Advertisement

Disruption of the LIF Receptor

  • Carol B. Ware
  • Joan S. Hunt
Chapter
Part of the Contemporary Immunology book series (CONTIM)

Abstract

The interleukin-6 (IL-6) family of cytokines and their receptors all require dimerization of one receptor subunit with gp130 to trans-duce an intracellular signal (for reviews see refs. 1 and 2). Leukemia inhibitory factor (LIFR) binds LW that is converted to high affinity binding by heterodimerization with gp130. Other ligands that use the LIFR are oncostatin M (OSM) and cardiotrophin-1 (CT-1). CT-1 utilizes LIFR although all the receptor components for CT-1 have not been elucidated (3), whereas OSM binds directly to gp130 and can use either LIFR (4) or another receptor (alternate OSMR; B. Mosley, personal communication) for dimerization and signal transduction. Ciliary neurotrophic factor (CNTF) also requires LIFR for biological activity, but first binds CNTF receptor (CNTFR) and this complex then interacts with LIFR and gp130 (5). Therefore, of the known ligands, the absence of LIFR would completely disrupt activity of LIF, CNTF, and CT-1, and would affect some OSM activity.

Keywords

Leukemia Inhibitory Factor Fetal Liver Lumbar Spinal Cord Fetal Liver Cell Leukemia Inhibitory Factor Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gearing, D. P. (1993) The leukemia inhibitory factor and its receptor. Adv. Immunol. 53, 31–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Kishimoto, T., Taga, T., and Akira, S. (1994) Cytokine signal transduction. Cell 76, 253–262.PubMedCrossRefGoogle Scholar
  3. 3.
    Pennica, D., Shaw, K. J., Swanson, T. A., Moore, M. W., Shelton, D. L., Zioncheck, K. A., Rosenthal, A., Taga, T., Paoni, N. F., and Wood, W. I. (1995) Cardiotrophin-1: biological activities and binding to the leukemia inbibitory factor receptor/gp 130 signaling complex. J. Biol. Chem. 270, 10,915–10, 922.Google Scholar
  4. 4.
    Gearing, D. P., Thut, C. J., VandenBos, T., Gimpel, S. D., Delaney, P. B., King, J., Price, V., Cosman, D., and Beckmann, M. P. (1991) Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer gp130. EMBO J. 10, 2839–2848.PubMedGoogle Scholar
  5. 5.
    Ip, N. Y. and Yancopoulos, G. D. (1992) Ciliary neurotrophic factor and its receptor complex. Prog. Growth Factor Res. 4, 139–155.PubMedCrossRefGoogle Scholar
  6. 6.
    Murakami, M., Hibi, M., Nakagawa, N., Nakagawa, T., Yasukawa, K., Yamanishi, K., Taga, T., and Kishimoto, T. (1993) IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260, 1808–1810.PubMedCrossRefGoogle Scholar
  7. 7.
    Hilton, D. J., Hilton, A. A., Raicevic, A., Rakar, S., Harrison-Smith, M., Gough, N. M., Begley, C. G., Metcalf, D., Nicola, N. A., and Willson, T. A. (1994) Cloning of a murine IL-11 receptor a-chain: requirement for gp130 for high affinity binding and signal transduction. EMBO J. 13, 4765–4775.PubMedGoogle Scholar
  8. 8.
    Stewart, C. L., Kaspar, P., Brunet, L. J., Bhatt, H., Gadi, I., Kontgen, F., and Abbondanzo, S. J. (1992) Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79.PubMedCrossRefGoogle Scholar
  9. 9.
    Escary, J. L., Perreau, J., Dumenil, D., Ezine, S., and Brulet, P. (1993) Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature 363, 361–364.PubMedCrossRefGoogle Scholar
  10. 10.
    Masu, Y., Wolf, E, Holtmann, B., Sendtner, M., Brem, G., and Thoenen, H. (1993) Disruption of the CNTF gene results in motor neuron degeneration. Nature 365, 27–32.PubMedCrossRefGoogle Scholar
  11. 11.
    DeChiara, T. M., Vejsada, R., Poueymirou, W. T., Acheson, A., Suri, C., Conover, J. C., Friedman, B., McClain, J., Pan, L., Stahl, N., Ip, N. Y., Kato, A., and Yancopoulos, G. (1995) Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83, 313–322.Google Scholar
  12. 12.
    Ware, C. B., Horowitz, M. C., Renshaw, B. R., Hunt, J. S., Liggitt, D., Koblar, S. A., Gliniak, B. C., McKenna, H. J., Papayannopoulou, T., Thoma, B., Cheng, L., Donovan, P. J., Peschon, J. J., Bartlett, P. F., Willis, C. R., Wright, B. D., Carpenter, M. K., Davison, B. L., and Gearing, D. P. (1995) Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299.Google Scholar
  13. 13.
    Li, M., Sendtner, M., and Smith, A. (1995) Essential function of LIF receptor in motor neurons. Nature 378, 724–727.PubMedCrossRefGoogle Scholar
  14. 14.
    Layton, M. J., Cross, B. A., Metcalf, D., Ward, L. D., Simpson, R. J., and Nicola, N. A. (1992) A major binding protein for leukemia inhibitory factor in normal mouse serum: identification as a soluble form of the cellular receptor. Proc. Natl. Acad. Sci. USA 89, 8616–8620.PubMedCrossRefGoogle Scholar
  15. 15.
    Wild, A. E. (1992) The role of yolk sac and gut epithelial cells in maternal immunoglobulin transport, in Epithelial Organization and Development ( Fleming, T. P., ed.), Chapman and Hall, London, pp. 273–451.CrossRefGoogle Scholar
  16. 16.
    Allan, E. H., Hilton, D. J., Brown, M. A., Evely, R. S., Yumita, S., Metcalf, D., Gough, N. M., Ng, K. W., Nicola, N. A., and Martin, T. J. (1990) Osteoblasts display receptors for and responses to leukemia-inhibitory factor. J. Cell. Physiol. 145, 110–119.PubMedCrossRefGoogle Scholar
  17. 17.
    Lorenzo, J. A., Sousa, S. L., and Leahy, C. L. (1990) Leukemia inhibitory factor (LIF) inhibits basal bone resorption in fetal rat long bone cultures. Cytokine 2, 266–271.PubMedCrossRefGoogle Scholar
  18. 18.
    Van Beek, E., Van Der Wee-Pals, L., Van De Ruit, M., Nijweide, P., Papapoulos, S., and Löwik, C. (1993) Leukemia inhibitory factor inhibits osteoclastic resorption, growth, mineralization, and alkaline phosphatase activity in fetal mouse metacarpal bones in culture. J. Bone Miner. Res. 8, 191–198.PubMedCrossRefGoogle Scholar
  19. 19.
    Jilka, R. L., Hangoc, G., Girasole, G., Passeri., G., Williams, D. C., Abrams, J. S., Boyce, B., Broxmeyer, H., and Manolagas, S. C. (1992) Increased osteoclast development after estrogen loss: Mediation by interleukin-6. Science 257, 88–91.Google Scholar
  20. 20.
    Poli, V., Balena, R., Fattori, E., Markatos, A., Yamamoto, M., Tanaka, H., Ciliberto, G., Rodan, G. A., and Costantini, F. (1994) Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 13, 1189–1196.PubMedGoogle Scholar
  21. 21.
    Horowitz, M. C. (1993) Cytokines and estrogen in bone: Anti-osteoporotic effects. Science 260, 626–627.PubMedCrossRefGoogle Scholar
  22. 22.
    Thoma, B., Bird, T. A., Friend, D. J., Gearing, D. P., and Dower, S. K. (1994) Oncostatin M and leukemia inhibitory factor trigger overlapping and different signals through partially shared receptor complexes. J. Biol. Chem. 269, 6215–6222.PubMedGoogle Scholar
  23. 23.
    Murphy, M., Reid, K., Hilton, D. J., and Bartlett, P. F. (1991) Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc. Natl. Acad. Sci. USA 88, 3498–3501.PubMedCrossRefGoogle Scholar
  24. 24.
    Hendry, I. A., Murphy, M., Hilton, D. J., Nicola, N. A., and Bartlett, P. F. (1992) Binding and retrograde transport of leukemia inhibitory factor by the sensory nervous system. J. Neurosci. 12, 3427–3434.Google Scholar
  25. 25.
    Thaler, C. D., Suhr, L., Ip, N., and Katz, D. M. (1994) Leukemia inhibitory factor and neurotrophins support overlapping populations of rat nodose sensory neurons in culture. Dev. Biol. 161, 338–344.PubMedCrossRefGoogle Scholar
  26. 26.
    Gomi, H., Yokoyama, T., Fujimoto, K., Ikeda, T., Katoh, A., Itoh, T., and Itohara, S. (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14, 29–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Ip, N. Y., Nye, S. H., Boulton, T. G., Davis, S., Taga, T., Li, Y., Birren, S. J., Yasukawa, K., Kishimoto, T., Anderson, D. J., Stahl, N., and Yancopoulos, G. D. (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gpl 30. Cell 69, 1121–1132.PubMedCrossRefGoogle Scholar
  28. 28.
    Mori, M., Yamaguchi, K., and Abe, K. (1989) Purification of a lipoprotein lipase-inhibiting protein produced by a melanoma cell line associated with cancer cachexia. Biochem. Biophys. Res. Commun. 160, 1085–1092.PubMedCrossRefGoogle Scholar
  29. 29.
    Metcalf, D. and Gearing, D. P. (1986) Fatal syndrome in mice engrafted with cells producing high levels of the leukemia inhibitory factor. Proc. Natl. Acad. Sci. USA 86, 5948–5952.CrossRefGoogle Scholar
  30. 30.
    Tartaglia, L. A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G. J., Campfield, L. A., Clark, F. T., Deeds, J., Muir, C., Sanker, S., Moriarty, A., Moore, K. J., Smutko, J. S., Mays, G. G., Woolf, E. A., Monroe, C. A., and Tepper, R. I. (1995) Identification and expression cloning of a lep-tin receptor, OB-R. Cell 83, 1263–1271.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Carol B. Ware
  • Joan S. Hunt

There are no affiliations available

Personalised recommendations