Advertisement

Knockouts of Interferons, Interferon Receptors and Interferon Signaling Components

  • Jan Vilček
  • Michel Aguet
  • Luiz F. L. Reis
Chapter
Part of the Contemporary Immunology book series (CONTIM)

Abstract

The interferons are arguably the oldest known cytokines (1) For many years after their original discovery, the only recognized biological function of interferons was the inhibition of virus replication. Only much later did it become apparent that, as is characteristic of cytokines in general, interferons have many pleiotropic activities, including modulating effects on the rate of cell growth and a variety of actions on functions of the immune system (reviewed in refs. 2 and 3). The generation of knockout mice with null mutations in the interferon genes or in the genes encoding interferon receptors or signaling components essential for interferon actions has provided the means to define better the biological functions of interferons in the intact organism. Specifically, the availability of these knockout mice has made it possible to determine the importance of the interferons in the resistance to infections and in some specific functions of the immune system. These investigations, to be briefly reviewed in this chapter, led to some unexpected findings.

Keywords

Newcastle Disease Virus Interferon Receptor Lysyl Oxidase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Isaacs, A. and Lindenmann, J. (1957) Virus interference. 1. The interferon. Proc. R. Soc. Lond. B 147, 258 - 267.PubMedCrossRefGoogle Scholar
  2. 2.
    De Maeyer, E. and De Maeyer-Guignard, J. (eds.) (1988) Interferons and Other Regulatory Cytokines, John Wiley, New York.Google Scholar
  3. 3.
    Vilcčk, J. and Sen, G. C. (1996) Interferons and other cytokines, in Fields Virology,vol. 1, 3rd ed. (Fields, B. N., Knipe, D. M., and Howley, P. M.,eds.), Lippincott-Raven Publishers, Philadelphia, pp. 375-399.Google Scholar
  4. 4.
    Darnell, J. E., Jr., Kerr, I. M., and Stark, G. R. (1994) Jak-STAT pathways and transcriptional activation in response to 1FNs and other extracellular signaling proteins Science 264, 1415-1421 Google Scholar
  5. 5.
    Schindler, C. and Darnell, J. E., Jr. (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem 64, 621 - 651.PubMedCrossRefGoogle Scholar
  6. 6.
    Uzé, G., Lutfalla, G., and Gresser, I. (1990) Genetic transfer of a functional human interferon a receptor into mouse cells: cloning and expression of its cDNA Cell 60, 225-234 Google Scholar
  7. 7.
    Novick, D., Cohen, B., and Rubinstein, M. (1994) The human interferon a/(3 receptor: characterization and molecular cloning. Cell 77, 391 - 400.Google Scholar
  8. 8.
    Aguet, M., Dembic, Z., and Merlin, G. (1988) Molecular cloning and expression of the human interferon-y receptor. Cell 55, 273 - 280.PubMedCrossRefGoogle Scholar
  9. 9.
    Hemmi, S., Bohni, R., Stark, G., Di Marco, F., and Aguet, M. (1994) A novel member of the interferon receptor family complements functionality of the murine interferon y receptor in human cells Cell 76, 803-810 Google Scholar
  10. 10.
    Soh, J., Donnelly, R. J., Kotenko, S., Mariano, T. M., Cook, J R., Wang, N., Emanuel, S., Schwartz, B., Miki, T., and Pestka, S. (1994) Identification and sequence of an accessory factor required for activation of the human interferon y receptor Cell 76, 793-802 Google Scholar
  11. 11.
    Bluyssen, H. A., Muzaffar, R., Vlieststra, R. J., van der Made, A. C., Leung, S., Stark, G. R., Kerr, I. M., Trapman, J., and Levy, D. E. (1995) Combinatorial association and abundance of components of interferon-stimulated gene factor 3 dictate the selectivity of interferon responses Proc. Natl. Acad. Sci. USA 92, 5645-5649 Google Scholar
  12. 12.
    Bluyssen, H. A R., Durbin, J. E., and Levy, D. E. (1996) ISGF3y p48, a specificity switch for interferon activated transcription factors Cytokine & Growth Factor Rev 7, 11-17 Google Scholar
  13. 13.
    Veals, S. A., Schindler, C., Leonard, D., Fu, X. Y., Aebersold, R., Darnell, J. E., Jr., and Levy, D. E. (1992) Subunit of an a-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins Mol. Cell. Biol 12, 3315-3324 Google Scholar
  14. 14.
    Harada, H., Fujita, T., Miyamoto, M., Kimura, Y., Maruyama, M., Furia, A., Miyata, T., and Taniguchi, T. (1989) Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 58, 729 - 739.PubMedCrossRefGoogle Scholar
  15. 15.
    Dalton, D. K., Pitts-Meek, S., Keshav, S., Figari, I. S., Bradley, A., and Stewart, T. A. (1993) Multiple defects of immune cell function in mice with disrupted interferon-y genes. Science 259, 1739 - 1742.PubMedCrossRefGoogle Scholar
  16. 16.
    Huang, S., Hendriks, W., Althage, A., Hemmi, S., Bluethmann, H., Kamijo, R., Vilcek, J., Zinkernagel, R. M., and Aguet, M. (1993) Immune response in mice that lack the interferon-y receptor. Science 259, 1742 - 1745.PubMedCrossRefGoogle Scholar
  17. 17.
    Kamijo, R., Shapiro, D., Le, J., Huang, S., Aguet, M., and Vilcek, J. (1993) Generation of nitric oxide and induction of major histocompatibility complex class II antigen in macrophages from mice lacking the interferon y receptor. Proc. Natl. Acad. Sci. USA 90, 6626 - 6630.PubMedCrossRefGoogle Scholar
  18. 18.
    Kamijo, R., Le, J., Shapiro, D., Havell, E. A., Huang, S., Aguet, M., Bosland, M., and Vilcek, J. (1993) Mice that lack the interferon-g receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J. Exp. Med 178, 1435 - 1440.PubMedCrossRefGoogle Scholar
  19. 19.
    Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A., and Bloom, B. R. (1993) An essential role for interferon-yin resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249 - 2254.PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper, A. M., Dalton, D. K., Stewart, T. A., Griffin, J. P., Russell, D. G., and Orme, I. M. (1993) Disseminated tuberculosis in IFN7 gene-disrupted mice. J. Exp. Med 178, 2243 - 2247.PubMedCrossRefGoogle Scholar
  21. 21.
    Kamijo, R., Gerecitano, J., Shapiro, D., Green, S. J., Aguet, M., Le, J., and Vilcek, J. (1996) Generation of nitric oxide and clearance of interferon-y after BCG infection are impaired in mice that lack the interferon-y receptor. J. Inflam. 46,23Z31.Google Scholar
  22. 22.
    Flesch, I. E. A., Hess, J. H., Huang, S., Aguet, M., Rothe, J., Bluethmann, H., and Kaufmann, S. H. (1995) Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon a/(3 and tumor necrosis factor a. J. Exp. Med 181, 1615 - 1621.Google Scholar
  23. 23.
    Swihart, K., Fruth, U., Messmer, N., Hug, K., Behin, R., Huang, S., Del Giudice, G., Aguet, M., and Louis, J. A. (1995) Mice from a genetically resistant background lacking the interferon y receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response. J. Exp. Med 181, 961 - 971.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang, Z. E., Reiner, S. L., Zheng, S., Dalton, D. K., and Locksley, R. M. (1994) CD4+ effector cells default to the The pathway in interferon y-deficient mice infected with Leishmania major. J. Exp. Med 179, 1367 - 1371.Google Scholar
  25. 25.
    Tsuji, M., Miyahira, Y., Nussenzweig, R. S., Aguet, M., Reichel, M., and Zavala, F. (1995) Development of antimalaria immunity in mice lacking IFN-y receptor. J. Immunol 154, 5338 - 5344.PubMedGoogle Scholar
  26. 26.
    Schijns, V. E. C. J., Haagmans, B. L., Rijke, E. O., Huang, S., Aguet, M., and Horzinek, M. C. (1994) IFN-y receptor-deficient mice generate antiviral Thlcharacteristic cytokine profiles but altered antibody responses. J. Immunol 153, 2029 - 2037.Google Scholar
  27. 27.
    Matthys, P., Froyen, G., Verdot, L., Huang, S., Sobis, H., Van Damme, J., Vray, B., Aguet, M., and Billiau, A. (1995) IFN-yreceptor-deficient mice are hypersensitive to the anti-CD3-induced cytokine release syndrome and thymocyte apoptosis. Protective role of endogenous nitric oxide. J. Immunol 155, 3823 - 3829.PubMedGoogle Scholar
  28. 28.
    Car, B. D., Eng, V. M., Schnyder, B., Ozmen, L., Huang, S., Gallay, P., Heumann, D., Aguet, M., and Ryffel, B. (1994) Interferon gamma recep-tor deficient mice are resistant to endotoxic shock. J. Exp. Med 179, 1437 - 1444.Google Scholar
  29. 29.
    Coyle, A. J., Tsuyuki, S., Bertrand, C., Huang, S., Auget, M., Alkan, S. S., and Anderson, G. P. (1996) Mice lacking the IFN-y receptor have an impaired ability to resolve a lung eosinophilic inflammatory response associated with a prolonged capacity of T cells to exhibit a Th2 cytokine profile. J. Immunol 156, 2680 - 2685.PubMedGoogle Scholar
  30. 30.
    Goldberg, A. L. and Rock, K. L. (1992) Proteolysis, proteasomes and antigen presentation. Nature 357, 375 - 379.PubMedCrossRefGoogle Scholar
  31. 31.
    Müller, U., Steinhoff, U., Reis, L. F., Hemmi, S., Pavlovic, J., Zinkernagel, R. M., and Aguet, M. (1994) Functional role of type I and type II interferons in antiviral defense. Science 264, 1918 - 1921.PubMedCrossRefGoogle Scholar
  32. 32.
    Fiette, L., Aubert, C., Müller, U., Huang, S., Aguet, M., Brahic, M., and Bureau, J. F. (1995) Theiler’s virus infection of 129Sv mice that lack the interferon a/(3 or interferon y receptors. J. Exp. Med 181, 2069 - 2076.PubMedCrossRefGoogle Scholar
  33. 33.
    van den Broek, M. F., Müller, U., Huang, S., Zinkernagel, R. M., and Aguet, M. (1995) Immune defence in mice lacking type I and/or type II interferon receptors. Immunol. Rev 148, 5 - 18.PubMedCrossRefGoogle Scholar
  34. 34.
    van den Broek, M. F., Müller, U., Huang, S., Aguet, M., and Zinkernagel, R. M. (1995) Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. J. Virol 69, 4792 - 4796.PubMedGoogle Scholar
  35. Hwang, S. Y., Hertzog, P. J., Holland, K. A., Sumarsono, S. H, Tymms, M. J., Hamilton, J. A., Whitty, G., Bertoncello, I, and Kola, I. (1995) A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. Proc. Natl. Acad. Sci. USA 92, 11,284-11,288.Google Scholar
  36. 36.
    Meraz, M. A., White, J. M., Sheehan, K. C. F., Bach, E. A., Rodig, S. J., Dighe, A. S., Kaplan, D. H., Riley, J. K., Greenlund, A. C., Campbell, D., Carver-Moore, K., DuBois, R. N., Clark, R., Aguet, M., and Schreiber, R. D. (1996) Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431 - 442.Google Scholar
  37. 37.
    Durbin, J E., Hackenmiller, R., Simon, M. C., and Levy, D. E. (1996) Targeted disruption of the mouse Statl gene results in compromised innate immunity to viral disease. Cell 84, 443-450.Google Scholar
  38. 38.
    Matsuyama, T., Kimura, T., Kitagawa, M., Pfeffer, K., Kawakami, T., Watanabe, N., Kundig, T. M., Amakawa, R., Kishihara, K., Wakeham, A., Potter, J., Furlonger, C. L., Narendran, A., Suzuki, H., Ohashi, P.S., Paige, C. J., Taniguchi, T., and Mak, T. W. (1993) Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75, 83 - 97.Google Scholar
  39. 39.
    Reis, L. F. L., Ruffner, H., Stark, G., Aguet, M., and Weissmann, C. (1994) Mice devoid of interferon regulatory factor 1 (IRF-1) show normal expression of type I interferon genes. EMBO J. 13, 4798 - 4806.Google Scholar
  40. 40.
    Kamijo, R., Harada, H., Matsuyama, T., Bosland, M., Gerecitano, J., Shapiro, D., Le, J., Koh, S. I., Kimura, T., Green, S. J.. Mak, T. W., Taniguchi, T., and Vilcek, J. (1994) Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263, 1612 - 1615.Google Scholar
  41. 41.
    Kimura, T., Nakayama, K., Penninger, J., Kitagawa, M., Harada, H., Matsuyama, T., Tanaka, N., Kamijo, R., Vilcek, J., Mak, T. W., and Taniguchi, T. (1994) Involvement of the IRF-1 transcription factor in antiviral responses to interferons. Science 264, 1921 - 1924.PubMedCrossRefGoogle Scholar
  42. 42.
    Briken, V., Ruffner, H., Schultz, U., Schwarz, A., Reis, L. F., Strehlow, I., Decker, T., and Staeheli, P. (1995) Interferon regulatory factor 1 is required for mouse Gbp gene activation by gamma interferon Mol. Cell. Biol 15, 975-982 Google Scholar
  43. 42a.
    Tan, R. S., Taniguchi, T., and Harada, H. (1996) Identification of the lysyl oxidase gene as target of the antioncogenic transcription factor, IRF-1, and its possible role in tumor suppression. Cancer Res. 56, 2417 - 2421.PubMedGoogle Scholar
  44. 43.
    Tamura, T., Ishihara, M., Lamphier, M. S., Tanaka, N., Oishi, I., Aizawa, S., Matsuyama, T., Mak, T. W., Taki, S., and Taniguchi, T. (1995) An IRF-1dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes Nature 376, 596-599 Google Scholar
  45. 44.
    Tanaka, N., Ishihara, M., Kitagawa, M., Harada, H., Kimura, T., Matsuyama, T., Lamphier, M. S., Aizawa, S., Mak, T. W., and Taniguchi, T. (1994) Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1 Cell 77, 829-839 Google Scholar
  46. 44a.
    White, L. C., Wright, K. L., Felix, N. J., Ruffner, H., Reis, L. F. L., Pine, R., and Ting, J. P. (1996) Regulation of LMP2 and TAPI genes by IRF-1 explains the paucity of CD8+ T cells in IRF-1 4- mice Immunity 5, 365-376 Google Scholar
  47. 45.
    Pine, R. (1995) Differential utilization of novel and consensus NFicB recognition sequences in the ISGF-2/IRF-1 promoter for induction by TNFa and synergism of TNFa with IFNy J. Interferon & Cytokine Res 15, S 154 Google Scholar
  48. 46.
    Kimura, T., Kadokawa, Y., Harada, H., Matsumoto, M., Sato, M., Kashiwazaki, Y., Tarutani, M., Tan, R. S.-P., Takasugi, T., Matsuyama, T., Mak, T. W., Noguchi, S., and Taniguchi, T. (1996) Essential and non-redundant roles of p48 (ISGF3γ) and IRF-1 in both type I and type II interferon responses, as revealed by gene targeting studies. Genes to Cells 1, 115 - 124.Google Scholar
  49. 46a.
    Harada, H., Matsumoto, M., Sato, M. Kashiwazaki, Y., Kimura, T., M., K., Yokochi, T., Tan, R. S. -P., Takasugi, T., Kadokawa, Y., Schindler, C., Schreiber, R. D., Noguchi, S., and Taniguchi, T. (1996) Regulation of 1FN-a/13 genes: evidence for a dual function of the transcription factor complex ISGF3 in the production and action of IFN-a/ß. Genes to Cells 1, 995 - 1005.Google Scholar
  50. 47.
    Lee, S. B. and Esteban, M. (1993) The interferon-induced double-stranded RNA-activated human p68 protein kinase inhibits the replication of vaccinia virus. Virology 193, 1037 - 1041.PubMedCrossRefGoogle Scholar
  51. 48.
    Meurs, E. F., Watanabe, Y., Kadereit, S., Barber, G. N., Katze, M. G., Chong, K., Williams, B. R., and Hovanessian, A. G. (1992) Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. J. Virol 66, 5804 - 5814.Google Scholar
  52. 49.
    Marcus, P. I. and Sekellick, M. J. (1988) Interferon induction by viruses. XVI. 2-Aminopurine blocks selectively and reversibly an early stage in interferon induction J. Gen. Virol 69, 1637-1645 Google Scholar
  53. 50.
    Zinn, K., Keller, A., Whittemore, L.-A., and Maniatis, T. (1988) 2-Aminopurine selectively inhibits the induction of 13-interferon, c fos, and c-myc gene expression. Science 240, 210 - 213.Google Scholar
  54. 51.
    Tiwari, R. K., Kusari, J., Kumar, R., and Sen, G. C. (1988) Gene induction by interferons and double-stranded RNA: selective inhibition by 2-aminopurine. Mol. Cell. Biol 8, 4289 - 4294.PubMedGoogle Scholar
  55. 52.
    Chong, K. L., Feng, L., Schappert, K., Meurs, E., Donahue, T. F., Friesen, J. D., Hovanessian, A. G., and Williams, B. R. (1992) Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11, 1553 - 1562.Google Scholar
  56. 53.
    Dever, T. E., Chen, J. J., Barber, G. N., Cigan, A. M., Feng, L., Donahue, T. F., London, I. M., Katze, M. G., and Hinnebusch, A. G. (1993) Mammalian eukaryotic initiation factor 2 alpha kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc. Natl. Acad. Sci. USA 90, 4616 - 4620.PubMedCrossRefGoogle Scholar
  57. 54.
    Koromilas, A. E., Roy, S., Barber, G. N., Katze, M. G., and Sonenberg, N. (1992) Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257, 1685 - 1689.PubMedCrossRefGoogle Scholar
  58. 55.
    Meurs, E. F., Galabru, J., Barber, G. N., Katze, M. G., and Hovanessian, A. G. (1993) Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 90, 232 - 236.PubMedCrossRefGoogle Scholar
  59. 56.
    Yang, Y.-L., Reis, L. F. L., Pavlovic, J., Aguzzi, A., Schäfer, R., Kumar, A., Williams, B. R. G., Aguet, M., and Weissmann, C. (1995) Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14, 6095 - 6106.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jan Vilček
  • Michel Aguet
  • Luiz F. L. Reis

There are no affiliations available

Personalised recommendations