Hemopoietic Cytokines

Function, Receptor, and Signal Transduction
  • Hirokazu Kurata
  • Ken-ichi Arai


Cytokines regulate proliferation, differentiation, and function of cells in the immune as well as the hematopoietic systems (1–3). They interact with more than one type of cell, have multiple biological activities, and act in synergistic or antagonistic manner with each other. Conversely, a single cell has receptors for multiple cytokines and is influenced by the cross talk of multiple cytokine networks. A single cytokine can act as both a positive and a negative signal, depending on the nature of the target cells. Furthermore, the effects of a cytokine are modified by multiple other cytokines.


Leukemia Inhibitory Factor Stem Cell Factor Cytokine Receptor Cytoplasmic Region Severe Combine Immune Deficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arai K, Lee F, Miyajima A, Miyatake S, Arai N, Yotoka T (1990) Cytokines: coordinators of immune and inflammatory responses. Ann Rev Biochem 59: 783–836.PubMedCrossRefGoogle Scholar
  2. 2.
    Miyajima A, Kitamura T, Harada N, Yokota T, Arai K (1992) Cytokine receptors and signal transduction. Ann Rev Immunol 10: 295–331.CrossRefGoogle Scholar
  3. 3.
    Miyajima A, Miyatake S, Schreurs J, de Vries J, Arai N, Yokota T, Arai K (1988) Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines. FASEB 2: 2462–2473.Google Scholar
  4. 4.
    Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81: 2844–2853.PubMedGoogle Scholar
  5. 5.
    Nishijima I, Nakahata T, Hirabayashi Y, Inoue T, Kurata H, Miyajima A, Hayashi N, Iwakura Y, Arai K, Yokota T (1995) A human GM-CSF receptor expressed in transgenic mice stimulates proliferation and differentiation of hemopoietic progenitors to all lineages in response to human GM-CSF. Mol Biol Cell 6: 495–508.Google Scholar
  6. 6.
    Mosmann TR, Coffman RL (1989) Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145–173.PubMedCrossRefGoogle Scholar
  7. 7.
    Yssel H, Shanafelt MC, Soderberg C, Schneider PV, Anzola J, Peltz G (1991) Borrelia burgdorferi activates a T helper type 1-like T cell subset in Lyme arthritis. J Exp Med 174: 593–601.Google Scholar
  8. 8.
    Yssel H, Johnson KE, Schneider PV, Wideman J, Ten A, Kastelein R, de Vries JE (1992) T cell activation-inducing epitopes of the house dust mite allergen Der p I. J Immunol 148: 738–745.PubMedGoogle Scholar
  9. 9.
    Kurata H, Yokota T, Miyajima A, Arai K (1994) GM-CSF receptor: structure, function, and signal transduction. Adv Cell Mol Biol Membranes Organelles 3: 111–155.Google Scholar
  10. 10.
    Heidenreich S, Gong JH, Schmidt A, Nain M, Gemsa D (1989) Macrophage activation by granulocyte/macrophage colony-stimulating factor. Priming for enhanced release of tumor necrosis factor-alpha and prostaglandin E2. J Inununol 143: 1198–1205.Google Scholar
  11. 11.
    Dorshkind K (1990) Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol 8: 111–137.PubMedCrossRefGoogle Scholar
  12. 12.
    Dexter TM, Allan TG, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91: 335–344.PubMedCrossRefGoogle Scholar
  13. 13.
    Whitlock CA, Witte ON (1982) Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci USA 79: 3608–3612.PubMedCrossRefGoogle Scholar
  14. 14.
    Miyatake S, Seiki M, Yoshida M, Arai K (1988) T-cell activation signals and human T-cell leukemia virus type I-encoded p40`a` protein activate the mouse granulocyte-macrophage colony-stimulating factor gene through a common DNA element. Mol Cell Biol 8: 5581–5587.PubMedGoogle Scholar
  15. 15.
    Miyatake S, Shlomai J, Arai K, Arai N (1991) Characterization of the mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) gene promoter: nuclear factors that interact with an element shared by three lymphokine genes-those for GM-CSF, interleukin-4 (IL-4), and IL-5. Mol Cell Biol 11: 5894–5901.PubMedGoogle Scholar
  16. 16.
    Bazan JF (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 87: 6934–6938.PubMedCrossRefGoogle Scholar
  17. 17.
    Bazan F (1990) Haemopoietic receptors and helical cytokines. Immunol Today 11: 350–354.PubMedCrossRefGoogle Scholar
  18. 18.
    Taniguchi T, Minami Y (1993) The IL-2/IL-2 receptor system: a current overview. Cell 73: 5–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Zurawski SM, Vega F Jr, Huyghe B, Zurawski G (1993) Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J 12: 2663–2670.PubMedGoogle Scholar
  20. 20.
    He YW, Malek TR (1995) The IL-2 receptor yc chain does not function as a subunit shared by the IL-4 and IL-13 receptors. J Immunol 155: 9–12.PubMedGoogle Scholar
  21. 21.
    Hilton DJ, Zhang JG, Metcalf D, Alexander WS, Nicola N, Willson TA (1996) Cloning and characterization of a binding subunit of the interelukin 13 receptor that is a component of the interleukin 4 receptor. Proc Natl Acad Sci USA 93: 497–501.PubMedCrossRefGoogle Scholar
  22. 22.
    Kishimoto T, Taga T, Akira S (1994) Cytokine signal transduction. Cell 76: 253–262.PubMedCrossRefGoogle Scholar
  23. 23.
    Ip NY, Nye SH, Boulton TG, Davis S, Taga T, Li Y, Birren SJ, Yasukawa K, Kishimoto T, Anderson DJ, Stahl N, Yancopoulos GD (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69: 1121–1132.PubMedCrossRefGoogle Scholar
  24. 24.
    Murakami M, Hibi M, Nakagawa N, Nakagawa T, Yasukawa K, Yamanishi K, Taga T, Kishimoto T (1993) IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260: 1808–1810.PubMedCrossRefGoogle Scholar
  25. 25.
    Davis S, Aldrich TH, Stahl N, Pan L, Taga T, Kishimoto T, Ip NY, Yancopoulos GD (1993) LIFRI3 and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 260: 1805–1808.PubMedCrossRefGoogle Scholar
  26. 26.
    Davis S, Aldrich TH, Ip NY, Stahl N, Scherer S, Farruggella T, DiStefano PS, Curtis R, Panayatatos N, Gascan H, Chevalier S, Yancopoulos GD (1993) Released form of CNTF receptor a component as a soluble mediator of CNTF responses. Science 259: 1736–1739.PubMedCrossRefGoogle Scholar
  27. 27.
    Chua AO, Chizzonite R, Desai BB, Truitt TP, Nunes P, Minetti LJ, Warrier RR, Presky DH, Levine JF, Gately MK, Bubler U (1994) Expression cloning of a human IL-12 receptor component. J Immunol 153: 128–136.PubMedGoogle Scholar
  28. 28.
    de Vos AM, Uitsh M, Kossiakoff AA (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255: 306–312.PubMedCrossRefGoogle Scholar
  29. 29.
    Yoshimura A, Longmore G, Lodish H (1990) Point mutation in the exocytoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 348: 647–649.PubMedCrossRefGoogle Scholar
  30. 30.
    Watowich SS, Yoshimura A, Longmore GD, Hilton DJ, Yoshimura Y, Lodish HF (1992) Homodimerization and constitutive activation of the erythropoietin receptor. Proc Natl Acad Sci USA 89: 2140–2144.PubMedCrossRefGoogle Scholar
  31. 31.
    Alexander WS, Metcalf D, Dunn AR (1995) Point mutations within a dimer interface homology domain of c-Mpl induce constitutive receptor activity and tumorigenicity. EMBO J 14: 5569–5578.PubMedGoogle Scholar
  32. 32.
    Souyri M, Vigon I, Penciolelli JF, Heard JM, Tambourin P, Wendling F (1990) A putative truncated cytokine receptor gene transduced by the myeloproliferative leukemia virus immortalizes hematopoietic progenitors. Cell 63: 1137–1147.Google Scholar
  33. 33.
    Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, et al. (1994) Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77: 1117–1124.PubMedCrossRefGoogle Scholar
  34. 34.
    Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW (1994) Thrombocytopenia in c-mpl-deficient mice. Science 265: 1445–1447.PubMedCrossRefGoogle Scholar
  35. 35.
    Alexander WS, Roberts AW, Nicola NA, Metcalf D (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryopoiesis in mice lacking the thrombopoietin receptor c-Mpl. Blood 87: 2162–2170.PubMedGoogle Scholar
  36. 36.
    Fukunaga R, Ishizaka-Ikeda E, Nagata S (1993) Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell 74: 1079–1087.PubMedCrossRefGoogle Scholar
  37. 37.
    Nishinakamura R, Nakayama N, Hirabayashi Y, Inoue T, Aud D, McNeil T, Azuma S, Yoshida S, Toyoda Y, Arai K, Miyajima A, Murray R (1995) Mice deficient for the IL-3/GM-CSF/IL-5 3. receptor exhibit lung pathology and impaired immune response, while (3IL-3 receptor-deficient mice are normal. Immunity 2: 211–222.PubMedCrossRefGoogle Scholar
  38. 38.
    Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT, Dickersin GR, Bachurski CJ, Mark EL, Whitsett JA, Mulligan RC (1994) Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264: 713–716.PubMedCrossRefGoogle Scholar
  39. 39.
    Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, Maher DW, Cebon J, Sinickas V, Dunn AR (1994) Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. USA 91: 5592–5596.Google Scholar
  40. 40.
    Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milboume EA, Dai WJ, Ovington KS, Behn CA, Kohler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CDS+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4: 15–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T, Zinkemagel R, Bluethmann H, Kohler G (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368: 339–342.PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, Fujiwara H, Hirata M, Yamagami T, Nakahata T, Hirabayashi T, Yoneda Y, Tanaka K, Wang WZ, Mori C, Shiota K, Yoshida N, Kishimoto T (1996) Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci USA 93: 407–411.PubMedCrossRefGoogle Scholar
  43. 43.
    Schindler C, Darnell JE (1995) Transcriptional responses to polypeptide ligands: The JAK-STAT pathway. Annu Rev Biochem 64: 621–651.Google Scholar
  44. 44.
    Ihle JN (1995) Cytokine receptor signalling. Nature 377: 591–594.PubMedCrossRefGoogle Scholar
  45. 45.
    Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O (1995) Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol 13: 369–398.PubMedCrossRefGoogle Scholar
  46. 46.
    Taniguchi T (1995) Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268: 251–255.PubMedCrossRefGoogle Scholar
  47. 47.
    Heldin CH (1995) Dimerization of cell surface receptors in signal transduction. Cell 80: 213–223.PubMedCrossRefGoogle Scholar
  48. 48.
    Hatakeyama M, Kono T, Kobayashi N, Kawahara A, Levin SD, Perlmutter RM, Taniguchi T (1991) Interaction of the IL-2 receptor with the src-family kinase p56I°k: identification of novel intermolecular association. Science 252: 1523–1528.PubMedCrossRefGoogle Scholar
  49. 49.
    Horak ID, Gress RE, Lucas PJ, Horak EM, Waldmann TA, Bolen JB (1991) T-lymphocyte interleukin 2-dependent tyrosine protein kinase signal transduction involves the activation of p56’`k. Proc Natl Acad Sci USA 88: 1996–2000.PubMedCrossRefGoogle Scholar
  50. 50.
    Kobayashi N (1993) Functional coupling of the src-family protein tyrosine kinases p59 “ and p53/56’ with the interleukin 2 receptor: implications for redundancy and pleiotropism in cytokine signal transduction. Proc Natl Acad Sci USA 90: 4201–4205.PubMedCrossRefGoogle Scholar
  51. 51.
    Torigoe T, Saragovi HU, Reed JC (1992) Interleukin 2 regulates the activity of the lyn protein-tyrosine kinase in a B-cell line. Proc Natl Acad Sci USA 89: 2674–2678.PubMedCrossRefGoogle Scholar
  52. 52.
    Sato S, Katagiri T, Takaki S, Kikuchi Y, Hitoshi Y, Yonehara S, Tsukada S, Kitamura D, Watanabe T, Witte O, Takatsu K (1994) IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton’s tyrosine and Janus 2 kinases. J Exp Med 180: 2101–2111.PubMedCrossRefGoogle Scholar
  53. 53.
    Hanazono Y, Chiba S, Sasaki K, Mano H, Miyajima A, Arai K, Hirai H (1993) c fpslfes protein-tyrosine kinase is implicated in a signaling pathway triggered by granulocyte-macrophage colony-stimulating factor and interleukin-3. EMBO J 12: 1641–1646.Google Scholar
  54. 54.
    Mano H, Yamashita Y, Sato K, Yazaki Y, Hirai H (1995) Tec protein-tyrosine kinase is involved in interleukin-3 signaling pathway. Blood 85: 343–350.Google Scholar
  55. 55.
    Wilks AF (1989) Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction. Proc Natl Acad Sci USA 86: 1603–1607.PubMedCrossRefGoogle Scholar
  56. 56.
    Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zurcher G, Ziemiecki A (1991) Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol 11: 2057–2065.PubMedGoogle Scholar
  57. 57.
    Velazquez L, Fellous M, Stark GR, Pellegrini S (1992) A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 70: 313–322.PubMedCrossRefGoogle Scholar
  58. 58.
    Muller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, Silvennoinen O, Harpur AG, Pellegrini S, Wilks AF, Ihle JN, Stark GR, Kerr IM (1993) The protein tyrosine kinase Jakl complements defects in interferon-a/(3 and -y signal transduction. Nature 366: 129–135.PubMedCrossRefGoogle Scholar
  59. 59.
    Watling D, Guschin D, Muller M, Silvennoinen O, Witthuhn BA, Quelle FW, Rogers NC, Schinler C, Stark GR, Ihle JN, Kerr IM (1993) Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-y signal transduction pathway. Nature 366: 166–170.PubMedCrossRefGoogle Scholar
  60. 60.
    Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, Liu ET, Ihle JN (1994) Involvement of the JAK3 Janus kinase in IL-2 and IL-4 signalling in lymphoid and myeloid cells. Nature 370: 153–157.PubMedCrossRefGoogle Scholar
  61. 61.
    Johnston JA, Kawamura M, Kirken R, Chen Y, Blake TB, Shibuya K, Ortaldo JR, McVicar DW, O’Shea JJ (1994) Phosphorylation and activation of the JAK3 Janus kinase in response to IL-2. Nature 370: 151–153.PubMedCrossRefGoogle Scholar
  62. 62.
    Witthuhn B, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN (1993) JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following EPO stimulation. Cell 74: 227–236.PubMedCrossRefGoogle Scholar
  63. 63.
    Quelle FW, Sato N, Witthuhn BA, Inhorn RC, Eder M, Miyajima A, Griffin JD, Ihle JN (1994) JAK2 associates with the (3c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol 14: 4335–4341.PubMedGoogle Scholar
  64. 64.
    Silvennoinen O, Witthuhn B, Quelle FW, Cleveland JL, Yi T, Ihle JN (1993) Structure of the JAK2 protein tyrosine kinase and its role in IL-3 signal transduction. Proc Natl Acad Sci USA 90: 8429–8433.PubMedCrossRefGoogle Scholar
  65. 65.
    Stahl N, Boulton TG, Farruggella TJ, Ip NY, Davis S, Witthuhn BA, Quelle FW, Silvennoinen O, Barbieri G, Pellegrini S, Ihle JN, Zhong Z, Yancopoulos GD (1994) Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 263: 92–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Narazaki M, Witthuhn BA, Yoshida K, Silvennoinen O, Yasukawa K, Ihle JN, Kishimoto T, Taga T (1994) Activation of JAK2 kinase mediated by the IL-6 signal transducer, gp130. Proc Natl Acad Sci USA 91: 2285–2289.PubMedCrossRefGoogle Scholar
  67. 67.
    Luttichken C, Wegenka UM, Yuan J, Buschman J, Schindler C, Ziemiecki A, Harpur AG, Wilks AF, Yasukawa K, Taga T, Kishimoto T, Barbieri G, Pellegrini S, Sendtner M, Heinrich PC, Horn F (1994) Transcription factor APRF and JAK1 kinase associate with interleukin-6 receptor signal transducer, gp130, and are tyrosine phosphorylated in response to interleukin-6. Science 263: 89–92.CrossRefGoogle Scholar
  68. 68.
    Argetsinger LS, Campbell GS, Yang X, Witthuhn BA, Silvennoinen O, Ihle JN, Carter-Su C (1993) Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74: 237–244.PubMedCrossRefGoogle Scholar
  69. 69.
    Nicholson SE, Oates AC, Harpur AG, Ziemiecki A, Wilks AF, Layton JE (1994) Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation. Proc Natl Acad Sci USA 91: 2985–2988.PubMedCrossRefGoogle Scholar
  70. 70.
    Campbell GS, Argentsinger LS, Ihle JN, Kelly PA, Rillema JA, Carter-Su C (1994) Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc Natl Acad Sci USA 91: 5232–5236.PubMedCrossRefGoogle Scholar
  71. 71.
    Rui H, Kirken RA, Farrar WL (1994) Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem 269: 5364–5368.PubMedGoogle Scholar
  72. 72.
    Winston LA, Hunter T (1995) JAK2, Ras, and Raf are required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. J Biol Chem 270: 30,837–30, 840.Google Scholar
  73. 73.
    Ihle JN, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11: 69–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, Silvennoinen O (1994) Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 19: 222–227.Google Scholar
  75. 75.
    Miyazaki T, Kawahara A, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN, Taniguchi T (1994) Functional activation of Jakl and Jak3 by selective association with IL-2 receptor subunits. Science 266: 1045–1047.PubMedCrossRefGoogle Scholar
  76. 76.
    Thomis DC, Gumiak CB, Tivol E, Sharpe AH, Berg LJ (1995) Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270: 794–797.Google Scholar
  77. 77.
    Nosaka T, van Deursen JMA, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP, Doherty PC, Grosveld GC, Ihle JN (1995) Defective lymphoid development in mice lacking Jak3. Science 270: 800–802.PubMedCrossRefGoogle Scholar
  78. 78.
    Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ, Migone TS, Noguchi M, Market ML, Buckley RH, O’Shea JJ, Leonard WL (1995) Mutation of Jak3 in a patient with SCID: essential role in Jak3 in lymphoid development. Science 270: 797–800.PubMedCrossRefGoogle Scholar
  79. 79.
    Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, Ugazio AG, Johnston JA, Candotti F, O’Shea JJ, Vezzoni P, Nortarangelo LD (1995) Mutations of Jak-3 gene in patients with aytosomal severe combined immune deficiency ( SCID ). Nature 377: 65–68.Google Scholar
  80. 80.
    Fu XY (1992) A transcription factor with SH2 and SH3 domains is directly activated by an interferon a-induced cytoplasmic protein tyrosine kinase(s). Cell 70: 323–335.PubMedCrossRefGoogle Scholar
  81. 81.
    Shuai K, Schindler C, Prezioso VR, Darnell JE (1992) Activation of transcription by IFN-y: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258: 1808–1812.PubMedCrossRefGoogle Scholar
  82. 82.
    Muller M, Laxton C, Briscoe J, Schindler C, Improta T, Darnell JE, Stark GR, Kerr IM (1993) Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-a and -y signal transduction pathways. EMBO J 12: 4221–4228.PubMedGoogle Scholar
  83. 83.
    Ivashikiv LB (1995) Cytokines and STATs: how can signals achieve specificity? Immunity 3: 1–4.CrossRefGoogle Scholar
  84. 84.
    Ihle JN (1996) STATs: signal transducers and activators of transcription. Cell 84: 331–334.PubMedCrossRefGoogle Scholar
  85. 85.
    Gouilleux F, Pallard C, Dusanter-Fourt I, Wakao H, Haldosen LA, Norstedt G, Levy D, Groner B (1995) Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J 14: 2005–2013.PubMedGoogle Scholar
  86. 86.
    Hou J, Schindler U, Henzel WJ, Wong SC, McKnight SL (1995) Identification and purification of human Stat proteins activated in response to interleukin-2 Immunity 2: 321–329.Google Scholar
  87. 87.
    Lamer AC, David M, Feldman GM, Igarashi K, Hackett RH, Webb DSA, Sweitzer SM, Petricoin EF, Finbloom DS (1993) Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science 261: 1730–1733.CrossRefGoogle Scholar
  88. 88.
    Rothman P, Kreider B, Azam M, Levy D, Wegenka U, Eilers A, Decker T, Horn F, Kashieva H, Ihle J, Schindler C (1994) Cytokine and growth factors signal through tyrosine phosphorylation of a family of related transcription factors. Immunity 1: 457–468.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhong Z, Wen Z, Darnell JE (1994) Stat3: A Stat family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264: 95–98.PubMedCrossRefGoogle Scholar
  90. 90.
    Mui AL, Wakao H, O’Farrell AM, Harada N, Miyajima A (1995) Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STATS homologs. EMBO J 14: 1166–1175.PubMedGoogle Scholar
  91. 91.
    Azam M, Erdjument-Bromage H, Kreider BL, Xia M, Quelle F, Basu R, Saris C, Tempst P, Ihle JN, Schindler C (1995) Interleukin-3 signals through multiple isoforms of StatS. EMBO J 14: 1402–1411.PubMedGoogle Scholar
  92. 92.
    Yamanaka Y, Nakajima K, Fukuda T, Hibi M, Hirano T (1996) Differentiation and growth arrest signals are generated through the cytoplasmic region of gp130 that is essential for Stat3 activation. EMBO J 15: 1557–1565.PubMedGoogle Scholar
  93. 93.
    Quelle FW, Shimoda K, Thierfelder W, Fischer C, Kim A, Ruben SM, Cleveland JL, Pierce JH, Keegan AD, Nelms K, Paul WE, Ihle JN (1995) Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol Cell Biol 15: 3336–3343.PubMedGoogle Scholar
  94. 94.
    Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE, Yancopoulos GD (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267: 1349–1353.PubMedCrossRefGoogle Scholar
  95. 95.
    Fujii H, Nakagawa Y, Schindler U, Kawahara A, Mori H, Gouilleux F, Groner B, Ihle JN, Minami Y, Miyazaki T, Taniguchi T (1995) Activation of StatS by interelukin 2 requires a carboxyl-terminal region of the interleukin 2 receptor 3 chain but is not essential for the proliferative signal transmission. Proc Natl Acad Sci USA 92: 5482–5486.PubMedCrossRefGoogle Scholar
  96. 96.
    Satoh T, Nakafuku M, Miyajima A, Kaziro Y (1991) Involvement of ras in signal transduction pathways from interleukin-2, interleukin-3, and granulocyte-macrophage colony stimulating factor, but not from interleukin-4 Proc Natl Acad Sci USA 88: 3314–3318.PubMedGoogle Scholar
  97. Matsuguchi T, Inborn RC, Carlesso N, Xu G, Drucker B, Griffin JD (1995) Tyrosine phosphorylation of p95vav in myeloid cells is regulated by GM-CSF, IL-3 and Steel factor and is constitutively increased by p210BCRJBL. EMBO J 14:257–265.Google Scholar
  98. 98.
    David M, Ill EP, Benjamin C, Pine R, Weber MJ, Lanier A (1995) Requirement for MAP kinase (ERK2) activity in interferon a-and interferon f3-stimulated gene expression through STAT proteins. Science 269: 1721–1723.PubMedCrossRefGoogle Scholar
  99. 99.
    Duronio V, Nip L, Pelch SL (1989) Interleukin 3 stimulates phosphatidylcholine turnover in a mast/megakaryocyte cell line. Biochem Biophys Res Commun 164: 804–808.PubMedCrossRefGoogle Scholar
  100. 100.
    Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–613.PubMedCrossRefGoogle Scholar
  101. 101.
    Sato N, Sakamaki K, Terada N, Arai K, Miyajima A (1993) Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common (3 subunit responsible for different signaling. EMBO J 12: 4181–4189.PubMedGoogle Scholar
  102. 102.
    Ward SG, June CH, Olive D (1996) PI 3-kinase: a pivotal pathway in T-cell activation? Immunol Today 17: 187–197.PubMedCrossRefGoogle Scholar
  103. 103.
    Kingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF (1995) Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80: 729–738.CrossRefGoogle Scholar
  104. 104.
    Schultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN, Matthews RJ, Thomas ML, Beier DR (1993) Mutations at the murine motheaten locus are within the hematopoietic cell protein-phosphatase (Hcph) gene. Cell 73: 1445–1454.CrossRefGoogle Scholar
  105. 105.
    DaSilva L, Howard OMZ, Rui H, Kirken RA, Farrar WL (1994) Growth signalling and JAK2 association mediated by membrane-proximal cytoplasmic regions of prolactin receptors. J Biol Chem 269: 267–270.Google Scholar
  106. 106.
    Sakamaki K, Miyajima I, Kitamura T, Miyajima A (1992) Critical cytoplasmic domains of the common 13 subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J 11: 3541–3549.PubMedGoogle Scholar
  107. 107.
    Watanabe S, Muto A, Yokota T, Miyajima A, Arai K (1993) Differential regulation of early response genes and cell proliferation through the human granulocyte macrophage colony-stimulating factor receptor: selective activation of the c-fos promoter by genistein. Mol Biol Cell 4: 983–992.PubMedGoogle Scholar
  108. 108.
    Itoh T, Muto A, Watanabe S, Miyajima A, Yokota T, Arai K (1996) Granulocyte-macrophage colony stimulating factor provokes RAS activation and transcription of c-fos through different modes of signaling. J Biol Chem 271: 7587–7592.PubMedCrossRefGoogle Scholar
  109. 109.
    Muto A, Watanabe S, Itoh T, Miyajima A, Yokota T, Arai K (1995) Roles of the cytoplasmic domains of the a and (3 subunits of human granulocyte-macrophage colony stimulating factor receptor. J Allergy Clin Immunol 96: 1100–1114.PubMedCrossRefGoogle Scholar
  110. 110.
    Polotskaya A, Zhao Y, Lilly ML, Kraft AS (1993) A critical role for the cytoplasmic domain of the granulocyte-macrophage colony-stimulating factor a receptor in mediating cell growth. Cell Growth Diff 4: 523–531.PubMedGoogle Scholar
  111. 111.
    Weiss M, Yokoyama C, Shikama Y, Naugle C, Druker B, Sieff CA (1993) Human granulocyte-macrophage colony-stimulating factor receptor signal transduction requires the proximal cytoplasmic domains of the a and 13 subunits. Blood 82: 3298–3306.PubMedGoogle Scholar
  112. 112.
    D’Andrea AD, Yoshimura A, Youssoufian H, Zon LI, Koo JW, Lodish HF (1991) The cytoplasmic region of the erythropoietin receptor contains nonoverlapping positive and negative growth-regulatory domains. Mol Cell Biol 11: 1980–1987.PubMedGoogle Scholar
  113. 113.
    Hatakeyama M, Kono T, Kobayashi N, Kawahara A, Levin SD, Perlmutter RM, Taniguchi T (1991) Interaction of IL-2 receptor with the src-family kinase p56’`k: identification of novel intermolecular association. Science 252: 1523–1528.PubMedCrossRefGoogle Scholar
  114. 114.
    Kawahara A, Minami Y, Miyazaki T, Ihle JN, Taniguchi T (1995) Critical role of the interleukin 2 (IL-2) receptor y-chain-associated Jak3 in the IL-2-induced c-fos and c-myc, but not bel-2, gene induction. Proc Natl Acad Sci USA 92: 8724–8728.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hirokazu Kurata
  • Ken-ichi Arai

There are no affiliations available

Personalised recommendations