Advertisement

Physiological, Immunological, and Pathological Functions of Tumor Necrosis Factor (TNF) Revealed by TNF Receptor-Deficient Mice

  • Horst Bluethmann
Chapter
Part of the Contemporary Immunology book series (CONTIM)

Abstract

Tumor necrosis factor (TNF) has a long history that goes back well into the last century. It is now a hundred years ago that the surgeon William Coley observed a remission of inoperable tumors in some patients after infusion of bacterial toxins (1,2). Unacceptable side effects, however, and a lack of understanding of how these toxins induced hemorrhages in tumors, prevented the further development and application of this treatment. It was more than 60 years later when O’Malley et al. (3) realized that bacterial toxins acted indirectly by inducing an endogenous factor in the host that caused hemorrhagic necrosis in tumors and was hence later called TNF (4,5).Since then, TNF has attracted a great deal of attention and was found to participate in a vast variety of cellular activities that collectively make it the most pleiotropic cytokine identified so far.

Keywords

Tumor Necrosis Factor Mutant Mouse Germinal Center Tumor Necrosis Factor Receptor Tumor Necrosis Factor Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. 1.
    Coley, W. B. (1893) The treatment of malignant tumors by repeated inoculations of erysipelas; with a report of ten original cases. Am. J. Med. Sci. 105, 487–511.CrossRefGoogle Scholar
  2. 2.
    Coley, W. B. (1894) Treatment of inoperable malignant tumors with toxins of erysipelas and the bacillus prodigiosus. Trans. Am. Surg. Assoc. 12, 183–212.Google Scholar
  3. 3.
    O’Malley, W. E., Achinstein, B., Shear, M. J. (1962) Action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. J. Natl. Cancer. Inst. 29, 1169–1175.Google Scholar
  4. 4.
    Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N., and Williamson, B. (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 175, 3666–3670.CrossRefGoogle Scholar
  5. 5.
    Helson, L., Green, S., Carswell, E., and Old, L. J. (1975) Effect of tumor necrosis factor on cultured human melanoma cells. Nature 258, 731–732.PubMedCrossRefGoogle Scholar
  6. 6.
    Smith, C. A., Farrah, T., and Goodwin, R. G. (1994) The TNF receptor super-family of cellular and viral proteins: activation, costimulation, and death. Cell 76, 959–962.PubMedCrossRefGoogle Scholar
  7. 7.
    Beutler, B., and van Huffel, C. (1994) Unraveling function in the TNF ligand and receptor families (comment). Science 264, 667–668.PubMedCrossRefGoogle Scholar
  8. 8.
    Vandenabeele, P., Declercq, W., Beyaert, R., and Fiers, W. (1995) Two tumour necrosis factor receptors: Structure and function. Trends Cell Biol. 5, 392–399.PubMedCrossRefGoogle Scholar
  9. Wiley, S. R., Schooley, K., Smolak, P. J., et al. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682.Google Scholar
  10. 10.
    Engelmann, H., Holtmann, H., Brakebusch, C., Avni, Y. S., Sarov, I., Nophar, Y., Hadas, E., Leitner, O., and Wallach, D. (1990) Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity. J. Biol. Chem. 265, 14497–14504.PubMedGoogle Scholar
  11. 11.
    Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S., Sameshima, M., Hase, A., Seto, Y., and Nagata, S. (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243.PubMedCrossRefGoogle Scholar
  12. 12.
    Tartaglia, L. A., Ayres, T. M., Wong, G. H., and Goeddel, D. V. (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Itoh, N., and Nagata, S. (1993) A novel protein domain required for apoptosis. J. Biol. Chem. 268, 10,932–10, 937.Google Scholar
  14. 14.
    Wong, G. H. and Goeddel, D. V. (1994) Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways. J. Immunol. 152, 1751–1755.PubMedGoogle Scholar
  15. 15.
    Schulze-Osthoff, K., Krammer, P. H., and Droge, W. (1994) Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 13, 4587–4596.PubMedGoogle Scholar
  16. 16.
    Zheng, L., Fisher, G., Miller, R. E., Peschon, J., Lynch, D. H., and Lenardo, M. J. (1995) Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377, 348–351.PubMedCrossRefGoogle Scholar
  17. 17.
    Rousset, F., Garcia, E., and Banchereau, J. (1991) Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. J. Exp. Med. 173, 705–710.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu, Y. J., Mason, D. Y., Johnson, G. D., Abbot, S., Gregory, C. D., Hardie, D. L., Gordon, J., and MacLennan, I. C. (1991) Germinal center cells expressGoogle Scholar
  19. bc1–2 protein after activation by signals which prevent their entry into apoptosis. Eur. J. Immunol. 21, 1905–10.Google Scholar
  20. 19.
    Kriegler, M., Perez, C., DeFay, K., Albert, L., and Lu, S. D. (1988) A novel form of TNF/cachectin is a cell surface cytotoxin transmembrane protein: ramifications for the complex physiology of TNF. Cell 53, 45–53.PubMedCrossRefGoogle Scholar
  21. 20.
    Grell, M., Douni, E., Wajant, H., Lohden, M., Clauss, M., Maxeiner, B., Georgopoulos, S., Lesslauer, W., Kollias, G., Pfizenmaier, K., et al. (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83, 793–802.PubMedCrossRefGoogle Scholar
  22. 21.
    Mohler, K. M., Sleath, P. R., Fitzner, J. N., Cerretti, D. P., Alderson, M., Kerwar, S. S., Torrance, D. S., Otten Evans, C. Greenstreet, T., Weerawarna, K., et al. (1994) Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 370, 218–220.PubMedCrossRefGoogle Scholar
  23. 22.
    Gearing, A. J. H., Beckett, P., Christodoulou, M., Churchill, M., Clements, J., Davidson, A. H., Drummond, A. H., Galloway, W. A., Gilbert, R., Gordon, J. L., Leber, T. M., Mangan, M., Miller, K., Nayee, P., Owen, K., Patel, S., Thomas, W., Wells, G., Wood, L. M., and Woolley, K. (1994) Processing of tumor necrosis factor-a precursor by metalloproteinases. Nature 370, 555–557.PubMedCrossRefGoogle Scholar
  24. 23.
    McGeehan, G. M., Becherer, J. D., Jr. Bast, R. C., Boyer, C. M., Champion, B., Connolly, K. M., Conway, J. G., Furdon, P., Karp, S., Kidao, S., McElroy, A. B., Nichols, J., Pryzwansky, K. M., Schoenen, F., Sekut, L., Truesdale, A., Verghese, M., Warner, J. and Ways, J. P. (1994) Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature 370, 558–561.PubMedCrossRefGoogle Scholar
  25. 24.
    Loetscher, H., Pan, Y. C., Lahm, H. W., Gentz, R., Brockhaus, M., Tabuchi, H., and Lesslauer, W. (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61, 351–359.PubMedCrossRefGoogle Scholar
  26. 25.
    Schall, T. J., Lewis, M., Koller, K. J., Lee, A., Rice, G. C., Wong, G. H., Gatanaga, T., Granger, G. A., Lentz, R., Raab, H. et al. (1990) Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61, 361–370.PubMedCrossRefGoogle Scholar
  27. 26.
    Smith, C. A., Davis, T., Anderson, D., Solam, L., Beckmann, M. P., Jerzy, R., Dower, S. K., Cosman, D., and Goodwin, R. G. (1990) A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248, 1019–1023.PubMedCrossRefGoogle Scholar
  28. 27.
    Loetscher, H., Stueber, D., Banner, D., Mackay, F., and Lesslauer, W. (1993) Human tumor necrosis factor alpha (TNF alpha) mutants with exclusive specificity for the 55—kDa or 75—kDa TNF receptors. J. Biol. Chem. 268, 26350–26357.PubMedGoogle Scholar
  29. 28.
    Tartaglia, L. A., Pennica, D., and Goeddel, D. V. (1993) Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J. Biol. Chem. 268, 18,542–18, 548.Google Scholar
  30. 29.
    Vassalli, P. (1992) The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10, 411–452.PubMedCrossRefGoogle Scholar
  31. 30.
    Paul, N. L. and Ruddle, N. H. (1988) Lymphotoxin. Ann. Rev. Immunol. 6, 407–438.CrossRefGoogle Scholar
  32. 31.
    Browning, J. L., Ngam-ek, A., Lawton, P., DeMarinis, J., Tizard, R., Chow, E. P., Hession, C., O’Brine-Greco, B., Foley, S. F., and Ware, C. F. (1993) Lymphotoxin 13, a novel member of the TNF Family that forms a heteromeric complex with Lymphotoxin on the cell surface. Cell 72, 847–856.PubMedCrossRefGoogle Scholar
  33. 32.
    Crowe, P. D., VanArsdale, T. L., Walter, B. N., Ware, C. F., Hession, C., Ehrenfels, B., Browning, J., Din, W. S., Goodwin, R. G., and Smith, C. A. (1994) A lymphotoxin-(3—specific receptor. Science 264, 707–710.Google Scholar
  34. 33.
    De Togni, P., Goellner, J., Ruddle, N. H., Streeter, P. R., Fick, A., Mariathasan, S., Smith, S. C., Carlson, R., Shornick, L. P., Strauss-Schoenberger, J., Russell, J. H., Karr, R., and Chaplin. D. D. (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin (see comments). Science 264, 703–707.PubMedCrossRefGoogle Scholar
  35. 34.
    Eugster, H. P., Müller, M., Car, B. D., Karrer, U., Schnyder, B., Eng, V. M., Woerly, G., Aguet, M., Zinkernagel, R., Bluethmann, H., and Ryffel, B. (1996) Multiple immune abnormalities in tumor necrosis factor and lymphotoxin-alpha double-deficient mice. Int. Immunol. 8, 23–36.PubMedCrossRefGoogle Scholar
  36. 35.
    Hohmann, H. P., Brockhaus, M., Baeuerle, P., Remy, R., Kolbeck, R., van Loon, A. (1990) Expression of the types A and B tumor necrosi factor (TNF) receptors is independently regulated, and both receptors mediate activation of the transcription factor NF-KB. J. Biol. Chem. 265, 22,409–22, 417.Google Scholar
  37. 36.
    Rothe, J., Bluethmann, H., Gentz, R., Lesslauer, W., Steinmetz, M. (1993) Genomic organization and promoter function of the murine tumor necrosis factor receptor beta gene. Mol. Immunol. 30, 165–175.PubMedCrossRefGoogle Scholar
  38. 37.
    Ohsawa, T. and Natori, S. (1989) Expression of tumor necrosis factor at a specific developmental stage of mouse embryos. Dev. Biol. 135, 459–461.PubMedCrossRefGoogle Scholar
  39. 38.
    Hunt, J. S., Chen, H. L., Hu, X. L., Chen, T. Y., and Morrison, D. C. (1992) Tumor necrosis factor-alpha gene expression in the tissues of normal mice. Cytokine 4, 340–346.PubMedCrossRefGoogle Scholar
  40. 39.
    Parr, E. L., Chen, H. L., Parr, M. B., and Hunt, J. S. (1995) Synthesis and granular localization of tumor necrosis factor-alpha in activated NK cells in the pregnant mouse uterus. J. Reprod. Immunol. 28, 31–40.PubMedCrossRefGoogle Scholar
  41. 40.
    Rothe, J., Lesslauer, W., Lotscher, H., Lang, Y., Koebel, P., Kontgen, F., Althage, A., Zinkernagel, R., Steinmetz, M., and Bluethmann, H (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802.PubMedCrossRefGoogle Scholar
  42. 41.
    Pfeffer, K., Matsuyama, T., Kundig, T. M., Wakeham, A., Kishihara, K., Shahinian, A., Wiegmann, K., Ohashi, P. S., Krönke, M., and Mak, T. W. (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467.PubMedCrossRefGoogle Scholar
  43. 42.
    Erickson, S. L., de Sauvage, F. J., Kikly, K., Carver Moore, K., Pitts Meek, S., Gillett, N., Sheehan, K. C., Schreiber, R. D., Goeddel, D. V., and Moore. M. W. (1994) Decreased sensitivity to turnour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372, 560–563.PubMedCrossRefGoogle Scholar
  44. 43.
    Giroir, B. P., Brown, T., and Beutler, B. (1992) Constitutive synthesis of tumor necrosis factor in the thymus. Proc. Natl. Acad. Sci. USA 89, 4864–4868.PubMedCrossRefGoogle Scholar
  45. 44.
    de Kossodo, S., Grau, G. E., Daneva, T., Pointaire, P., Fossati, L., Ody, C., Zapf, J., Piguet, P. F., Gaillard, R. C., and Vassalli, P. (1992) Tumor necrosis factor a is involved in mouse growth and lymphoid tissue development. J. Exp. Med. 176, 1259–1264.PubMedCrossRefGoogle Scholar
  46. 45.
    Ranges, G. E., Zlotnik, A., Espevik, T., Dinarello, C. A., Cerami, A., Palladino, M. A. J. (1988) Tumor necrosis factor alpha/cachectin is a growth factor for thymocytes. Synergistic interactions with other cytokines. J. Exp. Med. 167, 1472–1478.PubMedCrossRefGoogle Scholar
  47. 46.
    Zuniga Pflucker, J. C., Di, J., and Lenardo, M. J. (1995) Requirement for TNF-alpha and IL-1 alpha in fetal thymocyte commitment and differentiation. Science 268, 1906–1909.PubMedCrossRefGoogle Scholar
  48. 47.
    Zhang, Y., Harada, A., Bluethmann, H., Wang, J. B., Nakao, S., Mukaida, N., and Matsushima, K. (1995) Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: Increase of early hematopoietic progenitor cells in TNF receptor p55-deficient mice in vivo and potent inhibition of progenitor cell proliferation by TNF alpha in vitro. Blood 86, 2930–2937.PubMedGoogle Scholar
  49. 48.
    Slordal, L., Warren, D. J., and Moore, M. A. (1990) Protective effects of tumor necrosis factor on murine hematopoiesis during cycle-specific cytotoxic chemotherapy. Cancer Res. 50, 4216–4220.PubMedGoogle Scholar
  50. 49.
    Le Hir, M., Bluethmann, H., Kosco-Vilbois, M. H., Müller, M., di Padova, F., Moore, M., Ryffel, B., and Eugster, H.-P. (1996) Differentiation of follicular dendritic cells (FDC) and full antibody responses require TNF receptor-1 (TNFR1) signalling. J. Exp. Med. 183, 2367–2372.PubMedCrossRefGoogle Scholar
  51. 50.
    Matsumoto, M., Marithasan, S., Nahm, M. H., Baranyay, F., Peschon, J. J., Chaplin, D. D. (1996) Role of Lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271, 1289–1291.PubMedCrossRefGoogle Scholar
  52. 51.
    Müller, M., Eugster, H. P., Le Hir, M., Shakov, A., Di Padova, F., Maurer, C., Quesniaux, V., and Ryffel, B. (1996) Correction or transfer of the TNF/LTadeficient phenotype by bone marrow transplantation. Mol. Med. 2, 247–255.PubMedGoogle Scholar
  53. 52.
    Nakane, A. (1992) TNF in Listeriosis, in Tumor Necrosis Factor: The Molecules and their Emerging Role in Medicine. ( Beutler B, ed.), Raven, New York, pp. 285–292.Google Scholar
  54. 53.
    Havell, E. A. (1987) Production of tumor necrosis factor during murine listeriosis. J. Immunol. 139, 4225–4231.PubMedGoogle Scholar
  55. 54.
    Nakane, A., Minagawa, T., Yasuda, I., Yu, C., and Kato, K. (1988) Prevention by gamma interferon of fatal infection with Listeria monocytogenes in mice treated with cyclosporin A. Infect. Immun. 56, 2011–2015.PubMedGoogle Scholar
  56. 55.
    Hauser, T., Frei, K., Zinkernagel, R. M., Leist, T. P. (1990) Role of tumor necrosis factor in Listeria resistance of nude mice. Med. Microbiol. Immunol. (Berl) 179, 95–104.CrossRefGoogle Scholar
  57. 56.
    Buchmeier, N. A., and Schreiber, R. D. (1985) Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc. Natl. Acad. Sci. USA 82, 7404–7408.PubMedCrossRefGoogle Scholar
  58. 57.
    Bancroft, G. J., Schreiber, R. D., Bosma, G. C., Bosma, M. J., and Unanue, E. R. (1987) A T cell-independent mechanism of macrophage activation by interferon-gamma J. Immunol. 139, 1104–1107.PubMedGoogle Scholar
  59. 58.
    Huang, S., Hendriks, W., Althage, A., Hemmi, S., Bluethmann, H., Kamijo, R., Vilcek, J., Zinkernagel, R. M., and Aguet, M. (1993) Immune response in mice that lack the interferon-gamma receptor (see comments). Science 259, 1742–1745.PubMedCrossRefGoogle Scholar
  60. 59.
    Flynn, J. L., Goldstein, M. M., Chan, J., Triebold, K. J., Pfeffer, K., Lowenstein, C. J., Schreiber, R., Mak, T. W., and Bloom, B. R. (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2, 561–572.PubMedCrossRefGoogle Scholar
  61. 60.
    Kamijo, R., Le, J., Shapiro, D., Havell, E. A., Huang, S., Aguet, M., Bosland, M., and Vilcek, J. (1993) Mice that lack the interferon-y receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J. Exp. Med. 178, 1435–40.PubMedCrossRefGoogle Scholar
  62. 61.
    Alexander, J., Jebbari, H., Bluethmann, H., Satoskar, A., and Roberts, C. W. (1996) Immunological control of Toxoplasma gondii and appropriate vaccine design. Curr. Topics Immunol. Microbiol. 219, 183–195.Google Scholar
  63. 62.
    Nussler, A. K., and Billiar, T. R. (1993) InfJlammation, immunoregulation, and inducible nitric oxide synthetase. J. Leukoc. Biol. 54, 171–178.PubMedGoogle Scholar
  64. 63.
    Bluethmann, H., Rothe, J., Schultze, N., Tkachuk, M., and Koebel, P. (1994) Establishment of the role of IL-6 and TNF receptor 1 using gene knockout mice. J. Leukoc. Biol. 56, 565–570.PubMedGoogle Scholar
  65. 64.
    Kamijo, R., Shapiro, D., Le, J., Huang, S., Aguet, M., and Vilcek, J. (1993) Generation of nitric oxide and induction of major histocompatibility complex class II antigen in macrophages from mice lacking the interferon y receptor. Proc. Natl. Acad. Sci. USA 90, 6626–6630.PubMedCrossRefGoogle Scholar
  66. 65.
    Trinchieri, G. (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251–276.PubMedCrossRefGoogle Scholar
  67. 66.
    D Andrea, A., Rengaraju, M., Valiante, N. M., Chehimi, J., Kubin, M., Aste, M., Chan, S. H., Kobayashi, M., Young, D., Nickbarg, E., et al. (1992) Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176, 1387–1398.PubMedCrossRefGoogle Scholar
  68. 67.
    Chan, S. H., Perussia, B., Gupta, J. W., Kobayashi, M., Pospisil, M., Young, H. A., Wolf, S. F., Young, D., Clark, S. C., and Trinchieri, G. (1991) Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J. Exp. Med. 173, 869–879.PubMedCrossRefGoogle Scholar
  69. 68.
    Gazzinelli, R. T., Hieny, S., Wynn, T., Wolf. S., and Sher, A. (1993) IL-12 is required for the T-cell independent induction of IFN-y by an intracellular parasite and induces resistance in T-deficient hosts. Proc. Natl. Acad. Sci. USA 90, 6115–6119.Google Scholar
  70. 69.
    Tripp, C. S., Gately, M. K., Hakimi, J., Ling, P., and Unanue, E. R. (1994) Neutralization of IL-12 decreases resistance. to Listeria in SCID and C.B-17 mice. Reversal by IFN-gamma. J. Immunol. 152, 1883–1887.PubMedGoogle Scholar
  71. 70.
    Farrar, M. A., and Schreiber, R. D. (1993) The molecular cell biology of interferon-y and its receptor. Annu. Rev. Immunol. 11, 571–611.PubMedCrossRefGoogle Scholar
  72. 71.
    Beutler, B., Milsark, I. W., and Cerami, A. C. (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229, 869–871.PubMedCrossRefGoogle Scholar
  73. 72.
    Tracey, K. J., Beutler, B., Lowry, S.F., Merryweather, J., Wolpe, S., Milsark, I. W., Hariri, R. J., Fahey, T. J., Zentella, A., Albert, J. D., Shires, G. T., and Cerami, A. (1986) Shock and tissue injury induced by recompinant human cachectin. Science 234, 470–474.PubMedCrossRefGoogle Scholar
  74. 73.
    Morrison, D. C., and Ryan, J. L. (1987) Endotoxin and disease mechanisms. Annu. Rev. Med. 38, 417–432.PubMedCrossRefGoogle Scholar
  75. 74.
    Miethke, T., Wahl, C., Heeg, K., Echtenacher, B., Krammer, P. H., and Wagner, H. (1992) T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical role of tumor necrosis factor. J. Exp. Med. 175, 91–98.PubMedCrossRefGoogle Scholar
  76. 75.
    Waage, A., and Espevik, T. (1988) Interleukin 1 potentiates the lethal effect of tumor necrosis factor alpha/cachectin in mice. J. Exp. Med. 167, 1987–1992.PubMedCrossRefGoogle Scholar
  77. 76.
    Galanos, C., Freudenberg, M. A., and Reutter, W. (1979) Galactosamineinduced sensitisation to the lethal effects of endotoxin. Proc. Natl. Acad. Sci. USA 76, 5939–5943.PubMedCrossRefGoogle Scholar
  78. 77.
    Tiegs, G., Wolter, M., and Wendel, A. (1989) Tumor necrosis factor is a terminal mediator in galactosamine/endotoxin-induced hepatitis in mice. Biochem. Pharmacol. 38, 627–631.PubMedCrossRefGoogle Scholar
  79. 78.
    Bahrami, S., Redl, H., Leichtfeld, G., Yu, Y., and Schlag, G. (1994) Similar cytokine but different coagulation responses to lipopolysaccharide injection in D-galactosamine-sensitized vs nonsensitized rats. Infect. Immunol. 62, 99.Google Scholar
  80. 79.
    Decker, K. and Keppler, D. (1974) Galactosamine hepatitis: key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev. Physiol. Biochem. Pharmacol. 71, 77.PubMedCrossRefGoogle Scholar
  81. 80.
    Leist, M., Gantner, F., Bohlinger, I., Germann, P. G., Tiegs, G. and Wendel, A. (1994) Murine hepatocyte apoptosis induced in vitro and in vivo by TNFalpha requires transcriptional arrest. J. Immunol. 153, 1778–1788.PubMedGoogle Scholar
  82. 81.
    Leist, M., Gantner, F., Jilg, S., and Wendel, A. (1995) Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J. Immunol. 154, 1307–1316.PubMedGoogle Scholar
  83. 82.
    Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J. et al. (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80, 401–411.PubMedCrossRefGoogle Scholar
  84. 83.
    Xu, H., Gonzalo, J. A., St Pierre, Y., Williams, I. R., Kupper, T. S., Cotran, R. S., Springer, T. A., and Gutierrez Ramos, J. C. (1994) Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J. Exp. Med. 180, 95–109.PubMedCrossRefGoogle Scholar
  85. 84.
    Tartaglia, L. A., Rothe, M., Hu, Y. F., and Goeddel, D. V. (1993) Tumor necrosis factor’s cytotoxic activity is signaled by the p55 TNF receptor. Cell 73, 213–216.PubMedCrossRefGoogle Scholar
  86. 85.
    Leist, M., Gantner, F., Künstle, G., Bohlinger, I., Tiegs, G., Bluethmann, H., and Wendel, A. (1996) The 55 kDa tumor necrosis factor receptor and CD95 (fas) independently signal murine hepatocyte apoptosis and subsequent liver failure. Mol. Med. 2, 109–124.PubMedGoogle Scholar
  87. 86.
    Zhou, T., Edwards, C. K., Yang, P., Wang, Z., Bluethmann, H., and Mountz, J. D. (1996) Greatly accelerated lymphadenopathy and autoimmune disease in 1pr mice lacking tumor necrosis factor receptor 1. J. Immunol. 156, 2661–2665.PubMedGoogle Scholar
  88. 87.
    Jacob, C. 0. (1992) Studies on the role of tumor necrosis factor in murine and human autoimmunity. J. Autoimmun. 5 (Suppll A), 133–143.PubMedCrossRefGoogle Scholar
  89. 88.
    Feldmann, M., Brennan, F. M., Williams, R. O., Cope, A. P., Gibbons, D. L., Katsikis, P. D., and Maini, R. N. (1992) Evaluation of the role of cytokines in autoimmune disease: the importance of TNF alpha in rheumatoid arthritis. Prog. Growth Factor Res. 4, 247–55.Google Scholar
  90. 89.
    Tartaglia, L. A., Goeddel, D. V. (1992) Two T’NF receptors. Immunol. Today 13, 151–153.PubMedCrossRefGoogle Scholar
  91. 90.
    Rothe, M., Wong, S. C., Henzel, W. J., and Goeddel, D. V. (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78, 681–692.PubMedCrossRefGoogle Scholar
  92. 91.
    Hsu, H., Xiong, J., Goeddel, D. V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81, 495–504.PubMedCrossRefGoogle Scholar
  93. 92.
    Hsu, H. L., Shu, H. B., Pan, M. G., and Goeddel, D. V. (1996) TRADDTRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308.PubMedCrossRefGoogle Scholar
  94. 93.
    Decoster, E., Vanhaesebroeck, B., Vandenabeele, P., Grooten, J., and Fiers, W. (1995) Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor. J. Biol. Chem. 270, 18473–18478.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Horst Bluethmann

There are no affiliations available

Personalised recommendations