Mice Deficient in Interleukin-1β Converting Enzyme

  • Keisuke Kuida
  • Judith A. Lippke
  • Michael S.-S. Su
  • Richard A. Flavell
Part of the Contemporary Immunology book series (CONTIM)


Interleukin-1 (IL-1) is a cytokine that has been implicated in the pathogenesis of acute and chronic inflammatory diseases (1). IL-1 has two isoforms, IL-1α and IL-1β of which IL-1β is the predominant form released by human monocytes in culture. IL-1β is synthesized as a 31-kDa precursor devoid of a conventional signal sequence and is processed to its active 17-kDa form by an enzyme called IL-1β converting enzyme (ICE) which has an unique cleavage specificity for Asp-X (2–4). The purification and cloning of this enzyme have been described (5,6). ICE is synthesized primarily as an inactive 45-kDa precursor and auto-processed to 20- and 10-kDa subunits. The crystal structure of ICE reveals that the active enzyme is composed of two 20-kDa and two 10-kDa subunits to form a tetramer (7,8).


Adherent Monocyte Embryonic Stem Cell Clone Mutant Embryonic Stem Cell Intracellular Serine Protease Thymic Stromal Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dinarello, C. A. (1994) The interleukin-1 family: 10 years of discovery. FASEB J. 8, 1314–1325.PubMedGoogle Scholar
  2. 2.
    Black, R. A., Kronheim, S. R., and Sleath, P. R. (1989) Activation of interleukin-113 by a co-induced protease. FEBS Lett. 247, 386–390.PubMedCrossRefGoogle Scholar
  3. 3.
    Sleath, P. R., Hendrickson, R. C., Kronheim, S. R., March, C. J., and Black, R. A. (1990) Substrate specificity of the protease that processes human interleukin-1f3. J. Biol. Chem. 265, 14526–14528.PubMedGoogle Scholar
  4. 4.
    Howard, A. D., Kostura, M. J., Thornberry, N., Ding, G. J., Limjuco, G., Weidner, J., Salley, J. P., Hogquist, K. A., Chaplin, D. D., Mumford, R. A., Schmidt, J. A., and Tocci, M. J. (1991) IL-1-converting enzyme requires aspartic acid residues for processing of the IL-43 precursor at two distinct sites and does not cleave 31-kDa IL-la. J. Immunol. 147, 2964–2969.PubMedGoogle Scholar
  5. 5.
    Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J., Elliston, K. O., Ayala, J. M., Casano, F. J., Chin, J., Ding, G. J. F., Egger L. A., Gaffney, E. P., Limjuco, G., Palyha, O. C., Raju, S. M., Roland, A. M., Salley, J. P., Yamin, T. T., Lee, T. D., Shively, J. E., MacCross, M., Mumford, R. A., Schmidt, J. A., and Tocci, M. J. (1992) A novel heterodimeric cysteine protease is required for interleukin- 1 β processing in monocytes. Nature 356, 768–774.PubMedCrossRefGoogle Scholar
  6. 6.
    Cerretti, D. P., Kozlosky, C. J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T. A., March, C. J., Kronheim, S. R., Druck, T., Cannizzaro, L. A., Huebner, K., and Black, R. A. (1992) Molecular cloning of the interleukin-1f3 converting enzyme. Science 256, 97–100.PubMedCrossRefGoogle Scholar
  7. 7.
    Walker, N. P., Talanian, R. V., Brady, K. D., Dang, L. C., Bump, N. J., Ferenz, C. R., Franklin, S., Ghayur, T., Hackett, M. C., Hammill, L. D., Herzog, M., Hugunin, M., Houy, W., Mankovich, J. A., McGuiness, L., Orlewicz, E., Paskind, M., Pratt, C. A., Reis, P., Summani, A., Terranova, M., Welch, J. P., Xiong, L., Möller, A., Tracey. D. E., Kamen, R., and Wong, W. W. (1994) Crystal structure of the cysteine protease interleukin-113converting enzyme: a (p20/p 10)2 homodimer. Cell 78, 343–352.Google Scholar
  8. 8.
    Wilson, K. P., Black, J. A., Thomson, J. A., Kim, E. E., Griffith, J. P., Navia, M. A., Murcko, M. A., Chambers, S. P., Aldape, R. A., Raybuck, S. A., and Livingston, D. J. (1994) Structure and mechanism of interleukin-1(3 converting enzyme. Nature 370, 270–275.PubMedCrossRefGoogle Scholar
  9. 9.
    Ellis, R. E., Yuan, J. Y., and Horvitz, H. R. (1991) Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–698.PubMedCrossRefGoogle Scholar
  10. 10.
    Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-113-converting enzyme. Cell 75, 641–652.PubMedCrossRefGoogle Scholar
  11. 11.
    Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., and Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL- l (3-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660.PubMedCrossRefGoogle Scholar
  12. 12.
    Hengartner, M. O. and Horvitz, H. R. (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bd-2. Cell 76, 665–676.PubMedCrossRefGoogle Scholar
  13. 13.
    Vaux, D. L., Weissman, I. L., and Kim, S. K. (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bc1–2. Science 258, 1955–1957.PubMedCrossRefGoogle Scholar
  14. 14.
    Ray, C. A., Black, R. A., Kronheim, S. R., Greenstreet, T. A., Sleath, P. R., Salvesen, G. S., and Pickup, D. J. (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-113 converting enzyme. Cell 69, 597–604.PubMedCrossRefGoogle Scholar
  15. 15.
    Gagliardini, V., Fernandez, P. A., Lee, R. K., Drexler, H. C., Rotello, R. J., Fishman, M. C., and Yuan, J. (1994) Prevention of vertebrate neuronal death by the crmA gene. Science 263, 826–828.PubMedCrossRefGoogle Scholar
  16. 16.
    Tewari, M. and Dixit, V. M. (1995) Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem. 270, 3255–3260.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J. (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78, 739–750.PubMedCrossRefGoogle Scholar
  18. 18.
    Kamens, J., Paskind, M., Hugunin, M., Talanian, R. V., Allen, H., Banach, D., Bump, N., Hackett, M., Johnston, C. G., Li, P., Mankovich, J. A., Terranova, M., and Ghayur, T. (1995) Identification and characterization of ICH-2, a novel member of the interleukin-113-converting enzyme family of cysteine proteases. J. Biol. Chem. 270, 15,250–15, 256.Google Scholar
  19. 19.
    Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S. (1995) Mch2, a new member of the apoptotic Ced-3/lce cysteine protease gene family Cancer Res. 55, 2737–2742.PubMedGoogle Scholar
  20. 20.
    Fernandes-Alnemri, T., Litwack, G. and A.lnemri, E. S. (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1(3-converting enzyme. J. Biol. Chem. 269, 30,761–30, 764.Google Scholar
  21. 21.
    Faucheu, C., Diu, A., Chan, A. W., Blanchet, A. M., Miossec, C., Herve, F., Collard-Dutilleul, V., Gu, Y., Aldape, R. A., Lippke, J. A., et al. (1995) A novel human protease similar to the interleukin-113 converting enzyme induces apoptosis in transfected cells. EMBO J. 14, 1914–1922.PubMedGoogle Scholar
  22. 22.
    Kuida, K., Lippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S., and Flavell, R. A. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-113 converting enzyme. Science 267, 2000–2003.PubMedCrossRefGoogle Scholar
  23. 23.
    Nakayama, K., Nakayama, K., Negishi, I., Kuida, K., Shinkai, Y., Louie, M. C., Fields, L. E., Lucas, P. J., Stewart, V., Alt, F. W., and Loh, D. Y. (1993) Disappearance of the lymphoid system in Bc1–2 homozygous mutant chimeric mice. Science 261, 1584–1588.PubMedCrossRefGoogle Scholar
  24. 24.
    Casano, F. J., Rolando, A. M., Mudgett, J. S., and Molineaux, S. M. (1994) The structure and complete nucleotide sequence of the murine gene encoding interleukin-113 converting enzyme (ICE). Genomics 20, 474–481.PubMedCrossRefGoogle Scholar
  25. 25.
    Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J., Towne, E., Tracey, D., Wardwell, S., Wei, F. Y., Wong, W., Kamen, R., and Seshadri, T. (1995) Mice deficient in IL-113-converting enzyme are defective in production of mature IL-1f3 and resistant to endotoxic shock. Cell 80, 401–411.PubMedCrossRefGoogle Scholar
  26. 26.
    Kumar, S., Kinoshita, M., Noda, M., Copeland, N. G., and Jenkins, N. A. (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-113-converting enzyme. Genes Dey. 8, 1613–1626.CrossRefGoogle Scholar
  27. 27.
    Cohen, J. J. and Duke, R. C. (1984) Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol. 132, 38–42.PubMedGoogle Scholar
  28. 28.
    Sellins, K. S. and Cohen, J. J. (1987) Gene induction by y-irradiation leads to DNA fragmentation in lymphocytes. J. Immunol. 139, 3199–3206.PubMedGoogle Scholar
  29. 29.
    Ogasawara, J., Suda, T., and Nagata, S. (1995) Selective apoptosis of CD4+CD8+ thymocytes by the anti-Fas antibody. J. Exp. Med. 181, 485–491.PubMedCrossRefGoogle Scholar
  30. 30.
    Nishimura, Y., Ishii, A., Kobayashi, Y., Yamasaki, Y., and Yonehara, S. (1995) Expression and function of mouse Fas antigen on immature and mature T cells. J. Immunol. 154, 4395–4403.PubMedGoogle Scholar
  31. 31.
    Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S., Sameshima, M., Hase, A., Seto, Y., and Nagata, S. (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243.PubMedCrossRefGoogle Scholar
  32. 32.
    Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., and Nagata, S. (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317.PubMedCrossRefGoogle Scholar
  33. 33.
    Enari, M., Hug, H., and Nagata, S. (1995) Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375, 78–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Los, M., Van de Craen, M., Penning, L. C., Schenk, H., Westendorp, M., Baeuerle, P. A., Droge, W., Krammer, P. H., Fiers, W., and Schulze-Osthoff, K. (1995) Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature 375, 81–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Voelkel-Johnson, C., Entingh, A. J., Wold, W. S., Gooding, L. R., and Laster, S. M. (1995) Activation of intracellular proteases is an early event in TNFinduced apoptosis. J. Immunol. 154, 1707–1716.PubMedGoogle Scholar
  36. 36.
    Weaver, V. M., Lach, B., Walker, P. R., and Sikorska, M. (1993) Role of proteolysis in apoptosis: involvement of serine proteases in internucleosomal DNA fragmentation in immature thymocytes. Biochem. Cell Biol. 71, 488–500.PubMedCrossRefGoogle Scholar
  37. 37.
    Veis, D. J., Sorenson, C. M., Shutter, J. R., and Korsmeyer, S. J. (1993) Bch 2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240.PubMedCrossRefGoogle Scholar
  38. 38.
    Sentman, C. L., Shutter, J. R., Hockenbery, D., Kanagawa, O., and Korsmeyer, S. J. (1991) bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879–888.Google Scholar
  39. 39.
    Strasser, A., Harris, A. W., and Cory, S. (1991) bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899.Google Scholar
  40. 40.
    Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., and Jacks, T. (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849.Google Scholar
  41. 41.
    Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., and Wyllie, A. H. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852.PubMedCrossRefGoogle Scholar
  42. 42.
    Nagata, S. and Golstein, P. (1995) The Fas death factor. Science 267, 1449–1456.PubMedCrossRefGoogle Scholar
  43. 43.
    Russell, J. H., Rush, B., Weaver, C., and Wang, R. (1993) Mature T cells of autoimmune 1pr/lpr mice have a defect in antigen-stimulated suicide. Proc. Natl. Acad. Sci. USA. 90, 4409–4413.PubMedCrossRefGoogle Scholar
  44. 44.
    Gillette-Ferguson, I. and Sidman, C. L. (1994) A specific intercellular pathway of apoptotic cell death is defective in the mature peripheral T cells of autoimmune 1pr and gld mice. Eur. J. Immunol. 24, 1181–1185.PubMedCrossRefGoogle Scholar
  45. 45.
    Alderson, M. R., Tough, T. W., Davis-Smith, T., Braddy, S., Falk, B., Schooley, K. A., Goodwin, R. G., Smith, C. A., Ramsdell, F., and Lynch, D. H. (1995) Fas ligand mediates activation-induced cell death in human T lymphocytes. J. Exp. Med. 181, 71–77.CrossRefGoogle Scholar
  46. 46.
    Suda, T., Okazaki, T., Naito, Y., Yokota, T., Arai, N., Ozaki, S., Nakao, K., and Nagata, S. (1995) Expression of the Fas ligand in cells of T cell lineage. J. Immunol. 154, 3806–3813.PubMedGoogle Scholar
  47. 47.
    Singer, G. G., and Abbas, A. K. (1994) The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1, 365–371.PubMedCrossRefGoogle Scholar
  48. 48.
    Brunner, T., Mogil, R. J., LaFace, D., Yoo, N. J., Mahboubi, A., Echeverri, F., Martin, S. J., Force, W. R., Lynch, D. H., Ware, C. F., and Green, D. R. (1995) Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441–444.PubMedCrossRefGoogle Scholar
  49. 49.
    Dhein, J., Walczak, H., Baumler, C., Debatiin, K. M., and Krammer, P. H. (1995) Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–441.PubMedCrossRefGoogle Scholar
  50. 50.
    Ju, S. T., Panka, D. J., Cui, H., Ettinger, R., El-Khatib, M., Sherr, D. H., Stanger, B. Z., and Marshak-Rothstein, A. (1995) Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444–448.PubMedCrossRefGoogle Scholar
  51. 51.
    Black, R. A., Kronheim, S. R., Cantrell, M., Deeley, M. C., March, C. J., Prickett, K. S., Wignall, J., Conlon, P. J., Cosman, D., Hopp, T. P., and Mochizuki, D. Y. (1988) Generation of biologically active interleukin-113 by proteolytic cleavage of the inactive precursor. J. Biol. Chem. 263, 9437–9442.PubMedGoogle Scholar
  52. 52.
    Hazuda, D. J., Strickler, J., Kueppers, F., Simon, P. L., and Young, P. R. (1990) Processing of precursor interleukin 1(3 and inflammatory disease. J. Biol. Chem. 265, 6318–6322.PubMedGoogle Scholar
  53. 53.
    Irmler, M., Hertig, S., MacDonald, H. R., Sadoul, R., Becherer, J. D., Proudfoot, A., Solari, R., and Tschopp, J. (1995) Granzyme A is an interleukin 113-converting enzyme. J. Exp. Med. 181, 1917–1922.PubMedCrossRefGoogle Scholar
  54. 54.
    Molineaux, S. M., Casano, F. J., Rolando, A. M., Peterson, E. P., Limjuco, G., Chin, J., Griffin, P. R., Calaycay, J. R., Ding, G. J., Yamin, T. T., Palyha, O. C., Luell, S., Fletcher, D., Miller, D. K., Howard, A. D., Thornberry, N. A., and Kostura, M. J. (1993) Interleukin 113 (IL-113) processing in murine macrophages requires a structurally conserved homologue of human IL-1(3 converting enzyme. Proc. Natl. Acad. Sci. USA. 90, 1809–1813.PubMedCrossRefGoogle Scholar
  55. 55.
    Perregaux, D., Barberia, J., Lanzetti, A. J., Geoghegan, K. F., Carty, T. J., and Gabel, C. A. (1992) IL-113 maturation: evidence that mature cytokine formation can be induced specifically by nigericin. J. Immunol. 149, 1294–1303.PubMedGoogle Scholar
  56. 56.
    Perregaux, D. and Gabel, C. A. (1994) Interleukin-1(3 maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem. 269, 15,195–15, 203.Google Scholar
  57. 57.
    Okusawa, S., Gelfand, J. A., Ikejima, T., Connolly, R. J., and Dinarello, C. A. (1988) Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J. Clini. Invest. 81, 1162–1172.CrossRefGoogle Scholar
  58. 58.
    Ohlsson, K., Bjork, P., Bergenfeldt, M., Hageman, R., and Thompson, R. C. (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348, 550–552.PubMedCrossRefGoogle Scholar
  59. 59.
    Alexander, H. R., Doherty, G. M., Buresh, C. M., Venzon, D. J., and Norton, J. A. (1991) A recombinant human receptor antagonist to interleukin 1 improves survival after lethal endotoxemia in mice. J. Exp. Med. 173, 1029–1032.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Keisuke Kuida
  • Judith A. Lippke
  • Michael S.-S. Su
  • Richard A. Flavell

There are no affiliations available

Personalised recommendations