IL-6 Unique Functions in Inflammation, Bone Metabolism, and B-Cell Neoplasias Revealed by Studies on IL-6-Deficient Mice

  • Valeria Poli
Part of the Contemporary Immunology book series (CONTIM)


Interleukin-6 (IL-6) is a multifunctional cytokine regulating various aspects of immune response, hemopoiesis, and inflammation. It induces the maturation of B-lymphocytes into antibody-producing plasma cells and the activation of T-cells, and it stimulates proliferation and differentiation of hematopoietic stem cells and thymocytes (for review see ref. 1). IL-6 is also a central mediator of several host responses to acute inflammation, including the acute phase reaction (APR) in the liver (2). Circulating IL-6 levels are normally very low; however, they are rapidly increased by a number of stimuli such as bacterial or viral infection, tissue damage-induced inflammation, and different kinds of traumas. IL-6 disregulated production has been implicated in the pathogenesis of several diseases including autoimmune disorders, plasma-cell discrasias, and postmenopausal osteoporosis.


Bone Loss Deficient Mouse Leukemia Inhibitory Factor Osteoclast Development Endogenous Pyrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kishimoto, T., and Hirano, T. (1988) Molecular regulation of B lymphocyte response. Annu. Rev. Immunol. 6, 485–512.PubMedCrossRefGoogle Scholar
  2. 2.
    Gauldie, J., Richards, C., Harnish, D., Lansdorp, P., and Baumann, H. (1987) Interferon beta 2B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc. Natl. Acad. Sci. USA 84, 7251–7255.PubMedCrossRefGoogle Scholar
  3. 3.
    Kishimoto T., Akira, S., Narazaki, M., and Taga, T. (1995) Interleukin-6 family of cytokines and gp130. Blood 86, 1243–1254.PubMedGoogle Scholar
  4. 4.
    Taga, T., Hibi, M., Hirata, Y., Yamazaki, K., Matsuda, T., Hirano, T., and Kishimoto, T. (1989) Cell 58, 573–581.PubMedCrossRefGoogle Scholar
  5. 5.
    Mackiewicz, A., Schooltink, H., Heinrich, P. C., and Rose-John, S. (1992) Complex of soluble human IL-6-receptor/IL-6 up-regulates expression of acute-phase proteins. J. Immunol. 149, 2021–2027.Google Scholar
  6. 6.
    Honda, M., Yamamoto, S., Cheng, M., Yasukawa, K., Suzuki, H., Saito, T., Ohsugi, Y., Tokunaga, T., and Kishimoto, T. (1992) Human soluble IL-6 receptor: its detection and enhanced release by HIV infection. J. Immunol. 148, 2175–2180.PubMedGoogle Scholar
  7. 7.
    De Benedetti, F., Massa, M., Pignatti, P., Albani, S., Novick, D., and Martini, A. (1994) Serum soluble interleukin 6 (IL-6) receptor and IL-6 receptor com- plex in systemic juvenile rheumatoid arthritis. J. Clin. Invest. 93, 2114–2119.PubMedCrossRefGoogle Scholar
  8. 8.
    Susuki, H., Yasukawa, K., Saito, T., Narazaki, M., Hasegawa, A., Taga, T., and Kishimoto, T. (1993) Serum soluble interleukin-6 receptor in MRL/lpr mice is elevated with age and mediates the interleukin-6 signal. Eur. J. Immunol. 23, 1078–1082.CrossRefGoogle Scholar
  9. 9.
    Hirota, H., Yoshida, K., Kishimoto, T., and Tetsuya, T. (1995) Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc. Natl. Acad. Sci. USA 92, 4862–4866.PubMedCrossRefGoogle Scholar
  10. 10.
    Nakajima, T., Kinoshita, S., Sasagawa, T., Sasaki, K., Naruto, M., Kishimoto, T., and Akira, S. (1993) Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc. Natl. Acad. Sci. USA 90, 2207–2211.PubMedCrossRefGoogle Scholar
  11. 11.
    Ihle, J. N., Witthuhn, B. A., Thierfelder, F. W., Kreider, B., and Silvennoinen, O. (1994) Signaling by the cytokine receptor superfamily: JAKs and STATs. TIBS 19, 222–227.PubMedGoogle Scholar
  12. 12.
    Ihle, J. N., and Kerr, I. M. (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 11, 69–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Kopf, M., Baumann, H., Freer, G., Freudenberg, M., Lamers, M., Kishimoto, T., Zinkernagel, R., Bleuthmann, H., and Köhler, G. (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342.PubMedCrossRefGoogle Scholar
  14. 14.
    Poli, V., Balena, R., Fattori, E., Markatos, A., Yamamoto, M., Tanaka, H., Ciliberto, G., Rodan, G. A., and Costantini, F. (1994) Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 13, 1189–1196.PubMedGoogle Scholar
  15. 15.
    Dalrymple, S. A., Lucian, L. A., Slattery, R., McNeil, T., Aud, D. M., Fuchino, S., Lee F., and Murray R. (1995) Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia. Infect. Immun. 63, 2262–2268.PubMedGoogle Scholar
  16. 16.
    Won, K., Campos, S. P., and Baumann, H. (1993) Experimental systems for studying hepatic acute phase response, in Acute Phase Proteins, ( Mackiewicz, A., Kushner, I., and Baumann, H., eds.), CRC, Boca Raton, FL, pp. 255–271.Google Scholar
  17. 17.
    Gershenwald, J. E., Fong, Y., Fahey, T. J., III, Calvano, S. E., Chizzonite, R., Kilian, P. L., Lowry, S. F., and Moldawer, L. L. (1990) Interleukin-1 receptor blockade attenuates the host inflammatory response. Proc. Natl. Acad. Sci. USA 87, 4966–4970.PubMedCrossRefGoogle Scholar
  18. 18.
    Oldenburg, H. S. A., Rogy, M. A., Lazarus, D. D., Van Zee, K. J., KeelerGoogle Scholar
  19. B. P., Chizzonite, R. A., Lowry, S. F., and Moldawer, L. L. (1993) Cachexia and the acute-phase protein response in inflammation are regulated by interleukin-6 Eur. J. Immunol. 23, 1889–1894.Google Scholar
  20. 19.
    Strassmann, G., Fong, M., Windsor, S., and Neta, R. (1993) The role of interleukin-6 in lipopolysaccharide-induced weight loss, hypoglycemia and fibrinogen production, in vivo. Cytokine 5, 285–290.PubMedCrossRefGoogle Scholar
  21. 20.
    Pfeffer, K., Matsuyama, T., Künding, T. M., Wakeham, A., Kishira, K., Shahinian, A., Wiegmann, K., Ohashi, P. S., Krönke, M., and Mak, T. W. (1993) Mice deficient for the 55kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467.PubMedCrossRefGoogle Scholar
  22. 21.
    Roth, J., Lesslauer, W., Lötscher, H., Lang, Y., Koebel, P., Köntgen, F., Althage, A., Zinkernagel, R., Steinmetz, M., and Blüthmann, H. (1993) Mice lacking the tumor necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802.CrossRefGoogle Scholar
  23. 22.
    Baumann, H., Ziegler, S. F., Mosley, B., Morella, K. K., Pajovic, S., and Gearing, D. P. (1993) Reconstitution of the response to leukemia inhibitory factor, oncostatin M, and ciliary neutrotrophic factor in hepatoma cells. J. Biol. Chem. 268, 8414–8417.PubMedGoogle Scholar
  24. 23.
    Dinarello, C. A. (1984) Interleukin-1 and the pathogenesis of the acute phase response. N. Engl. J. Med. 311, 1413–1418.PubMedCrossRefGoogle Scholar
  25. 24.
    Sibbald, W. J., Short, A., Cohen, M. P., and Wilson, R. F. (1977) Variations in adrenocortical responsiveness during severe bacterial infections. Unrecognized adrenocortical insufficiency in severe bacterial infections. Ann. Surg. 186, 29–33.PubMedCrossRefGoogle Scholar
  26. 25.
    Perlstein, R. S., Whitnall, M. H., Abrams, J. S., Mougey, E. H., and Neta, R. (1993) Synergistic roles of interleukin-6, interleukin-1, and tumor necrosis factor in the adenocorticotropin response to bacterial lipopolysaccharide in vivo. Endocrinology 132, 946–952.PubMedCrossRefGoogle Scholar
  27. 26.
    Schotanus, K., Tilders, F. J. H., and Berkenbosch, F. (1993) Human recombinant interleukin-1 receptor antagonist prevents adrenocorticotropin, but not interleukin-6 responses to bacterial endotoxin in rats. Endocrinology 133, 2461–2468.PubMedCrossRefGoogle Scholar
  28. 27.
    Perlstein, R. S., Mougey, E. H., Jackson, W. E., and Neta, R. (1991) Interleukin-1 and interleukin-6 act synergistïcally to stimulate the release of adrenocorticotropic hormone in vivo. Lymphokine Cytokine Res. 10, 141–146.PubMedGoogle Scholar
  29. 28.
    Besedovsky, H., Del Rey, A., Sorkin, E., and Dinarello, C. (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652–654.PubMedCrossRefGoogle Scholar
  30. 29.
    Baumann, H., Richards, C., and Gauldie, J. (1987) Interaction among hepatocyte-stimulating factors, interleukin-1 and glucocorticoids for regulation of acute phase plasma protein in human hepatoma (HepG2) cells. J. Immunol. 139, 4122–4128.PubMedGoogle Scholar
  31. 30.
    Ray, A., LaForge, K. S., and Sehgal, P. B. (1990) On the mechanism for efficient repression of the interleukin-6 promoter by glucocorticoids: enhancer, TATA box, and RNA start site (Inr motif) occlusion. Mol. Cell. Biol. 10, 5736–5746.PubMedGoogle Scholar
  32. 31.
    Fattori, E., Cappelletti, M., Costa, P., Sellitto, C., Cantoni, L., Carelli, M., Faggioni, R., Fantuzzi, G., Ghezzi, P., and Poli, V. (1994) Defective inflammatory response in interleukin-6-deficient mice. J. Exp. Med. 180, 1243–1250.PubMedCrossRefGoogle Scholar
  33. 32.
    Zheng, H., Fletcher, D., Kozak, W., Jiang, M., Hofmann, K. J., Conn, C. A., Soszynski, D., Grabiec, C., Trumbauer, M. E., Shaw, A., Kostura, M. J., Stevens, K., Chen, H. Y., Tocci, M. J., Kluger, M. J., and Van der Ploeg, L. H. H. (1995) Resistance to fever induction and impaired acute-phase response in interleukin-1-beta-deficient mice. Immunity 3, 9–19.PubMedCrossRefGoogle Scholar
  34. 33.
    Libert, C., Takahashi, N., Cauwels, A., Brouckaert, P., Bluethmann, H., and Fiers, W. (1994) Response of interleukin-6-frgovormy mice to tumor necrosis factor-induced metabolic changes and lethality. Eur. J. Immunol. 24, 2237–2242.PubMedCrossRefGoogle Scholar
  35. 34.
    Bartfai, T. and Ottoson, D. (eds.) (1992) Neuro-Immunology of Fever. Pergamon, Oxford, UK.Google Scholar
  36. 35.
    Saper, C. P. and Breder, C. D. (1994) The neurologic basis of fever. N. Engl. J. Med. 330, 1880–1886.PubMedCrossRefGoogle Scholar
  37. 36.
    Long, N. C., Otterness, I., Kunkel, S. L., Vander, A. J., and Kluger, M. J. (1990) Roles of interleukin-113 and tumor necrosis factor in lipopolysaccharide fever in rats. Am. J. Physiol. 259, 724–728.Google Scholar
  38. 37.
    Leskinov, V. A., Efremov, O. M., Korneva, E. A., Van Damme, J., and Billiau, A. (1991) Fever produced by intrahypothalamic injection of interleukin-1 and interleukin-6. Cytokine 3, 195–198.CrossRefGoogle Scholar
  39. 38.
    Dinarello, C. A., Cannon, J. C., Mancilla, J., Bishai, I., Lees, J., and Coceani, F. (1991) IL-6 as an endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood mononuclear cells. Brain Res. 562, 199–206.PubMedCrossRefGoogle Scholar
  40. 39.
    Lechan, R. M., Toni, R., Clark, B. D., Cannon, J. C., Shaw, A. R., Dinarello, C. A., and Reichlin, S. (1990) Immunoreactive interleukin-113 localization in the rat forebrain. Brain. Res. 514, 135–140.PubMedCrossRefGoogle Scholar
  41. 40.
    Cornfiel, L. J. and Sills, M. A. (1991) High affinity interleukin-6 binding sites in bovine hypothalamus. Eur. J. Pharmacol. 202, 113–115.CrossRefGoogle Scholar
  42. 41.
    Gatti, S. and Bartfai, T. (1993) Induction of tumor necrosis factor a mRNA in the brain after peripheral endotoxin treatment: comparison with IL-1 family and IL-6. Brain Res. 624, 291–294.PubMedCrossRefGoogle Scholar
  43. 42.
    Schöbitz, B., De Kloet, E. R., Sutanto, W., and Holsboer, F. (1993) Cellular localization of interleukin-6 mRNA and interleukin-6 receptor mRNA in rat brain. Eur. J. Neurosci. 5, 1426–1435.PubMedCrossRefGoogle Scholar
  44. 43.
    Chai, Z., Gatti, S., Toniatti, C., Poli, V., and Bartfai, T. (1996) IL-6 gene expression in the CNS is necessary for fever response to LPS or IL-113: a study on IL-6 deficient mice, J. Exp. Med. 183, 311–316.PubMedCrossRefGoogle Scholar
  45. 44.
    Parfitt, A. M., Riggs, B. L., and Melton, L. J. (eds.) (1988) Clinical Spectrum in Osteoporosis: Etiology, Diagnosis and Management, XIII, Raven, New York.Google Scholar
  46. 45.
    Raisz, L. G. (1988) Local and systemic factors in the pathogenesis of osteoporosis. N. Engl. J. Med. 318, 818–828.PubMedCrossRefGoogle Scholar
  47. 46.
    Dempster, D. W. and Lindsay, R. (1993) Pathogenesis of osteoporosis Lancet 341, 801–805.CrossRefGoogle Scholar
  48. 47.
    Horowitz, M. C. (1993) Cytokines and estrogen in bone: anti-osteoporotic effects. Science 260, 626–627.PubMedCrossRefGoogle Scholar
  49. 48.
    Manolagas, S. C. (1995) Role of cytokines in bone resorption. Bone 17 (Suppl.), 63S - 67S.PubMedCrossRefGoogle Scholar
  50. 49.
    Udagawa, N., Takahashi, N., Katagiri, T., Tamura, T., Wada, S., Findlay, D. M., Martin, T. J., Hirota, H., Taga, T., Kishimoto, T., and Suda, T. (1995) Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. J. Exp. Med. 182, 1461–1468.PubMedCrossRefGoogle Scholar
  51. 50.
    Passeri, G., Girasole, G., Jilka, R. L., and Manolagas, S. C. (1993) Increased interleukin-6 production by murine bone marrow and bone cells after estrogen withdrawal. Endocrinology 133, 822–828.PubMedCrossRefGoogle Scholar
  52. 51.
    Pottrâtz, S. T., Bellido, T., Mocharla, H., Crabb, D., and Manolagas, S. C. (1994) 1713-estradiol inhibits expression of human interleukin-6 promoter-reporter contructs by a receptor-dependent mechanism. J. Clin. Invest. 93, 944–950.Google Scholar
  53. 52.
    Jilka, R. L., Hangoc, G., Girasole, G., Passeri, G., Williams, D. C., Abrams, J. S., Boyce, B., Broxmeyer, H., and Manolagas, S. C. (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257, 88–91.PubMedCrossRefGoogle Scholar
  54. 53.
    Rodgers, J. B. and Monier-Faugere, M.-C. (1993) Animal models for the study of bone loss after cessation of ovarian function. Bone 14, 369–377.PubMedCrossRefGoogle Scholar
  55. 54.
    Bellido, T., Jilka, R. L., Boyce, B. F., Girasole, G., Broxmeyer, H., Dalrymple, S. A., Murray, R., and Manolagas, S. C. (1995) Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. J. Clin. Invest. 95, 2286–2895.CrossRefGoogle Scholar
  56. 55.
    Klein, B., Wijdnes, J., Zhang, X-G., Jourdan, M, Boiron, J-M., Brochier, J., Liautard, J., Merlin, M., Clement, C., Morel-Fournier, B., Lu, Z-Y., Mannoni, P., Sany, J., and Bataille, R. (1991) Murine anti-IL-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 78, 1198–1204.PubMedGoogle Scholar
  57. 56.
    Kotake, S., Satao, K. Kim, K. J., Takahashi, N., Udagawa, N., Nakamura, I., Yamaguchi, A., Kashiwazaki, S., and Suda, T. (1994) Interleukin-6 and soluble interleukin-6 receptors found in synovial fluids are responsible for inducing joint disruption in patients with rheumatoid arthritis. J. Bone Miner. 9, S140.Google Scholar
  58. 57.
    Roodman, G. D., Kurihara, N., Ohsaki, Y., Hosking, D., Demulder, A., Smith, J. F., and Singer, F. R. (1992) Interleukin 6 A potential autocrine/ paracrine factor in Paget’s disease of bone. J. Clin. Invest. 89, 46–52.PubMedCrossRefGoogle Scholar
  59. 58.
    Girasole, G., Passeri, G., Jilka, R. L., and Monolagas, S. C. (1994) Interleukin-11: a new cytokine critical for osteoclast development. J. Clin. Invest. 93, 1516–1524.PubMedCrossRefGoogle Scholar
  60. 59.
    Kimble, R. B., Vannice, J. L., Bloedow, D. C., Thompson, R. C., Hopfer, W., Kung, V. T., Brownfield, C., and Pacifici, R. (1994) Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J. Clin. Invest. 93, 1959–1967.PubMedCrossRefGoogle Scholar
  61. 60.
    Kitasawa, R., Kimble, R. B., Vannice, J. L., Kung, V. T., and Pacifici, R. (1994) Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J. Clin. Invest. 94, 2397–2406.CrossRefGoogle Scholar
  62. 61.
    Steinshamm, S. and Waage, A. (1992) Tumor necrosis factor and interleukin-6 in Candida Albicans infection in normal and granulocytopenic mice. Infect. Immun. 60, 4003–4008.Google Scholar
  63. 62.
    Romani, L., Mencacci, A., Cenci, E., Spaccapelo, R., Toniatti, C., Puccetti, P., Bistoni, F., and Poli, V. (1996) Impaired neutrophil response and CD4+ Thl development in IL-6 deficient mice infected with Candida Albicans. J. Exp. Med, 183, 1345–1355.CrossRefGoogle Scholar
  64. 63.
    Mosmann, T. R. and Coffman, R. L. (1989) Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173.PubMedCrossRefGoogle Scholar
  65. 64.
    Romani, L., Puccetti, P., and Bistoni, F. (1996) Biological role of helper T-cell subsets in candidiasis. Chem. Immunol. 63, 115–137.PubMedCrossRefGoogle Scholar
  66. 65.
    Trinchieri, G. (1993) Interleukin-12 and its role in the generation of Thl cells. Immunol. Today 14, 335–338.PubMedCrossRefGoogle Scholar
  67. 66.
    Bataille, R., Jourdan, M., Zhang, X. G., and Klein, B. (1989) Serum levels of interleukin-6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J. Clin. Invest. 84, 2008–2011.PubMedCrossRefGoogle Scholar
  68. 67.
    Nachbaur, D. M., Herold, M., and Maneschg, A. (1991) Serum levels of interleukin-6 in multiple myeloma and other hematological disorders: correlation with disease activity and other prognostic parameters. Ann. Hematol. 62, 54–58.PubMedCrossRefGoogle Scholar
  69. 68.
    Kawano, M., Hirano, T., Matsuda, T., Taga, T., Horii, Y., Iwato, K., Asaoku, H., Tang, B., Tanabe, O., Tanaka, H., Kuramoto, A., and Kishimoto, T. (1988) Autocrine generation and requirement of BSF-2/IL6 for human MMs. Nature 332, 83–85.PubMedCrossRefGoogle Scholar
  70. 69.
    Klein, B., Zhang, X. G., Jourdan, M., Content, J., Houssiau, F., Aarden, L., Piechaczyk, M., and Bataille, R. (1989) Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 73, 517–526.PubMedGoogle Scholar
  71. 70.
    Zhang, X-G, Gaillard, J-P., Robillard, N., Lu, Z-Y., Gu, Z-J., Jourdan, M., Boiron, J. M., Bataille, R., and Klein, B. (1994) Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human MM. Blood 83, 3654–3663.PubMedGoogle Scholar
  72. 71.
    Potter, M. and Wiener, F. (1992) Plasmacytomagenesis in mice: model of neoplastic development dependent upon chromosomal translocations. Carcinogenesis 13, 1681–1697.PubMedCrossRefGoogle Scholar
  73. 72.
    Nordan, R. P. and Potter, M. (1986) A macrophage-derived factor required by plasmacytomas for survival and proliferation in vitro. Science 233, 566–569.PubMedCrossRefGoogle Scholar
  74. 73.
    Van Snick, J., Vink, A., Cayphas, S., and Uyttenhove, C. (1987) InterleukinHP1, a T cell-derived hybridoma growth factor that supports the in vitro growth of murine plasmacytomas. J. Exp. Med. 165, 641–649.PubMedCrossRefGoogle Scholar
  75. 74.
    Degrassi, A., Hilbert, D. M., Rudikoff, S. A., Anderson, O. M., Potter, M., and Coon, H. G. (1993). In vitro culture of primary plasmacytomas requires stromal cell feeder layers. Proc. Natl. Acad. Sci USA. 90, 2060–2064.PubMedCrossRefGoogle Scholar
  76. 75.
    Vink, A., Coulie, P., Warnier, G., Renauld, J. C., Stevens, M., Donckers, D., and Van Snick, J. (1990) Mouse plasmacytoma growth in vivo: enhancement by interleukin-6 (IL-6) and inhibition by antibodies directed against IL-6 or its receptor. J. Exp. Med. 172, 997–1000.Google Scholar
  77. 76.
    Hilbert, D. M., Kopf, M., Mock, B. A., Köhler, G., and Rudikoff, S. (1995) Interleukin 6 is essential for in vivo development of B lineage neoplasms. J. Exp. Med. 182, 243–248.PubMedCrossRefGoogle Scholar
  78. 77.
    Kushner, I. (1982) The phenomenon of the acute phase response. Ann. NY Acad. Sci. 389, 39–48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Valeria Poli

There are no affiliations available

Personalised recommendations