Advertisement

Multiplicative Characters and the FT

  • Richard Tolimieri
  • Chao Lu
  • Myoung An
Part of the Signal Processing and Digital Filtering book series (SIGNAL PROCESS)

Abstract

Fix an odd prime p throughout this chapter. For m > 1, consider the subspace
$$ L\left( {p,p^{m - 1} } \right)\, \subset L\left( {Z/p^m } \right) $$
.

Keywords

Orthonormal Basis Discrete Fourier Transform Unit Group Orthogonal Basis Linear Span 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Tolimieri, R. “Multiplicative Characters and the Discrete Fourier Transform”, Adv. in Appl. Math., 7, 1986, pp. 344–380.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Auslander, L., Feig, E. and Winograd, S. “The Multiplicative Complexity of the Discrete Fourier Transform”, Adv. in Appl. Math., 5, 1984, pp. 31–55.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Rader, C. “Discrete Fourier Transforms When the Number of Data Samples is Prime”, Proc. IEEE, 56, 1968, pp. 1107–1108.CrossRefGoogle Scholar
  4. [4]
    Winograd, S. Arithmetic Complexity of Computations, CBMS Regional Conf. Ser. in Math., Vol. 33, Soc. Indus. Appl. Math., Philadelphia, 1980.Google Scholar
  5. [5]
    Tolimieri, R. “The Construction of Orthogonal Basis Diagonalizing the Discrete Fourier Transform”, Adv. in Appl. Math., 5, 1984, pp. 56–86.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Richard Tolimieri
    • 1
  • Chao Lu
    • 2
  • Myoung An
    • 3
  1. 1.Department of Electrical EngineeringCity College of CUNYNew YorkUSA
  2. 2.Department of Computer and Information SciencesTowson State UniversityTowsonUSA
  3. 3.A.J. Devaney AssociatesAllstonUSA

Personalised recommendations