntyre BW, Bochner B (1992) IL-4 induces adherence of human eosinophils and basophils, but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol 148: 1086–1092.PubMedGoogle Scholar
  104. 104.
    Hartnell A, Robinson DS, Kay AB, Wardlaw AJ (1993) CD69 is expressed by human eosinophils activated in vivo in asthma and in vitro by cytokines. Immunology 80: 281–286.PubMedGoogle Scholar
  105. 105.
    Desreumauz P, Janin A, Colomble JF (1992) Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease. J Exp Med 175: 293–296.CrossRefGoogle Scholar
  106. 106.
    Azzawi M, Bradley B, Jeffery PK, Frew A, Wardlaw AJ, Knowles G, Assoufi B, Collins JV, Durham S, Kay AB (1990) Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis 142: 1407–1413.PubMedGoogle Scholar
  107. 107.
    Kroegel C, Liu MC, Hubbard WC, Lichenstein LM, Bochner BS (1994) Blood and bronchoalveolar eosinophils in allergic subjects after segemental antigen challenge: surface phenotype, density heterogeneity and prostanoid production J Allergy Clin Immunol 93: 725–734.Google Scholar
  108. 108.
    Mengelers HJJ, Kaikoe T, Hooibrink B, et al. (1993) Down modulation of L-selectin expression on eosinophils recovered from bronchoalveolar lavage fluid after allergen provocation. Clin Exp Allergy 23:196–204.PubMedCrossRefGoogle Scholar
  109. 109.
    Dri P, Cramer R, Spessotto P, Romano M, Patriarca P (1991) Eosinophil activation on biologic surfaces. J Immunol. 147: 613–620.PubMedGoogle Scholar
  110. 110.
    Anwar ARE, Cromwell O, Walsh GW, Kay AB, Wardlaw M (1994) Adhesion to fibronectin primes eosinophils via a4/b1. Immunology 82: 222–228.PubMedGoogle Scholar
  111. 111.
    Neeley SP, Hamann KJ, Dowling T, McAllister KT, White SR, Leff AR (1994) Augmentation of stimulated eosinophil degranulation by VLA-4 (CD49d)-mediated adhesion to fibronectin. Am J Respir Cell Mol Biol 11: 206–213.PubMedGoogle Scholar
  112. 112.
    Kita H, Hone S, Gleich GJ (1996) Extracellular matrix proteins attenuate activation and degranulation of stimulated eosinophils. J Immunol 156: 1174–1181.PubMedGoogle Scholar
  113. 113.
    Anwar ARE, Cromwell O, Walsh GM, Kay AB, Wardlaw AJ (1993) Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 177: 839–843.PubMedCrossRefGoogle Scholar
  114. 114.
    Walsh GM, Symon FA, Wardlaw M (1995) Human eosinophils preferentially survive on tissue fibronectin compared with plasma fibronectin. Clin Exp Allergy 25: 1128–1136.PubMedCrossRefGoogle Scholar
  115. 115.
    Mould AP, Wheldon A, Komoriya EA, Wayner EA, Yamada KM, Humphries MJ (1990) Affinity chromatic isolation of the melanoma adhesion receptor for the IIICS region of fibronectin and its identification as the integrin a4131. J Biol Chem 265: 4020.PubMedGoogle Scholar
  116. 116.
    Walsh GM, Symon FA, Lazarovits AI, Wardlaw AJ (1996) Integrin a4ß7 mediates human eosinophil interaction with MAdCAM-1, vascular cell adhesion molecules-1 and fibronectin. Immunology 89: 112–119.PubMedCrossRefGoogle Scholar
  117. 117.
    Georas SN, McIntyre WB, Ebisawa M, Bednarczyk JL, Sterbinsky SA, Schlemier RP, Bochner BS (1993) Expression of a functional laminin receptor a6131 (very late activation antigen-6) on human eosinophils. Blood 82: 2872–2879.PubMedGoogle Scholar
  118. 118.
    Tourkin A, Anderson T, Carwile, Le-Roy E, Hoffman S (1993) Eosinophil adhesion and maturation is modulated by laminin. Cell Adhesion Commun 1: 161.CrossRefGoogle Scholar
  119. 119.
    Walsh GM, Wardlaw AJ (1997) Matrix protein induced eosinophil survival is inhibited by dexamethasone. J Allergy Clin Immunol 100: 208–215.PubMedCrossRefGoogle Scholar
  120. 120.
    Jalkanen S, Bargatze RF, de los Toyos JM, Butcher EC (1987) Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85–95 kd glycoprotein antigen differentially inhibit binding to lymph node, mucosal or synovial endothelial cells. J Cell Biol 105: 983–990.PubMedCrossRefGoogle Scholar
  121. 121.
    Picker LJ, Kishimoto TK, Smith CW, Warnock RA, Butcher EC (1991) ELAM-1 is an adhesion molecule for skin-horning T cells. Nature 349; 796.PubMedCrossRefGoogle Scholar
  122. 122.
    Picker LJ, Martin RJ, Trumble AE, et al. (1994) Control of lymphocyte re-circulation in man: differential expression of homing associated adhesion molecules by memory/effector T cells in pulonary versus cutaneous effector sites. Eur J Immunol 24: 1269–1277.PubMedCrossRefGoogle Scholar
  123. 123.
    Abernathy-Carver KJ, Sampson HA, Picker LJ, Leung DYM (1995) Milk-induced eczema is associated with the expansion of T cells expressing cutaneous lymphocyte antigen. J Clin Invest 95: 913–918.PubMedCrossRefGoogle Scholar
  124. 124.
    Babi LFS, Picker LJ, Soler MTP (1995) Circulating allergen reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor the cutaneous lymphocyte associated antigen ( CLA ). J Exp Med 181: 747–753.CrossRefGoogle Scholar
  125. 125.
    Corrigan CJ, Kay AB (1992) In: Barnes PJ, Rodger IW, Thomson NC, eds. T Lymphocytes Ch. 9. In Asthma: Basic Mechanisms and Clinical Management. Academic Press, U.K. London, pp. 125–142.Google Scholar
  126. 126.
    Kennedy JD, Hatfield CA, Fidler SF, Winterrowd GE, Haas JV, Chin JE, Richards IM (1995) Phenotypic characterisation of T lymphocytes emigrating into lung tissue and the airway lumen after antigen inhalation in sensitised mice. Am J Respir Cell Mol Biol 12: 613–623.PubMedGoogle Scholar
  127. 127.
    Columbo M, Bochner BS, Marone G (1995) Human skin mast cells express functional (31 integrins that mediate adhesion to extracellular matrix proteins. J Immunol 154: 6058–6064.PubMedGoogle Scholar
  128. 128.
    Sperr WR, Agis H, Czerwenka K, Klepetko K, Kubista E, Boltz-Nitulescu G, Lechner K, Valent P (1992) Differential expression of cell surface integrins on human mast cells and human basophils. Ann Hematol 65: 10.PubMedCrossRefGoogle Scholar
  129. 129.
    Lavens SE, Goldring K, Thomas LH, Warner JA (1996) Effects of integrin clustering on human lung mast cells and basophils. Am J Respir Cell Mol Biol 14: 95–103.PubMedGoogle Scholar
  130. 130.
    Sriramarao P, von Adrian UH, Butcher EC, Bourdon MA, Broide DH (1994) L-selectin and very late antigen-4 integrin promote eosinophil rolling at physiological sheer street rate in vivo. J Immunol 153: 4238–4246.PubMedGoogle Scholar
  131. 131.
    Gundel RH, Wegner CD, Torcellini CA, Clarke CC, Haynes N, Rothlein R, Smith CW, Letts LG (1991) ELAM-1 mediates antigen-induced acute airway inflammation and late phase obstruction in monkeys. J Clin Invest 88: 1407–1411.PubMedCrossRefGoogle Scholar
  132. 132.
    Wegner CD, Grundel RH, Reilly P, Haynes N, Letts GL, Rothlein R (1990) ICAM-1 in the pathogenesis of asthma. Science 247: 416–418.CrossRefGoogle Scholar
  133. 133.
    Wegner CD, Gundel RH, Churchill L, Letts LG (1993) Adhesion glycoproteins as regulators of airway inflammation; emphasis on the role of ICAM-1. In: Holgate ST, Austen KF, Lichtenstein LF, Kay AB, eds. Asthma: Physiology Pharmacology and Treatment. Academic, London, pp. 227–242.Google Scholar
  134. 134.
    Abraham WM, Sielczak MW, Ahmed A, et al. (1993) a4 integrins mediate antigen-induced late bronchial responses and prolonged airway hyperresponsiveness in sheep. J Clin Invest 776–87.Google Scholar
  135. 135.
    Rabb HA, Olivenstein R, Issekutz TB, Renzl PM, Martin JG (1994) The role of the leucocyte adhesion molecules VLA-4, LFA-1 and Mac-1 in allergic airway in rat. Am J Respir Crit Care Med 149: 1186–1191.PubMedGoogle Scholar
  136. 136.
    Weg VB, Williams TJ, Lobb PR, Nourshargh S (1993) A monoclonal antibody recognizing the very late activation antigen-4 inhibits eosinophil accumulation in vivo. J Exp Med 177: 561–566.PubMedCrossRefGoogle Scholar
  137. 137.
    Pretolani MC, Ruffie C, de Silva L, Joseph D, Lobb R, Vargaftig B (1994) Antibody to very late activation antigen 4 presents antigen-induced bronchial hyperreactivity and cellular infiltration in the guinea pig airways. J Exp Med 180: 795–805.PubMedCrossRefGoogle Scholar
  138. 138.
    Nakajima H, Sano H, Nishimura T, Yoshida S, Iwanoto I (1994) Role of vascular cell adhesion molecule 1/very late antigen 4 and intercellular adhesion molecule 1 interactions in antigen-induced eosinophil and T cell recruitment into the tissue. J Exp Med 179: 1145–1154.PubMedCrossRefGoogle Scholar
  139. 139.
    Metzger WJ, Ridgr V, Tollefson V, Arrheius T, Gaeta FCA, Elices M (1994) Anti-VLA-1 antibody and CS 1 peptide inhibitor modify airway inflammation and bronchial airway hyperresponsiveness (BHR) in the allergic rabbit. J Allergy Clin Immunol 93: 183 (abstract).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Andrew Wardlaw

There are no affiliations available

Personalised recommendations